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Abstract. We report on a new approach to a global CKM matrix analysis taking into account most recent
experimental and theoretical results. The statistical framework (Rfit) developed in this paper advocates
frequentist statistics. Other approaches, such as Bayesian statistics or the 95% CL scan method are also
discussed. We emphasize the distinction of a model testing and a model dependent, metrological phase
in which the various parameters of the theory are estimated. Measurements and theoretical parameters
entering the global fit are thoroughly discussed, in particular with respect to their theoretical uncertainties.
Graphical results for confidence levels are drawn in various one and two-dimensional parameter spaces.
Numerical results are provided for all relevant CKM parameterizations, the CKM elements and theoretical
input parameters. Predictions for branching ratios of rare K and B meson decays are obtained. A simple,
predictive SUSY extension of the Standard Model is discussed.
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1 Introduction

Within the Standard Model (SM), CP violation is gener-
ated by a single non-vanishing phase in the unitary
Cabibbo-Kobayashi-Maskawa (CKM) quark mixing ma-
trix V [1,2]. A useful parameterization [3,4] follows from
the observation that the elements of V exhibit a hierarchy
in terms of the parameter λ = |Vus|. Other parameters
of this representation are A, ρ and η, where CP viola-
tion necessarily requires η �= 0. The parameters λ and
A are obtained from measurements of semileptonic decay
rates of K mesons and B meson decays involving b → c
transitions, respectively. Constraints on ρ and η are ob-
tained from measurements of semileptonic B decays yield-
ing |Vub| and the ratio |Vub/Vcb|. Standard Model predic-
tions of B0

d and B0
s oscillations, and of indirect CP viola-

tion in the neutral kaon sector, depend on CKM parame-
ters; therefore measurements of these observables provide
constraints in the ρ−η plane, albeit being limited by the-
oretical uncertainties coming mainly from long distance
QCD effects. Finally, in the era of the B-factories, it will
be possible, for the first time, to assess the CP-violating
angles α, β and γ of the Unitarity Triangle (UT) express-
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ing the unitarity relation between the first and the third
column of V .

The first goal of a global CKM fit is to probe the valid-
ity of the SM, that is to quantify the agreement between
the SM and the experimental information. Furthermore,
one intends to perform a detailed Metrology, that is to
find allowed ranges for CKM matrix elements and related
quantities, assuming the SM to be correct. Finally, within
an extended theoretical framework, one may search for
specific signals of new physics, by estimating the addi-
tional theoretical parameters.

Analyzing data in a well defined theoretical framework
ceases to be a straightforward task when one moves away
from Gaussian statistics. This is the case for the theoreti-
cally limited precision on the SM predictions of the neutral
K and B mixing observables and, to a lesser extent, for
the semileptonic decay rates of B decays to charmed and
charmless final states. The statistical approach (Rfit) de-
veloped in this analysis allows a non-Bayesian treatment of
the, a priori unknown (i.e., not statistically distributed),
theoretical parameters and theoretical systematics of mea-
surements. The ensemble of the statistical analysis is re-
alized in the program package CkmFitter1. A detailed de-
scription of the methods it uses, with emphasis on the new
method denoted Rfit which is proposed here, and the pre-
sentation of state-of-the-art results are the subject of this
paper2.

The paper is organized as follows: after recalling the
most common CKM parameterizations, we comprehen-
sively discuss the statistical framework of the analysis,
starting with the introduction of the relevant likelihoods
in Sect. 3.1, followed by a definition of the three analy-
sis steps: metrology, model testing and probing for new
physics. We then recall the principles of the 95% CL Scan
scheme [5] and of the Bayesian approach [6,7] in Sect. 4
(see also [8] and references therein for a tentative collection
of publications on the CKM matrix and related topics).
We work out their limitations and motivate further going
ideas, while never leaving non-Bayesian grounds. This is
followed by a discussion of the treatment of experimen-
tal and theoretical systematics in Sect. 5. In Sect. 6 we
present a compendium of the input measurements, their
predictions in the framework of the SM, and discuss the
theoretical parameters and their uncertainties used in the
analysis. We display our fit results as confidence levels in
various parameter spaces in Sect. 7 and produce tables of
constraints on all relevant CKM parameters, constraining
measurements and theoretical inputs, and predictions of
rare K and B decays. Within our statistical approach, we
perform a test of the goodness of the theory and discuss
the effect of a simple, predictive Minimal Supersymmet-

1 CkmFitter is a framework package that hosts several sta-
tistical approaches to a global CKM fit, such as Rfit, Bayesian
techniques and the 95% CL Scan method. It is available as
public share ware. Please, contact the authors for more infor-
mation

2 Visit the CkmFitter web page to find plots, reference links,
detailed descriptions and more:
http://www.slac.stanford.edu/∼laplace/ckmfitter.html

ric extension of the SM. Deepening statistical discussions
on some crucial issues of the analysis are given in the ap-
pendix.

