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Abstract. The non-diagonal correlators of vector and scalar currents are considered at three-loop order
in QCD. The full mass dependence is computed in the case where one of the quarks is massless and the
other one carries mass M . We exploit the decoupling relations between the full theory and the heavy quark
effective theory (HQET) in order to obtain the logarithmic parts of the leading threshold terms. With the
help of conformal mapping and Padé approximation numerical estimates for the non-logarithmic terms
are extracted which in turn lead to a prediction of the correlator in HQET at order α2

s . As applications
of the vector and scalar correlator we consider the single-top-quark production via the process qq̄ → tb̄
and the decay rate of a charged Higgs boson into hadrons, respectively. In both cases the computed NLO
corrections are shown to be numerically much less important than the leading ones. On the contrary, the
NLO order QCD corrections to the HQET sum rule for the leptonic decay rate of a heavy-light meson
proves to be comparable to the leading one.

1 Introduction

In QCD the correlator of two currents is very often a cen-
tral object from which important physical consequences
can be deduced. In particular, in case the coupling of the
currents is diagonal physical observables like e+e− anni-
hilation into hadrons and the decay of the Z boson are
obtained from the vector and axial-vector current correla-
tors. Furthermore, total decay rates of CP even or CP odd
Higgs bosons can be obtained by considering the scalar
and pseudo-scalar current densities, respectively. For these
cases the results are available up to order α2

s taking into
account the full quark mass dependence both for the non-
singlet [1] and singlet [2] correlators.

In this work we want to extend the techniques devel-
oped in [1,2] to the situation where the coupling of the
external currents to quarks is non-diagonal. In particular
we compute the three-loop correlators of currents which
couple to two different quark flavors. To be precise we want
to consider the case where one of the quarks is massless
and the other carries mass M . In this limit the vector
(scalar) and axial-vector (pseudo-scalar) correlators coin-
cide. A short account of our results has been presented in
[3]. In this paper the details of the calculation are given
and explicit expressions for intermediate results are pro-
vided which might be useful for other applications.
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Moscow 117312, Russia

The main aim of this work is to obtain results which
are valid for arbitray values of the quark mass, M , respec-
tively the ratio q2/M2 where q is the external momen-
tum of the correlator. Very often the knowledge of the
full mass dependence is not necessary. E.g., in high en-
ergy experiments where the center-of-mass energy, s1/2,
is much larger than the mass of the quarks, the latter
can often be neglected or an expansion in M/s1/2 is suf-
ficient to describe the data. However, there are situations
where the full dependence on M and s1/2 is required.
One can, e.g., think on the high precision which mean-
while has been reached at LEP (CERN), SLC (SLAC) or
TEVATRON (Fermilab) or on situations where the center-
of-mass energy is of the same order of magnitude as the
quark masses. In particular for threshold phenomena the
masses are important and the full dependence is desirable.

Concerning the physical applications of the non-
diagonal vector and axial-vector correlators we have in
mind properties connected to the W boson. With the re-
sults of this paper at hand a certain (gauge invariant) class
of corrections to the Drell–Yan process becomes available.
In particular we have in mind the production of a quark
pair through the decay of a virtual W boson generated in
pp̄ collisions. The absorptive part of the considered corre-
lator is directly related to the decay width of the (highly
virtual) W bosons into quark pairs and gluons. Of par-
ticular interest in this connection is the single-top-quark
production via the process qq̄ → tb̄. The imaginary part of
the transversal W boson polarization function constitutes
a gauge invariant and finite contribution of O(α2

s ).
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As an application of the scalar and pseudo-scalar cur-
rent correlator we want to mention the decay of a charged
Higgs boson which occurs in extensions of the standard
model (SM). The corrections provided in this paper de-
scribe the total decay rate into a massive and a massless
quark.

Another important application of the non-diagonal
vector and scalar current correlator is connected to the
corresponding meson decay constant. Within HQET it is
related to the imaginary part of the effective current cor-
relator, i.e. the spectral density, evaluated near threshold.
As the current in the effective theory does not depend on
the γ-matrix structure it can be derived both from the
vector and the scalar correlator of the full theory which
are evaluated in this work. The corresponding analysis at
order αs has been performed in [4,5] with the conclusion
that the determination of the B meson decay constant suf-
fers from large perturbative corrections. We show in this
paper that the corrections of order α2

s are also sizeable.
This paper is organized as follows. In Sect. 2 we provide

useful definitions and describe the method we use for the
computation. The connection between the effective and
full theory is established in Sect. 3. In Sect. 4 we present
explicit results for the moments of the vector and scalar
current correlator and discuss the results for the corre-
sponding spectral densities in the full theory. Afterwards,
in Sect. 5, the procedure is discussed which allows for the
extraction of threshold information from our results. This
can be translated to the effective theory which provides
a result for the spectral density in the effective theory up
to order α2

s . Finally, in Sect. 6, we discuss some physical
applications and present our conclusions. The appendix
contains the analytical results of the low- and high-energy
moments for the vector and scalar correlator.

2 Conformal mapping
and Padé approximation

In this section we want to describe the method we use for
the computation of the current correlators in full QCD.
Let us start with some definitions.

In the vector case the polarization function is defined
through

(−q2gµν + qµqν)Πv(q2) + qµqνΠv
L(q

2)

= i
∫

dxeiqx〈0|Tjvµ(x)j
v†
ν (0)|0〉, (1)

with jvµ = ψ̄1γµψ2. Only the transversal part Πv(q2) will
be considered in the following. The definition of the scalar
polarization function reads

q2Πs(q2) = i
∫

dxeiqx〈0|Tjs(x)js†(0)|0〉, (2)

with js = (m(µ)/M)ψ̄1ψ2 where m(µ) is the MS and M
the on-shell mass of ψ2. ψ1 we consider to be massless.
Thus we will identify ψ1 with q, the massless quark, and ψ2

with Q which is supposed to be a heavy quark of mass M .
This will become relevant later on when we consider the
effective theory. Throughout this paper we consider anti-
commuting γ5 which is justified as for ψ1 �= ψ2 only non-
singlet diagrams contribute. As a consequence the axial-
vector (pseudo-scalar) correlator coincides with the vector
(scalar) one.

It is convenient to introduce the dimensionless variable

z =
q2

M2 , (3)

where M refers to the pole mass. For the overall normal-
ization of Πδ(q2) (δ = v, s) we adopt the QED-like condi-
tions Πδ(0) = 0.