2 The CKM matrix

Invariance under local gauge transformation prevents the
bare masses of the leptons and quarks to appear in the
SU(3) × SU(2) × U(1) Lagrange density of the SM. In-
stead, the spontaneous breakdown of electroweak symme-
try dynamically generates masses for the fermions due to
the Yukawa coupling of the fermion fields to the Higgs
doublet. Since the latter has a non-vanishing vacuum ex-
pectation value, the Yukawa couplings g give rise to the
3 × 3 mass matrices

Mi =
vgi√
2

, (1)

with i = u(d) for up(down)-type quarks and i = e for the
massive leptons. The transformation of the Mi from the
basis of the flavor eigenstates to the basis of the mass
eigenstates is realized by unitary rotation matrices Ui,
where

Uu(d,e)Mu(d,e)U
†
u(d,e) = diag

(
mu(d,e),mc(s,µ),mt(b,τ)

)
.

(2)
For the Lagrange density in the basis of the mass-
eigenstates the neutral-current part remains unchanged
(i.e., there are no flavor changing neutral currents present
at tree level), whereas the charged current part of the
quark sector is modified by the product of the up-type
and down-type quark mass matrices,

V = UuU
†
d , (3)

which is the CKM mixing matrix. By convention, V op-
erates on the −1/3 charged down-type quark mass eigen-
states

V =


Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb


 (4)

and, being the product of unitary matrices, V itself is
unitary:

V V † = Id . (5)

There exists a hierarchy between the elements of V both
for their value (the diagonal elements dominate) and their
errors (since they dominate, they are better known). Uni-
tarity and the phase arbitrariness of fields reduce the ini-
tially nine complex parameters of V to three real numbers
and one phase, where the latter accounts for CP violation.
It is therefore interesting to over-constrain V since devi-
ations from unitarity would reveal the existence of new
generation(s) or new couplings.

The charged current couplings among left-handed
quark fields are proportional to the elements of V . For
right-handed quarks there exist no W boson interaction
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in the SM and the Z, photon and gluon couplings are fla-
vor diagonal. For left-handed leptons the analysis proceeds
similar to the quarks.

There are many ways of parameterizing the CKM ma-
trix in terms of four parameters. It is the purpose of this
section to summarize the most popular representations.

2.1 The standard parameterization

The Standard Parameterization of V is taken to be the one
proposed by Chau and Keung [9], and advocated by the
PDG [10]. It is obtained by the product of three complex
rotation matrices, where the rotations are characterized
by the Euler angles θ12, θ13 and θ23, which are the mixing
angles between the generations, and an overall phase δ:

V =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13




(6)
where cij = cosθij , sij = sinθij for i < j = 1, 2, 3. This
parameterization has the considerable advantage of being
exact in the sense that it strictly satisfies the unitarity
relation (5).

2.2 The Wolfenstein parameterization

Following the observation of a hierarchy between the dif-
ferent matrix elements, Wolfenstein [3] proposed a simple
expansion of the CKM matrix in terms of the four param-
eters λ, A, ρ and η (λ = |Vus| ∼ 0.22 being the expansion
parameter), which is widely used in contemporary litera-
ture. Using the convention of [4] one has (see (7) on top
of the page) It is obtained from (6) via the definitions

s12 = λ ,

s23 = Aλ2 , (8)

s13e
−iδ = Aλ3(ρ − iη) ,

and is valid to the order O(|λ|6) � 0.01%.

2.3 Phase invariance

It was shown by Jarlskog [11] that the determinant of the
commutator of the up-type and down-type unitary mass
matrices (1) reads

det[Mu,Md] = −2iFuFdJ , (9)

with Fu, Fd, being

Fu(d) = (mt(b) − mc(s))(mt(b) − mu(d))

×(mc(s) − mu(d))/m3
t(b) . (10)

The phase-convention independent measure of CP viola-
tion, J , is given by

Im
[
VijVklV

∗
ilV

∗
kj

]
= J

3∑
m,n=1

εikmεjln , (11)

with the CKM matrix elements Vij and εikm being the to-
tal antisymmetric tensor. One representation of
(11) reads, for instance, J = Im[VudVcsV ∗

usV
∗
cd]. A non-

vanishing CKM phase and hence CP violation necessarily
requires J �= 0. The Jarlskog parameter expressed in the
Standard Parameterization (6) reads

J = c12c23c
2
13s12s23s13sinδ , (12)

and, using the Wolfenstein approximation (7), valid to the
order O(|λ|10), one finds

J = A2λ6η ∼ 10−5 . (13)

The empirical value of J is small compared to its maxi-
mum of 1/(6

√
3) � 0.1 showing that CP violation is sup-

pressed as a consequence of the strong hierarchy exhib-
ited by the CKM matrix elements. It is the remarkable
outcome of (9) that CP violation requires not only J to
be non-zero, but also the existence of a non-degenerated
mass hierarchy. Equal masses between at least two gener-
ations of up-type or down-type quarks would necessarily
remove the CKM phase.

Phase convention invariance of the V -transformed
quark wave functions is a requirement for physically mean-
ingful quantities. Such invariants are the moduli |Vij |2 and
the quadri-products VijVklV

∗
ilV

∗
kj (c.f., the Jarlskog invari-

ant J (11)). Non-trivial higher invariants can be reformu-
lated as functions of moduli and quadri-products (see, e.g.,
[13]). Indeed, (11) expresses the fact that, owing to the or-
thogonality of any pair of different rows or columns of V ,
the imaginary parts of all quadri-products are equal up
to their sign. We will use phase-invariant representations
and formulae throughout this paper3.

2.4 The unitarity triangle

The allowed region in ρ − η space can be elegantly dis-
played using the unitarity triangle (UT) described by the
rescaled unitarity relation between the first and the third
column of the CKM matrix

VudV
∗
ub

VcdV ∗
cb

+
VcdV

∗
cb

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

= 0 . (14)

Note that twice the area of the non-rescaled UT corre-
3 We are indebted to K. Schubert for drawing our attention

to this point
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Fig. 1. The rescaled Unitarity Triangle in the Wolfenstein
parameterization

sponds to the Jarlskog parameter J . This identity pro-
vides a geometrical interpretation of the phase convention
invariance of J : a rotation of the CKM matrix rotates the
UT accordingly while leaving its area, and thus J , invari-
ant. It is the remarkable property of the UT (14) that its
three sides are governed by the same power of λ and A

Aλ3

Aλ3
+ 1 +

Aλ3

Aλ3
� 0 , (15)

which predicts large CP asymmetries in the B sector [12].
As a comparison, the corresponding UT for the kaon sector
is almost flat

0 =
VudV

∗
us

VcdV ∗
cs

+
VcdV

∗
cs

VcdV ∗
cs

+
VtdV

∗
ts

VcdV ∗
cs

� λ

λ
+ 1 +

A2λ5

λ
, (16)

exhibiting small CP asymmetries. The UT (14) is sketched
in Fig. 1 in the complex (ρ̄, η̄) plane (ρ̄ = ρ(1 − λ2/2),
η̄ = η(1 − λ2/2)) of the Wolfenstein parameterization4.
The sides Ru and Rt (the third side being normalized to
unity) are given by

Ru =
∣∣∣∣VudV ∗

ub

VcdV ∗
cb

∣∣∣∣ =
√

ρ̄2 + η̄2 , (17)

Rt =
∣∣∣∣ VtdV ∗

tb

VcdV ∗
cb

∣∣∣∣ =
√
(1 − ρ̄)2 + η̄2 . (18)

and the three angles, α, β, γ, read

α = arg
[
− VtdV

∗
tb

VudV ∗
ub

]
, β = arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
,

γ = arg
[
−VudV

∗
ub

VcdV ∗
cb

]
, (19)

where γ ≡ δ in the Standard Parameterization. The angles
and sides of the UT obey the trigonometric relation, sinα :
sinβ : sinγ = 1 : Ru : Rt.