The physical observables R(s) are related to Π(q2)
through

Rv(s) = 12πIm[Πv(q2 = s + iε)], (4)
Rs(s) = 8πIm[Πs(q2 = s + iε)], (5)

where the use of the variables

x =
M√

s
, v =

1− x2

1 + x2 , (6)

turns out to be useful to describe the high energy and
threshold region, respectively.

The expansion of Πδ in terms of αs reads (δ = v, s)

Πδ = Π(0),δ +
α

(nf )
s (µ)

π
CFΠ(1),δ +

(
α

(nf )
s (µ)

π

)2

Π(2),δ

+O(α3
s ). (7)

It is convenient to further decompose the three-loop term
according to the color structure

Π(2),δ = C2
FΠ

(2),δ
FF + CACFΠ

(2),δ
FA + CFTnlΠ

(2),δ
FL

+CFTΠ
(2),δ
FH , (8)

where analogous formulae hold for R(s) and also for the
corresponding quantities in the effective theory which we
will define below. CF = (N2

c − 1)/(2Nc) and CA = Nc

are the eigenvalues of the quadratic Casimir operator of
the fundamental and adjoint representation, respectively,
and T = 1/2 is the index of the fundamental representa-
tion. In (8) Π

(2),δ
FF corresponds to the abelian part already

present in QED whereas Π
(2),δ
FA represents the non-abelian

structure. The remaining two structures correspond to the
fermionic contributions where nl counts the number of
massless quarks and nf = nl + 1 is the total number of
active quark flavors.

For later convenience we want to list the exact expres-
sions for the Born results and the corrections of order αs
[6–10]. In the vector case we have

R(0),v(s) =
Nc

2
(1− x2)2(2 + x2),

R(1),v(s) =
3Nc

4

{
1− 5x2

2
+

2x4

3
+

5x6

6
+

1
3

x2
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×(−5− 4x2 + 5x4) ln(x2)− 1
3
(1− x2)2

×(4 + 5x2) ln(1− x2)− 2
3
(1− x2)2(2 + x2)

×
[
− ln

(
x2

1− x2

)
ln(1− x2)

+ 2Li2

(
− x2

1− x2

)]}
. (9)

Correspondingly, the scalar current correlators read

R(0),s(s) = Nc(1− x2)2,

R(1),s(s) = −Nc

2
(1− x2)

{
− (3− 7x2 + 2x4) ln(x2)

+(1− x2)
[
−9
2
+ (5− 2x2) ln(1− x2)

]

+2(1− x2)
[
− ln

(
x2

1− x2

)
ln(1− x2)

+ 2Li2

(
− x2

1− x2

)]}
. (10)

A complete analytical computation of Πδ(q2) at three-
loop order or its imaginary part is currently not feasible.
The method we use for the computation of the diagrams
has successfully been applied to several physical quantities
(see, e.g., [11,1,2,12]). It allows for the computation of a
semi-numerical approximation for Π(q2). The aim is the
reconstruction of the function Π(q2) from the knowledge
of some moments for z → 0 and z → −∞ and additional
partial information about the behavior of R(s) for s →
M2. For convenience we briefly summarize the different
steps which have to be performed for the individual pieces
of (7) and (8). In the following we generically write Π(q2).
(1) Compute as many moments as possible for small and
large z. In our case the expansion for z → 0 reduces to
a simple Taylor series of the Feynman diagrams in the
external momentum. For z → −∞, however, the rules of
asymptotic expansion [13] have to be applied. Thus in this
limit besides the power corrections there are logarithmic
terms in z.
(2) The information known about the imaginary part R(s)
for s → M2 has to be transformed to a function Πthr(q2).
Afterwards Πthr(q2) has to be expanded in the limits
z → 0 and z → −∞ and the moments have to be sub-
tracted from the ones of Π(q2). It is important to con-
struct Πthr(q2) in such a way that its expansion for z → 0
is analytical. In this way the information about the loga-
rithmic part of Πthr(q2) can be incorporated.
(3) Construct a function Π log(q2) in such a way that the
combination

Π̃(q2) ≡ Π(q2)− Πthr(q2)− Π log(q2) (11)

is polynomial in z and 1/z, i.e. in the small and high en-
ergy region. Furthermore no logarithmic singularities may
be introduced at threshold.

(4) Perform a conformal mapping. The change of variables
[14]

z =
4ω

(1 + ω)2
, (12)

maps the z plane into the interior of the unit circle of the w
plane. Thereby the cut [1, ∞) is mapped to the perimeter.
(5) Define [2]

Pn(ω) =
(4ω)n−1

(1 + ω)2n
(13)

×

Π̃(q2)−

n−1∑
j=0

1
j!

(
dj

d(1/z)j
Π̃(q2)

∣∣∣∣
z=−∞

)
(1 + ω)2j

(4ω)j


 ,

where for Π̃(q2) the terms up to order 1/zn must be
known. The available information transforms into Pn(−1)
and P

(k)
n (0), (k = 0, 1, . . . , n + n0 − 1), where n0 is the

number of moments for z → 0.
(6) In the last step a Padé approximation is performed for
the function Pn(ω). This means that Pn(ω) is represented
through a function

[i/j](ω) =
a0 + a1ω + · · ·+ aiω

i

1 + b1ω + · · ·+ bjωj
, (14)

where the number of coefficients on the r.h.s. depend on
the amount of information available for Pn(ω).

Once an approximation for P (ω) is known the above
steps have to be inverted in order to obtain the function
Π(q2).

Due to the structure of (14) some Padé approximants
develop poles inside the unit circle (|ω| ≤ 1). In general we
will discard such results in the following. In some cases,
however, the pole coincides with a zero of the numerator
up to several digits accuracy. These Padé approximations
will be taken into account in constructing our results. To
be precise: in addition to the Padé results without any
poles inside the unit circle, we will use the ones where the
poles are accompanied by zeros within a circle of radius
0.01, and the distance between the pole and the physically
relevant point q2/M2 = 1 is larger than 0.1.

3 Current correlator in the effective theory

The computation of the current correlators is performed
in the full theory. In this section the connection to the
correlator in the HQET is described. This connection is
exploited to obtain the leading logarithmic terms of Rv(s)
and Rs(s) at threshold.

In the effective theory we denote the MS renormalized
current which couples to a massive and a massless quark
by

j̃Γ = q̄Γ Q̃, (15)

with Γ ∈ {1, γµ, iγ5, γµγ5}. The light quark flavor q is
identical in the full and the effective theory which is not
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true for the heavy one as indicated by the tilde. In the
effective theory Q̃ is considered as a static quark which
fulfills the relation

Q̃ = γ0Q̃. (16)

Due to this condition the set of γ matrices can be di-
vided into two groups: one which commutes ({iγ5, γj}, j =
1, 2, 3) and one which anti-commutes ({1, γjγ5}) with γ0.

Let us next consider the corresponding correlators
which are defined in analogy to (1) and (2)

Π̃Γ1,Γ2(q0) = i
∫

dxeiqx〈0|T j̃Γ1(x)j̃
†
Γ2
(0)|0〉. (17)

They only depend on the zeroth component q0 as due
to the Feynman rules of HQET in coordinate space one
has 〈0|T j̃Γ (x)j̃

†
Γ (0)|0〉 ∼ δ()x). Furthermore, in our case

where only one of the quarks is massive, one can write all
correlators in terms of Π̃(q0) ≡ Π̃1,1(q0). It is possible to
show that the following equations hold1

Π̃iγ5,iγ5(q0) = Π̃(q0),

Π̃γi,γj (q0) = δijΠ̃(q0),

Π̃γiγ5,γjγ5(q0) = δijΠ̃(q0). (18)

Thus in HQET there is only one independent correlator,
Π̃(q0), which will be considered in the following. The cor-
responding current will be denoted by j̃.

The relation between j̃ and jδ (δ = v, s) has been
computed in [15] up to order α2

s . For µ = M it can be
written in the form

jδ = Cδ(M)j̃, (19)

where the decoupling constants Cδ(M) are given by

Cv(M) = 1− CF
α

(nf )
s (M)

π
+

(
α

(nf )
s (M)

π

)2

(20)

×
[
C2
F

(
1453
768

− 173
48

ζ2 +
7
2

ζ2 ln 2− 11
8

ζ3

)

+CFCA

(
−6821
2304

+
21
16

ζ2 − 7
4

ζ2 ln 2 +
9
16

ζ3

)

+CFTnl

(
445
576

+
1
4

ζ2

)
+ CFT

(
709
576

− 5
6

ζ2

)]
,

Cs(M) = 1 +
CF
2

α
(nf )
s (M)

π
+

(
α

(nf )
s (M)

π

)2

(21)

×
[
C2
F

(
369
256

+
15
16

ζ2 − 3
2

ζ2 ln 2− 1
8

ζ3

)

+CFCA

(
1351
768

− 3
16

ζ2 +
3
4

ζ2 ln 2− 1
16

ζ3

)

+CFTnl

(
− 95
192

− 1
4

ζ2

)
+CFT

(
169
192

− 1
2

ζ2

)]
,

1 This is true only if no power suppressed non-perturbative
corrections are taken into account, what is implicitly under-
stood throughout the present paper

with ζ2 = π2/6 and ζ3 ≈ 1.202057. The superscript at-
tached to αs defines the number of active flavors. j̃ is still
defined with nf active flavors. The transition to a theory
with only nl active flavors is achieved through

j̃ = C̃(M)j̃′, (22)

with [16]

C̃(M) = 1 +
89
576

CFT

(
α

(nl)
s (M)

π

)2

, (23)

where again µ = M has been adopted. In analogy to (17)
and (18) one can define polarization functions also in the
primed theory. Again there is only one which is indepen-
dent. It will be denoted by Π̃ ′(q0) which only depends on
the massless quark flavors. Thus besides the renormaliza-
tion scale µ there is only one more dimensionful quantity
which in the framework of HQET is usually chosen to be
ω = s1/2−M . As a consequence the renormalization group
equation for j̃′ takes the simple form

µ2 d
dµ2 j̃′ = γ̃′j̃′, (24)

with [17]

γ̃′ = CF
3
8

α
(nl)
s

π
+

(
α

(nl)
s

π

)2 [
−C2

F

(
5
64

− 1
2

ζ2

)

− CACF

(
− 49
192

+
1
8

ζ2

)
− CFTnl

5
48

]
+O(α3

s ). (25)

Note that the primed quantities only depend on α
(nl)
s .

This allows for a simple reconstruction of the logarithms
ln(µ2/ω2) at O(α2

s ) of R̃′ defined through

R̃′(ω) = 2πIm[Π̃ ′(q0)]|q2=s+iε,ω=
√
s−M . (26)

Once they are at hand (20), (21) and (23) can be used to
predict the logarithms of Rv and Rs at threshold via the
relations

Rv(s) = 6[Cv(M)C̃(M)]2
v2

ω2 R̃′ +O(v3),

Rs(s) = 4
[

m(M)
M

Cs(M)C̃(M)
]2

v2

ω2 R̃′ +O(v3), (27)

where it is understood that ω is expressed in terms of v
via the relation

1− ω

M
=

√
1− v

1 + v
, (28)

an expansion for v → 0 is performed and only the leading
term is kept.

At this point we want to mention that the developed
formalism – in particular the decoupling relations (19) and
(23) – only applies to the imaginary part. For the polar-
ization function one would have to take into account ad-
ditional contributions.
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The procedure described above determines the loga-
rithmic parts of the leading threshold term. They are in-
corporated into the Padé procedure as described in Sect. 2
(cf. point (2)). Note, that the non-logarithmic part for Rδ

are not fixed via this procedure. In Sect. 5 we will extract
numerical approximations from our Padé results.

At the end of this section we want to list the available
information for R̃′(ω). Using (24) and (25) and the O(αs)
result for R̃′ [4,5] one obtains

R̃′(ω) (29)

= Ncω
2

{
1 +

α
(nl)
s (µ)

π
CF

×
(
17
4

− 3
2
ln 2 + 2ζ2 +

3
4

Lω

)
+

(
α

(nl)
s (µ)

π

)2

×
[
C2
F

(
c̃FF +

(
97
32

− 9
8
ln 2 +

5
2

ζ2

)
Lω +

9
32

L2
ω

)

+CACF

(̃
cFA +

(
141
32

− 11
8
ln 2 +

19
12

ζ2

)
Lω +

11
32

L2
ω

)

+CFTnl

(̃
cFL +

(
−13

8
+

1
2
ln 2− 2

3
ζ2

)
Lω − 1

8
L2
ω

)]}
,

with Lω = ln(µ2/ω2). The coefficients c̃FF , c̃FA and c̃FL
are not known. In Sect. 5 we will provide numerical ap-
proximations.