4 The length of the vector to the triangle apex is given by∣∣∣1 + VudV ∗
ub

VcdV ∗
cb

∣∣∣ = √
ρ2 + η2

(
1 − λ2

2

)
+ O(|λ|4) , so that the re-

placements ρ → ρ(1 − λ2/2) and η → η(1 − λ2/2), where
Vud = 1 − λ2/2 − O(λ4), improves the precision of the apex
coordinate in the Wolfenstein approximation [4]
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Fig. 2. Constraints in the (ρ̄, η̄) plane for the most rele-
vant observables. The theoretical parameters used correspond
to some “standard” set chosen to reproduce compatibility. The
dashed lines indicate the rectangle on which we concentrate in
the following for the global fit

The relations between the angles and the ρ̄, η̄ coordi-
nates are given by

sin2α =
2η̄(η̄2 − ρ̄(1 − ρ̄))

(η̄2 + (1 − ρ̄)2)(η̄2 + ρ̄2)
, (20)

sin2β =
2η̄(1 − ρ̄)

η̄2 + (1 − ρ̄)2
, (21)

tanγ =
η̄

ρ̄
. (22)

A graphical compilation of the most relevant present
and future constraints sensitive to the CP violating phase
δ is displayed in Fig. 2. We simplify the representation by
assuming a measurement of sin2α whereas, in principle,
the UT angle α can be directly determined from B → 3π
decays. For the third UT angle γ, we assume a measure-
ment of sinγ, even though charmless B decays may al-
low a non-ambiguous determination of γ. A more detailed
elaboration of future measurements is given in [14]. Some
“standard” set of theoretical parameters is used for this
exercise in order to reproduce compatibility between the
constraints. The present experimental values for the ob-
servables and their dependence on the CKM matrix ele-
ments in the framework of the SM are discussed in Sect. 6.

Over-constraining the unitary CKM matrix aims at
validating or not the SM with three generations. The inter-
pretation of these constraints requires a robust statistical
framework which protects against misleading conclusions.
The next section describes to some detail the statistical
approach applied for the analysis reported in this work.
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3 The statistical framework

We are considering an analysis involving a set ofNexp mea-
surements collectively denoted by xexp = {xexp(1), . . . ,
xexp(Nexp)}, described by a set of corresponding theo-
retical expressions xtheo = {xtheo(1), . . . , xtheo(Nexp)}.
The theoretical expressions xtheo are functions of a set
of Nmod parameters ymod = {ymod(1), . . . , ymod(Nmod)}.
Their precise definition is irrelevant for the present dis-
cussion (c.f., Sect. 6 for details) beside the fact that:

– a subset of Ntheo parameters within the ymod set are
fundamental, and free, parameters of the theory (i.e.,
the four CKM unknowns in the SM, the top quark
mass, etc.) and are denoted ytheo, where ytheo = {ytheo
(1), . . . , ytheo(Ntheo)}.

– the remaining NQCD = Nmod − Ntheo parameters,
which appear due to our present inability to compute
precisely strong interaction quantities (e.g., fBd

, Bd,
etc.), are denoted yQCD, where yQCD = {yQCD(1), . . . ,
yQCD(NQCD)}.

There are three quite different goals the analysis aims at:

1. Within the SM, to achieve the best estimate of the
ytheo parameters: that is to say to perform a careful
metrology of the theoretical parameters, for later use.

2. Within the SM, to set a confidence level (CL) which
quantifies the agreement between data and the theory,
as a whole.

3. Within an extended theoretical framework, e.g., Su-
persymmetry, to search for specific signs of new physics
by pinning down additional fundamental, and free, pa-
rameters of the theory.

These three goals imply three statistical treatments all
of which rely on a likelihood function meant to gauge the
agreement between data and theory.

3.1 The likelihood function

We adopt a χ2-like notation and denote

χ2(ymod) ≡ −2 ln(L(ymod)) , (23)

where L, the likelihood function (it is defined below) re-
ceives contributions of two types

L(ymod) = Lexp(xexp − xtheo(ymod)) Ltheo(yQCD) . (24)

The first term, the experimental likelihood Lexp, mea-
sures the agreement between xexp and xtheo, while the sec-
ond term, the theoretical likelihood Ltheo, expresses our
present knowledge on the yQCD parameters.

It has to be recognized from the outset that the nota-
tion χ2 of (23) is a commodity which can be misleading.
In general, denoting “Prob” the well known routine from
the CERN library, one cannot infer a CL from the above
χ2 value using

CL = Prob(χ2(ymod), Ndof) , (25)

=
1√

2NdofΓ (Ndof/2)

∞∫
χ2(ymod)

e−t/2tNdof/2−1 dt . (26)

This is because neither Lexp nor Ltheo (they are further
discussed in the sections below) are built from purely
Gaussian measurements:
– In most cases Lexp should handle experimental sys-

tematics, and, in some instance, it has to account for
inconsistent measurements.