With the help of (27) one obtains the leading terms of
Rv and Rs for v → 0. Separated according to the color
factors they read (µ = M)

Rv,thr

= Ncv
2

{
6 +

α
(nf )
s (M)

π
CF

×
(
27
2
+ 12ζ2 − 9 ln 2− 9 ln v

)
+

(
α

(nf )
s (M)

π

)2

×
[
C2
F

(
cvFF +

(
−147

8
− 30ζ2 +

27
2
ln 2
)
ln v +

27
4
ln2 v

)

+CACF

(
cvFA +

(
−423

8
− 19ζ2 +

33
2
ln 2
)
ln v

+
33
4
ln2 v

)

+CFTnl

(
cvFL +

(
39
2
+ 8ζ2 − 6 ln 2

)
ln v − 3 ln2 v

)

+CFT

(
133
8

− 10ζ2

)]}
, (30)

Rs,thr

= Ncv
2

{
4 +

α
(nf )
s (M)

π
CF (13 + 8ζ2 − 6 ln 2− 6 ln v)

+

(
α

(nf )
s (M)

π

)2

×
[
C2
F

(
csFF +

(
−73

4
− 20ζ2 + 9 ln 2

)
ln v +

9
2
ln2 v

)

+CACF

(
csFA +

(
−141

4
− 38

3
ζ2 + 11 ln 2

)
ln v

+
11
2
ln2 v

)

+CFTnl

(
csFL +

(
13 +

16
3

ζ2 − 4 ln 2
)
ln v − 2 ln2 v

)

+CFT

(
727
36

− 12ζ2

)]}
, (31)

with ζ2 = π2/6. The smooth behavior proportional to v2

is a consequence from the fact that R̃′ is, for dimensional
reasons, proportional to ω2. This is in contrast to the di-
agonal correlators where at order α2

s even 1/v singularities
appear [1]. Note that in (30) and (31) the terms propor-
tional to the color factor CFT are completely fixed. For
later use it is convenient to display explicitly the relations
between c̃ and cδ:

cvFF = 6c̃FF − 1427
64

+ 18 ln 2− 269
4

ζ2 + 42ζ2 ln 2

−33
2

ζ3 ≈ −92.3884 + 6c̃FF ,

cvFA = 6c̃FA − 6821
192

+
63
4

ζ2 − 21ζ2 ln 2 +
27
4

ζ3

≈ −25.4483 + 6c̃FA,

cvFL = 6c̃FL +
445
48

+ 3ζ2 ≈ +14.2056 + 6c̃FL, (32)

csFF = 4c̃FF − 257
32

+ 6 ln 2− 31
2

ζ2 + 12ζ2 ln 2− 7ζ3

≈ −24.1011 + 4c̃FF ,

csFA = 4c̃FA − 871
96

+
5
2

ζ2 − 6ζ2 ln 2 +
5
2

ζ3

≈ −8.79653 + 4c̃FA,

csFL = 4c̃FL +
47
24

+ 2ζ2 ≈ 5.2482 + 4c̃FL. (33)

4 Spectral function in full QCD

In this section we discuss the computation of the polar-
ization function in full QCD. Explicit results are given for
the imaginary parts which constitute physical quantities.
In a first step the input quantities needed for the Padé
procedure are provided.

In Fig. 1 typical diagrams are pictured. Altogether
roughly 30 contributions have to be considered at three-
loop order. Although their number is relatively small we
used GEFICOM [18] for the automatic computation.
GEFICOM uses QGRAF [19] for the generation of the
diagrams. In case an asymptotic expansion has to be ap-
plied LMP [20] or EXP [21] are used for the generation
of the sub-diagrams. The occurring vacuum diagrams are
passed to MATAD [22] and the massless propagator-type
diagrams are evaluated to MINCER [23]. More details on
the automatic computation of Feynman diagrams can be
found in [24].
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Fig. 1. Sample diagrams contributing to the current corre-
lator of (1) and (2). The straight and loopy lines represent
quarks and gluons, respectively. One of the quarks connected
to the external current carries mass M whereas the other one
is massless

At three-loop order terms up to order z6 (z7) could
be evaluated for the vector (scalar) correlator in the limit
z → 0. For convenience we list below the analytical re-
sults for the one- and two-loop correlator up to order z7

and present the results for the Π(2),δ in the appendix.
The analytical results can also be found under the URL
http://www-ttp.physik.uni-karlsruhe.de/Progdata/
ttp01/ttp01-14. In the low-energy limit we obtain at order
α0

s and α1
s

Π(0),v =
3

16π2

[
+
1
2

z +
2
15

z2 +
1
18

z3 +
1
35

z4

+
1
60

z5 +
2
189

z6 +
1
140

z7
]
+ . . . ,

Π(1),v =
3

16π2

[
+
(
1
2

ζ2 +
25
48

)
z +

(
2
15

ζ2 +
5
18

)
z2

+
(
1
18

ζ2 +
503
3240

)
z3 +

(
1
35

ζ2 +
1199
12600

)
z4

+
(
1
60

ζ2 +
37883
604800

)
z5 +

(
2
189

ζ2 +
23029
529200

)
z6

+
(

1
140

ζ2 +
222433
7056000

)
z7
]
+ . . . , (34)

Π(0),s =
3

16π2

[
+
2
3

z +
1
6

z2 +
1
15

z3 +
1
30

z4

+
2
105

z5 +
1
84

z6 +
1
126

z7
]
+ . . . ,

Π(1),s =
3

16π2

[
+
(
2
3

ζ2 +
1
12

)
z +

(
1
6

ζ2 +
19
48

)
z2

+
(
1
15

ζ2 +
17
72

)
z3 +

(
1
30

ζ2 +
31
216

)
z4

+
(

2
105

ζ2 +
7001
75600

)
z5 +

(
1
84

ζ2 +
38113
604800

)
z6

+
(

1
126

ζ2 +
18961
423360

)
z7
]
+ . . . , (35)

where the on-shell quark mass M has been used as a pa-
rameter.