– In practice, Ltheo relies on hard-to-quantify educated
guessworks, akin to the ones used to define experi-
mental systematics, but in most cases even less well-
defined.

The first limitation is not specific to the present analysis
and is not the main source of concern, here. The second
limitation is the most challenging: its impact on the analy-
sis is particularly strong with the data presently available.
The statistical treatment advocated below, denoted Rfit,
is designed to cope with both of the above limitations.
Notwithstanding its attractive features, the Rfit scheme
does not offer a treatment of the problem at hand free
from any assumption: an ill-defined problem cannot be
dealt with rigorously. However, the Rfit scheme extracts
the most out of simple and clear-cut a priori assumptions.

The alternative statistical treatments discussed in
Sect. 4 differ from the Rfit scheme by the procedure used
to define the CL from the above χ2, or by the content and
interpretation of Ltheo.

3.1.1 The experimental likelihood

The experimental component of the likelihood is given by
the product

Lexp(xexp − xtheo(ymod)) =
Nexp∏
i=1

Lexp(i) , (27)

where the individual likelihood components account for
independent measurements5.

The likelihood components: Ideally, the individual like-
lihood components Lexp(i) would be pure Gaussians

Lexp(i) =
1√

2πσexp(i)
exp

[
−1
2

(
xexp(i) − xtheo(i)

σexp(i)

)2
]

,

(28)
each with a standard deviation given by the experimen-
tal statistical uncertainty σexp(i) of the ith measurement.
However, in practice, one has to deal with additional ex-
perimental and theoretical systematic uncertainties.

Experimental systematics: An experimental systematics
is assumed to take the form of a possible biasing offset,
the measurement could be corrected for, were it be known.
Their precise treatment is discussed in Sect. 5. There, a
natural extension of the usual method of adding linearly
or in quadrature statistical and systematic uncertainties
is proposed.

5 Features marked by (∗) in the following item list are not
issued in the analysis presented in this work, but may become
important in future CKM profiles
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Theoretical systematics: Theoretical systematics, when
they imply small effects, are treated as the experimental
ones. However, because most theoretical systematics im-
ply large effects and affect in a non-linear way the xtheo
prediction, most of them are dealt with through the the-
oretical likelihood component Ltheo (c.f., Sect. 3.1.2).

Model dependent measurements(∗): When theoretical
systematics cannot be expressed as a dependence on not
perfectly known parameters, but are expressed as a set
of measurements based on alternative models, labelled by
the index m, (e.g., the exclusive |Vub/Vcb| measurement
exhibits such a model dependence) Lexp(i) is defined by

Lexp(i) = Lexp(i,m) , (29)

and m is treated as an additional yQCD parameter, taking
only discrete values.

Identical observables and consistency: When several
measurements refer to the same observable (e.g., various
measurements of ∆md) they have to be consistent, inde-
pendently of the theoretical framework used for the anal-
ysis.

Similarly, when several measurements refer to different
observables which are linked to the same ytheo parameter,
e.g.., |Vud| and |Vus|, or determinations of |Vub| stemming
from different observables, or measurements of sin2β ob-
tained from similar B decays, one may decide to over-
rule possible disagreement by imposing the measurements
to be consistent. By doing so, one is deliberately blind-
ing oneself from possible new physics effects which may
have revealed themselves otherwise. Clearly, such overrul-
ing should be applied with great caution, and it should be
well advertized whenever it occurs.

The method to deal with this imposed consistency is
to account for the measurements at once, by merging them
into a single component, usually obtained from their
weighted mean. A more refined treatment is needed when
this set of measurements is clearly inconsistent. A general
method to handle a set of measurements, whether they are
consistent or not, is proposed in [15,16]. Yet, for “not too
large” inconsistencies, the proposed method yields similar
results as the χ2 rescaling approach adopted by the PDG
[10]. To clarify the presentation of the Rfit scheme, we use
the latter: when N inconsistent measurements appear in
this analysis, the error obtained for their weighted mean is
rescaled by the factor

√
χ2wm/(N − 1), where χ2wm is the

weighted mean χ2.

Related observables and consistency(∗): In some in-
stances, several observables, although not identical, are
functionally related in a way independent of the theo-
retical framework used for the analysis. The number of
such instances is denoted Ncst, and the effective number
of measurements, the one to be used to compute degrees
of freedom, is defined by

N eff
exp = Nexp − Ncst . (30)

An example is provided by the set of measurements yield-
ing separately |Vub|, |Vcb| and |Vub/Vcb|. The ratio of the

first two should be compatible with the third measure-
ment, whether or not the SM is valid. Since the measure-
ments are not referring to a unique observable they can-
not be merged simply into a single component, as above.
One should normalize their contribution to ensure that
they do not contribute to the overall χ2 value, if they are
in the best possible mutual agreement, independently of
the theoretical framework used for the analysis. This nor-
malization is in fact what is done in the case of identical
observables. It is irrelevant for the metrological phase of
the analysis, and for the third phase, where one searches
for specific sign of new physics: then, any constant can be
added to the χ2 without affecting the result. However, it
is relevant for the second phase, where one probes the SM:
a statistical fluctuation in the set |Vub|, |Vcb| and |Vub/Vcb|
which makes them violate their functional relation should
not trigger a claim for new physics. In this example, the
normalization constant is obtained as the maximal value
of the function of the two variables |V theo

ub |, |V theo
cb |

Lexp(|V theo
ub |, |V theo

cb |) = Lexp
(|Vub| − |V theo

ub |)
×Lexp

(|Vcb| − |V theo
cb |)

×Lexp

(∣∣∣∣VubVcb

∣∣∣∣ − |V theo
ub |

|V theo
cb |

)
. (31)

Here as well, care should be taken not to normalize that
way the contributions of observables the functional con-
nection of which is model dependent. For instance, the
measurements leading to sinγ and π − β − α are sensitive
to new physics because their measured values may violate
the SM functional relation sinγ = sin(π − β − α) 6.

Normalization: More generally, the normalization of each
individual likelihood component is chosen such that its
maximal value is equal to one. This is not important for
the analysis, but it is convenient: it ensures that a mea-
surement does not contribute numerically to the overall
χ2 value if it is in the best possible agreement with the-
ory, and that the (so-called) χ2 takes only positive values.
In the pure Gaussian case, it implies simply to drop the
normalization constant of (28): one is thus recovering the
standard χ2 definition.

3.1.2 The theoretical likelihood

The theoretical component of the likelihood is given by
the product

Ltheo(yQCD) =
NQCD∏
i=1

Ltheo(i) , (32)

where the individual likelihood components Ltheo(i) ac-
count for the partial knowledge available on the yQCD
parameters (e.g., fBd

) including more or less accurately

6 It is worth pointing out that an apparent functional vio-
lation is present (since long ago) in the available data (c.f..
Sect. 6.1): |Vud|2 + |Vus|2 + |Vub|2 < 1.
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known correlations between them (e.g., fBd
/fBs

). Ideally,
one should incorporate in Lexp measurements from which
constraints on yQCD parameters can be derived. By doing
so, one could remove altogether the theoretical compo-
nent of the likelihood. However, this is not what is done,
because usually there is no such measurement: the a pri-
ori knowledge on the yQCD stems rather from educated
guesswork7. As a result, the Ltheo(i) components are in-
corporated by hand in (32) and they can hardly be con-
sidered as issued from probability distribution functions
(PDF). In effect, their mere presence in the discussion is
a clear sign that the problem at hand is ill-defined. It
demonstrates that a (here critical) piece of information is
coming neither from experimental, nor from statistically
limited computations, but from somewhere else: from the
mind of physicists. At present, these components play a
leading role in the analysis and it is mandatory to handle
them with the greatest caution.

The default scheme – range fit (Rfit): In the scheme we
propose, the theoretical likelihoods Ltheo(i) do not con-
tribute to the χ2 of the fit while the corresponding yQCD
parameters take values within ranges, thereafter termed
“allowed ranges” and denoted [yQCD]. The numerical
derivation of these ranges is discussed in Sects. 5 and
6. Most of them are identified to the ranges [yQCD −
σsyst , yQCD+σsyst], where σsyst is the theoretical system-
atics evaluated for yQCD. Hence yQCD values are treated
on an equal footing, irrespective of how close they are from
the edges of the allowed range. Instances where even only
one of the yQCD trespasses its range are not considered8.