In the high energy region eight expansion terms could
be obtained both in the vector and scalar case. Again
we provide in the main text the one- and two-loop re-

sults in analytic form and refer for the analytic three-
loop terms to the Appendix and to the URL http://www-
ttp.physik.uni-karlsruhe.de/Progdata/ttp01/ttp01-14.
Using again the on-shell mass the one-and two-loop re-
sults read

Π(0),v =
3

16π2

[
16
9
+

8
3

Lz + (1− 4Lz)
1
z

− 2
1
z2

+
(
4
3

Lz − 5
9

)
1
z3 +

1
3
1
z4

+
1
10

1
z5 +

2
45

1
z6 +

1
42

1
z7

]
+ . . . ,

Π(1),v =
3

16π2

[
25
18

+ 2Lz − 4ζ3 +
4
9

ζ2

+
(
3Lz − 6L2

z − ζ2 + 6ζ3 − 23
4

)
1
z

+(2− 6Lz)
1
z2

+
(

−
(
104
27

Lz

)
+

40
9

L2
z − 2ζ3 +

28
27

)
1
z3

+
(
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9
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16

)
1
z4

+
(
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81000

)
1
z6

+
(
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2205
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21

L2
z +

322099
7408800

)
1
z7

]
+ . . . , (36)

Π(0),s =
3

16π2

[
3 + 4Lz − 8Lz

1
z
+ (−3 + 4Lz)

1
z2

+
2
3
1
z3 +

1
6
1
z4 +

1
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1
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1
30

1
z6 +

2
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1
z7

]
+ . . . ,

Π(1),s =
3

16π2

[
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+ 6L2
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z6 (37)

+
(

743
11025

Lz − 4
105

L2
z +

532267
9261000

)
1
z7

]
+ . . . ,

with Lz = −(ln(−z))/2.
In order to incorporate the available information at

threshold one has to perform an analytical continuation of
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the expressions in (30) and (31). Taking the logarithmic
parts of (30) and (31) one obtains the quadratic and cubic
logarithms for the polarization functions which read

Π
(1),v,thr
log =

3
16π2

3
2

(
1− 1

z

)2

ln2 1
1− z

,

Π
(2),v,thr
FF,log =

3
16π2

(
1− 1

z

)2

×
[(

49
16

+ 5ζ2

)
ln2 1

1− z
+

3
4
ln3 1

1− z

]
,

Π
(2),v,thr
FA,log =
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16π2

(
1− 1

z

)2

×
[(

423
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+
19
6
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11
8
ln
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ln2 1
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ln3 1
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,
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16π2

(
1− 1

z

)2

×
[(

−13
4

− 1
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Π
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Π
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ln3 1
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,

Π
(2),s,thr
FL,log =
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16π2
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[(
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− 1
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ln
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ln2 1
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− 1
3
ln3 1
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,

Π
(2),s,thr
FH,log = 0. (38)

Note that, except for the coefficient of the quadratic loga-
rithm in the structure FF , there is agreement between the
coefficients of the vector and scalar correlator. The sub-
script “log” reminds one that the imaginary parts of the
expressions in (38) only reproduce the logarithmic parts of
(30) and (31). We want to mention that the polarization
function itself also contains linear logarithmic terms which
are not yet known at order α2

s . Below we will derive nu-
merical estimates for them. For the two-loop correlators
the linear logarithms are known. They can be obtained
from the constant contributions in (30) and (31).

Now the complete input is available and the individ-
ual steps described in Sect. 2 can be performed leading
to a large variety of Padé approximants. For the results
we present in the following those Padé approximants are
chosen which contain for their construction at least terms
of order z5 and 1/z5 in the small and large momentum
region, respectively. Furthermore we demand that the dif-
ference of the degree in the numerator and denominator
in (14) is less or equal to two.

In Figs. 2 and 3 the two-loop results are plotted as a
function of v and x, respectively. In addition to the roughly
15 Padé results also the exact expression is plotted. How-
ever, it is not possible to detect any difference – even close
to the threshold at v = 0. The dashed lines in Fig. 3 corre-
spond to the results of the high energy expansion including
terms up to order 1/z7. Although in these curves only the
information from x → 0 is incorporated one observes a
perfect agreement with the exact results up to x ≈ 0.9
(v ≈ 0.10).

The Padé results for the individual color structures at
order α2

s are plotted in Figs. 4, 5, 6 and 7. Again, despite
the fact that in each plot approximately 15 curves are
shown no difference between them can be observed. In
those plots where x is chosen for the abscissa also the
result of the high energy expansion containing terms up
to order 1/z7 is plotted as a dashed line. There is excellent
agreement with the semi-numerical result at least up to
x ≈ 0.5, which corresponds to v ≈ 0.60. In some cases even
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an agreement up to x ≈ 0.7 is observed. This corresponds
to v ≈ 0.34 which is already quite close to the threshold.

A remark concerning the plots for R
(2),s
FA and R

(2),s
L are

in order. In Fig. 7 it can be seen that for x → 0 they tend to
+∞ and −∞, respectively. However, the turn-over takes
place in a small region of x which is beyond the resolution
in Fig. 6 where the variable v is used and thus the high
energy region, i.e. the region for v → 1, gets squeezed.

The analytical formulae which result from the semi-
numerical Padé procedure are quite long. Thus we refrain
from listing them explicitly. Instead, a typical representa-
tive for the two-loop results and for each color structure
at three-loops can be found under the URL http://www-
ttp.physik.uni-karlsruhe.de/Progdata/ttp00/ttp00-25.

5 Spectral function in HQET

In this section we concentrate on the behavior close to the
threshold. In particular we want to extract the leading

non-logarithmic term which is of order v2 and afterwards
transform the result to HQET.

The expressions in (38) are constructed in such a way
that the combination Im[Π(q2)−Πthr

log (q
2)]/v2 approaches

a constant for v → 0. However, in the method we use for
the computation of Π(q2) it is not possible to incorporate
the constraint that Im[Π(q2)] ∼ v2 in analytical form.
Our procedure provides rather a function which numeri-
cally imitates the quadratic dependence. As a consequence
the expression Im[Π(q2) − Πthr

log (q
2)]/v2 diverges for very

small velocities and provides quite different numerical val-
ues for the different Padé approximants. Nevertheless one
could try to extract numerical approximations for the non-
logarithmic coefficient.

For this aim we consider the quantity

T
(i),δ
X (v) = [nδIm[Π

(i),δ
X (s + iε)]

−R
(i),δ,thr
X,log (s)]|s=M2(1+v)/(1−v)

= Ncc
δ
Xv2 +O(v3), (39)
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where nv = 12π, ns = 8π and X ∈ {F, FF, FA, FL, FH}.
R

(i),δ,thr
X,log is obtained from (30) and (31) by setting the un-

known constants cδX to zero. We want to use T
(i),δ
X (v) in

order to fit the coefficient cδX in (39) for each individ-
ual Padé approximant. This requires small values of v.
However, due the very structure of the Padé result the
ratio T

(i),δ
X (v)/v2 becomes unstable for v → 0. Thus, in

a first step we determine a minimal value v0 for which
T

(i),δ
X (v)/v2 evaluated for all Padé results still show rea-

sonable agreement. Furthermore we determine an effective
coefficient from the equation

T
(i),δ
X (v0) = Ncc

δ
X,effv2

0 , (40)

and require that the error on cδX,eff from the different Padé
approximants is less than 10%. The results for v0 and cδX,eff
for each color factor both for the vector and scalar current
can be found in Table 1.

In order to account also for higher order terms we
choose in a next step a value v1 > v0 in such a way that,
first, v1 − v0 ≈ v0 and, second, T

(i),δ
X (v)/v2 displays an

approximately linear behavior for v0 ≤ v ≤ v1. Then a
two-parametric fit is performed in the interval [v0, v1], i.e.
the coefficients cδX and dδX are determined from the equa-
tion

T
(i),δ
X (v) = Ncv

2(cδX + dδXv). (41)

Finally (32) and (33) are used to convert the result for cδX
to a numerical estimate for c̃X . The corresponding results
for the individual structures can again be found in Table 1.

Table 1. Results from the fits for the coefficients as described
in the text separated according to the color factors and the
tensorial structure of the current correlator. The errors indi-
cated in the brackets arise from the comparison of the different
Padé approximants. They are omitted in the case of c̃X as they
are much smaller than the systematic error of the extraction
procedure

X δ v0 cδ
X,eff v1 cδ

X dδ
X c̃X

F v 0.01 24.4(0.1) 0.02 26.3(0.2) −203.(9.) 6.4
F s 0.01 20.9(0.1) 0.02 21.8(0.1) −97.(7.) 6.5
FF v 0.03 −9.8(0.9) 0.05 12.1(1.8) −755.(41.) 17.4
FF s 0.02 47.9(1.9) 0.04 58.8(2.9) −567.(70.) 20.7
FA v 0.03 −30.5(0.5) 0.06 −18.2(1.0) −459.(14.) 1.2
FA s 0.045 −11.6(0.4) 0.09 −3.4(0.6) −201.(7.) 1.3
FL v 0.01 5.6(0.1) 0.02 2.0(0.2) 380.(11.) −2.0
FL s 0.01 −1.9(0.1) 0.02 −3.8(0.1) 202.(6.) −2.3

The corresponding errors are omitted in the case of c̃X
since they are much smaller than the systematic error of
the extraction procedure.

In order to get confidence in our prescription for the
determination of cδX let us have a look at the two-loop
results. The values given in Table 1 can be compared with
the exact results which read

cvF = 27.00,

csF = 22.00,

c̃F = 6.50. (42)
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One observes a very good agreement of the approximated
results for both c̃F and cδF with the exact ones2. Although
the error induced by the comparison of the different Padé
approximations is slightly smaller than the deviation from
the exact result the considerations at order αs are quite
promising for the determination of the coefficients at order
α2

s .
As was already mentioned above the coefficients cδFH

are completely determined. Thus, also they can be used in
order to test our prescription. However, both in the vector
and scalar case cδFH is close to zero which, of course, leads
to large relative errors. Nevertheless, let us present the
results which read for v0 = 0.05 and v1 = 0.1 3

cvFH,eff = 0.20(6),

cvFH = 0.16(10),
csFH,eff = 0.50(6),

csFH = 0.44(11). (43)

The comparison with the exact values obtained from (30)
and (31)

cvFH = 0.175 . . . ,

csFH = 0.455 . . . , (44)

shows that the agreement of the central values is within
10%.

In order to obtain our final predictions for the coeffi-
cients c̃X we proceed as follows: the coefficients c̃X given
in Table 1 have to be independent from the tensorial struc-
ture of the current correlator from which they are deter-
mined. On the other hand, guided by the numbers shown
in Table 1, we can define criteria concerning the stability
and reliability of the extraction procedure. As a first crite-
rion we require that v0 should be as small as possible. This
clearly suppresses higher order terms in v. Furthermore we
consider the ratio dδX/cδX and regard that color structure
as more reliable where the ratio is smallest. As dδX rep-
resents an effective constant containing the effects of the
higher orders in v also this criterion selects the structure
where they are suppressed as compared to the v2 terms.
Following these rules we choose the vector correlator in
order to obtain c̃FA and the scalar one for c̃FF and c̃FL.
This leads to the following results

c̃FF = 21(6),
c̃FA = 1.2(4),
c̃FL = −2.3(7), (45)

where we assigned a conservative error of 30%. Note that
all numbers given in the last column of Table 1 are consis-
tent with our final predictions of (45).

In practical applications it is often sufficient to know
the result at order α2

s for the numerical value Nc = 3 which

2 This is also the case for v0 = 0.03 and v1 = 0.06
3 As can be seen in Figs. 4 and 6 both R

(2),v
FH and R

(2),s
FH are

rather smooth around v = 0 which allows for larger values of
v0 and v1

Table 2. Results from the fits for the coefficients as described
in the text separated for different values of nl. As far as the
errors are concerned the same statements hold as in Table 1

nl δ v0 cδ
nl,eff v1 cδ

nl
dδ

nl
c̃nl

0 v 0.03 −143.0(3.7) 0.05 −46.9(7.5) −3324.(142.) 36.5
0 s 0.03 46.3(2.1) 0.05 106.8(4.4) −2069.(92.) 46.2
1 v 0.03 −134.7(3.5) 0.05 −42.5(7.1) −3189.(136.) 35.7
1 s 0.03 47.5(2.1) 0.05 105.6(4.3) −1984.(90.) 45.0
2 v 0.03 −126.4(3.3) 0.05 −38.1(6.7) −3055.(129.) 34.8
2 s 0.03 48.8(2.0) 0.05 104.4(4.2) −1898.(88.) 43.9
3 v 0.03 −118.0(3.1) 0.05 −33.6(6.3) −2921.(121.) 34.0
3 s 0.03 50.1(1.9) 0.05 103.2(4.1) −1814.(84.) 42.7
4 v 0.03 −109.6(2.7) 0.05 −28.9(5.6) −2793.(108.) 33.2
4 s 0.03 51.4(1.9) 0.05 102.0(3.9) −1728.(81.) 41.5
5 v 0.03 −101.4(2.7) 0.05 −24.8(5.5) −2651.(108.) 32.3
5 s 0.03 52.6(1.8) 0.05 100.7(3.8) −1642.(79.) 40.3

motivates the following procedure: in a first step the mo-
ments of the color structures FF , FA and FL are added
for fixed nl and the Padé procedure is performed. After-
wards the prescription described around (39) is applied.
The results of the corresponding analysis can be found in
Table 2 which allow one to deduce the following compact
expression for c̃nl

which governs the dependence on nl:

c̃nl
= 46(15)− 1.2(4)nl. (46)

At first sight the errors appear quite large. However, one
has to recall that only the large- and small-q2 behavior
of the polarization function serves as input whereas the
quantity in (46) corresponds to the imaginary part at q2 =
M2. Note also that at order α2

s the numerical values for v0
have to be chosen larger than at order αs which increases
the influence of the higher order terms in v.

To summarize: the complicated threshold structure of
the Padé approximants allows only a rather rough deter-
mination of the constants cv and cs. However, the peculiar
structure of (32) and (33) connecting cδ to c̃ makes it pos-
sible to extract the universal coefficient c̃ with a reasonable
accuracy.

Finally we are in the position to write down the expres-
sion for R̃′(ω) up to order α2

s . Inserting the color factors
into (29) and using the results from (46) one obtains

R̃′(ω) = Ncω
2

[
1 +

α
(nl)
s (µ)

π
(8.667 + Lω) +

(
α

(nl)
s (µ)

π

)2

×
(
46(15) + 35.54Lω + 1.875L2

ω

+nl(−1.2(4)− 1.583Lω − 0.08333L2
ω)
)]

. (47)

We can conclude that the coefficient at order α2
s is quite

large and has a mild dependence on nl.
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Fig. 8a–g. Sample diagrams con-
tributing to the process qq̄ → tb̄.
The wavy and loopy lines represent W
bosons and gluons, respectively

6 Applications and conclusions

As an application of the vector and axial-vector current
correlator we want to discuss the single-top-quark pro-
duction via the process qq̄ → tb̄. Some sample diagrams
contributing to this process are shown in Fig. 8.

The corrections of order αs to the (total) single-top-
quark production rate are quite large. They amount to
about 54% and 50% for Tevatron and LHC energies, re-
spectively [25], where 18%, respectively, 17% arise from
the final state corrections. This makes it necessary to con-
sider also the corrections of order α2

s . Due to the appear-
ance of an interference between the initial and final state
(cf. Figure 8f), which for the first time happens at order
α2

s , the complete calculation is a non-trivial task. How-
ever, with the results of this paper we are in the position
to perform a first step and consider the leading term in
the large-Nc expansion.

One observes that the contributions of the diagrams
where gluons connect the initial and final states are sup-
pressed by at least a factor 1/N2

c in the large Nc limit as
compared to the diagrams in Figs. 8c–e. For the latter, to-
gether with the contributions of Figs. 8a,b, the differential
cross section can be written in factorized form

dσ

dq2 (pp̄ → tb̄ + X)

= σ(pp̄ → W ∗ + X)
ImΠW (q2, M2

t , M2
b )

π(q2 − M2
W )2

, (48)

where ΠW corresponds to the transversal part of the W
boson self energy which is connected to the vector corre-
lator of (1) through

ΠW (q2) =
√
2GFM2

W |Vtb|2q2Πv(q2). (49)

At order α2
s there are also diagrams like the one in

Fig. 8g which appear for the first time. In principle they
also lead to the same final state as the diagram in Fig. 8e.
However, one has to note that the W boson generating the
top and bottom quark is radiated from a light quark flavor.
This suggests that their contribution is small although
there is only a suppression by a factor 1/Nc as compared
to Fig. 8c and not by 1/N2

c like for the diagram in Fig. 8f.
Thus, if we restrict ourselves to the leading term in

1/Nc it is possible to use the results for Rv obtained above
in combination with (48) to perform a theoretical analy-
sis at order α2

s to the single-top-quark production in the
large-Nc limit. In order to obtain the total cross section

Rv
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Fig. 9. LO (dotted), NLO (dashed) and NNLO (solid) results
of Rv(s)

the corresponding parton distribution functions would be
needed to the same order.

The production cross section of the virtual W ∗ boson
is identical to that of the Drell–Yan process qq̄ → eν̄e. The
latter is known to O(α2

s) from [26]. Thus we can take the
proper ratios to make predictions in the large-Nc limit at
NNLO free from any dependence on parton distribution
functions. As an example, we can consider the following
expression

dσ

dq2 (pp → W ∗ → tb)

dσ

dq2 (pp → W ∗ → eνe)
=

Im[Πtb(q2)]
Im[Πeν(q2)]

= Nc|Vtb|2Rv(s). (50)

In Fig. 9 the LO, NLO and NNLO results of Rv(s) are
plotted in the range s1/2 = 200 . . . 400GeV where Mt =
175GeV and αs(MZ) = 0.118 has been chosen for the nu-
merical analysis. Whereas the O(αs) corrections are signif-
icant there is only a moderate contribution from the order
α2

s terms. In the range in q2 shown in Fig. 9 they are be-
low 1% of the Born result. Note that the NNLO correction
to the Drell–Yan process are also small and amount to at
most a few percent (see e.g. [27]). Thus, in case there is no
kinematical magnification for the diagrams in Figs. 8f,g we
can conclude that the radiative corrections to the single-
top-quark production via the process qq̄ → tb̄ are well
under control.

The scalar and pseudo-scalar correlator covers proper-
ties connected to a charged Higgs boson. The latter appear
in theories beyond the SM which are usually characterized
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by an enlarged Higgs sector containing Higgs bosons with
different quantum numbers. For example, one of the most
appealing extensions of the SM, the minimal supersym-
metric standard model (MSSM), contains two complex
iso-doublets with opposite hyper-charge (see e.g. [28]), re-
sulting in five mass eigenstates of (pseudo-)scalar physical
Higgs fields: two neutral CP even (H0 and h0), one neu-
tral CP odd (A) and two charged (H±) Higgs bosons.

Let us consider a generic charged Higgs boson coupled
to fermions through

LH+DŪ = (
√
2GF)1/2H+JH+ , (51)

where the corresponding quark current is given by

JH+ =
mU√
2

Ū [a(1− γ5) + b(1 + γ5)]D. (52)

Here U and D represent generic up- and down-type quarks,
respectively, with MS masses mU and mD = 0. Equa-
tion (52) only covers the contributions from a H+ boson;
the formulae for a Higgs boson with negative charge are
analogous. The parameters a and b are model dependent
and are left unspecified.

The decay rate of the boson H+ into quarks and gluons
can be written in the form

Γ (H+ → UD̄) =
√
2GFMH+Im[ΠH(M2

H+)], (53)

where MU is the pole quark mass and ΠH(q2) is given by

q2ΠH(q2) =
∫

dxeiqx〈TJH
+(x)JH−(0)〉

= (a2 + b2)q2Πs(q2), (54)

Thus, we arrive at the following expression for the hadronic
decay rate of the charged Higgs boson

Γ (H+ → UD̄) =
√
2GF

8π
MH+(a2 + b2)Rs(M2

H+).(55)

In Fig. 10 Rs(M2
H+) is plotted at LO, NLO and NNLO.

Again it turns out that the radiative corrections are well
under control as order α2

s terms contribute at most of the
order of 1%.

As an application of the correlator in the effective the-
ory we want to mention the determination of the meson
decay constants via QCD sum rules where the Borel trans-
form of R̃′ as given in (47) enters as a building block. Be-
sides the perturbative part the sum rules also obtain con-
tributions from non-perturbative condensates which, how-
ever, are numerical less important [4]. The typical scale
which has to be used in (47) is of the order of 1GeV [4,5]
which leads to sizeable corrections both at order αs and
at order α2

s .
To be more precise let us choose α

(5)
s (MZ) = 0.118

which, using two-loop accuracy, leads to α
(4)
s (1.3GeV) ≈

0.37 [29]. For ω = 1.3GeV and nl = 4 the order αs correc-
tions in (47) amount to about 100%. The terms at O(α2

s )
contribute with additional 60(20)% where the sign is the

Rs
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Fig. 10. LO (dotted), NLO (dashed) and NNLO (solid) results
of Rs(s), M = Mt = 175GeV

same as for the LO correction. A careful analysis is neces-
sary in order to decide whether perturbation theory can
safely be applied in this case.

To conclude, in this paper the non-diagonal current
correlator formed by a massive and massless quark has
been considered. Moments in the low and high energy re-
gion have been computed analytically in full QCD. Fur-
thermore the leading logarithmic contributions arising at
the quark threshold q2 = M2 have been obtained from
the reconstruction of the logarithmic terms of the spec-
tral function in the effective theory. This information is
combined with the help of conformal mapping and Padé
approximation to obtain semi-numerical results for the
vector and scalar correlator and in particular their imag-
inary parts valid for all values of q and M . In a next step
the various Padé results are used in order to obtain the
leading non-logarithmic coefficient at threshold which is in
turn transformed to the effective theory leading to a pre-
diction of the spectral function up to order α2

s (see (47)).
As applications we considered the effect of the α2

s correc-
tion to the single-top-quark production and the decay of
a charged Higgs boson.
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Appendix:
Analytical results for the moments at order α2

s

In the limit z → 0 the results for Π(2),v and Π(2),s pa-
rameterized in terms of the on-shell mass read

Π
(2),v
FF =

3
16π2

[
+
(

−
(
245
48

1√
3

Cl

)
+

3
2

C2
l

+
(

−3 ln 2 + 80579
25920

)
ζ2 +

179
144

ζ3 − 5
16

ζ4
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where µ2 = M2 has been adopted. In the high energy limit
the corresponding results read
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+
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+ . . . ,

Π
(2),v
FL =

3
16π2

[
−589
216

+
122
27

ζ3 +
2
9

ζ2 −
(
2
3

L2
z

)

+
(
8
3

ζ3 − 11
3

)
Lz

+
((

−4ζ2 − 4ζ3 +
7
3

)
Lz +

10
3

L2
z

+
4
3

L3
z +

1
6

ζ2 − 22
3

ζ3 +
89
18

)
1
z

+
(
16
3

Lz − 4ζ2 − 2
3

ζ3 − 131
36

)
1
z2

+
((

4ζ2 +
4
3

ζ3 +
2183
486

)
Lz − 299

81
L2
z − 52

81
L3
z

− ζ2 + 2ζ3 − 11491
5832

)
1
z3

+
(

−
(
1625
648

Lz

)
− 23

54
L2
z +

8
27

L3
z +

4
3

ζ2 +
2
3

ζ3

+
15455
7776

)
1
z4

+
(

−
(
199679
162000

Lz

)
+
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+
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+
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)
1
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]
+ . . . ,

Π
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FH =

3
16π2
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216
+

410
27

ζ3 −
(
8
3

ζ2

)

−
(
2
3

L2
z

)
+
(
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9
√
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−16ζ3 +
68
3

)
Lz − 4L2

z + 8ζ2

+
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3
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)
1
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+
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−8ζ2 +
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Lz +
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27
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9
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ζ3 +
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+
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(
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+

6679
900

L2
z +
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+ . . . ,
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√
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4
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+
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(
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(
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+
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L2
z +
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+ . . .

In the above expressions the following symbols have
been used: l4 = Li4(1/2), Cl = Cl2(π/3) = Im[Li2(exp(iπ/
3))], ζ2 = π2/6, ζ3 ≈ 1.202057, ζ4 = π4/90, ζ5 ≈ 1.036928
and Lz = −(ln(−z))/2. A Mathematica input can be
found under the URL
http://www-ttp.physik.uni-karlsruhe.de/Progdata/
ttp01/ttp01-14.
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