This is the unique, simple, and clear-cut assumption
made in the Rfit scheme: yQCD parameters are bound to
remain within predefined allowed ranges. The Rfit scheme
departs from a perfect frequentist analysis only because
the allowed ranges [yQCD] do not extend to the whole
physical space where the parameters could a priori take
their values9. This should not be understood as implying
that a uniform PDF is ascribed to each yQCD parameter.
This important remark is further discussed in Sect. 4.4 and
in Appendix A.

7 The same remark applies to experimental systematics, but,
since these are usually not the dominant part of the experimen-
tal uncertainties, the problem is less acute

8 In the case of model dependence (c.f., Sect. 3.1.1) the al-
lowed values for the discrete parameter m labelling the models
correspond to the set of models deemed acceptable. Rfit is al-
lowed to select at will any one within this set, in the same way
that it is allowed to select a yQCD parameter at will within
its allowed range. In practice, when yQCD parameters cannot
be handled beforehand as explained in Sect. 5, the actuation
of the allowed range in CkmFitter is obtained using the Set
Limit option of theMINUIT package. It is equivalent to set the
component Ltheo(i) to unity when the corresponding yQCD(i)
parameter is within [yQCD(i)], and to zero otherwise

9 Not all yQCD parameters need to be given an a priori al-
lowed range: e.g., values taken by final state strong interaction
phases (FSI) appearing in B decays are not necessarily theo-
retically constrained

This unique and minimal assumption, is nevertheless
a strong assumption: all the results obtained should be
understood as valid only if all the assumed allowed ranges
contain the true values of their yQCD parameters. But
there is no guarantee that this is the case, and this re-
striction should be kept in mind. On the other hand, also
the contrary is true: if the ranges are chosen too big, one
may miss a discovery.

3.2 Metrology

For metrology, one is not interested in the quality of the
agreement between data and the theory as a whole.
Rather, taking for granted that the theory as a whole is
correct, one is only interested in the quality of the agree-
ment between data and various realizations of the theory,
specified by distinct sets of ymod values. More precisely,
as discussed in Sect. 3.2.1, the realizations of the theory
one considers are under-specified by various subsets of so-
called relevant parameters values. In the following we de-
note

χ2min;ymod
, (33)

the absolute minimal value of the χ2 function of (23), ob-
tained when letting all Nmod parameters free to vary.

In principle, this absolute minimal value does not cor-
respond to a unique ymod location. This is because mea-
surements (resp. theoretical predictions) entering in the
analysis are all affected by more or less important experi-
mental (resp. theoretical) systematics. These systematics
being handled by means of allowed ranges, there is always
a multi-dimensional degeneracy for any value of χ2.

In practice, with the presently available observables,
theoretical systematics play a prominent role. If one does
not incorporate significant sin2β measurements in the
analysis, the domain where χ2 = χ2min;ymod

is noticeably
wide. For convenience, in the following we refer to this
domain as yoptmod, as if a unique point in the ymod space
were leading to χ2min;ymod

. The projections of the yoptmod do-
main onto one dimensional spaces result in finite intervals
within which the data analysis cannot make distinction
(and similarly for two-dimensional spaces). When sin2β is
incorporated in the analysis, one adds a measurement with
negligible systematics which lifts partially the degeneracy
and makes some projections of yoptmod become point-like.

This degeneracy should be treated carefully when one
is exploring a sub-space a of ymod: points widely apart in
a can lead to the same χ2, provided the other parame-
ter values are changed accordingly. However, except for
numerical accidents, identical χ2(ymod) = χ2min;ymod

val-
ues imply identical Lexp components, and hence identical
predictions: xtheo(ymod) values are constant within yoptmod.

Ideally, for metrological purposes, one should attempt
to estimate as best as possible the complete ymod set. In
that case, one should use the offset-corrected χ2

∆χ2(ymod) = χ2(ymod) − χ2min;ymod
, (34)

where χ2(ymod) is the χ2 for a given set of model param-
eters ymod. The minimal value of ∆χ2(ymod) is zero, by



232 A. Höcker et al.: A new approach to a global fit of the CKM matrix

construction. This ensures that, to be consistent with the
assumption that the SM is correct, CLs equal to unity are
obtained when exploring the ymod space (namely, once
ymod enters the yoptmod domain). In a Gaussian situation,
one would then directly obtain the CL for a particular set
of ymod values as

P(ymod) = Prob(∆χ2(ymod), Ndof) , (35)

with Ndof = Min(N eff
exp, Nmod), where N eff

exp is defined in
(30).

3.2.1 Relevant and less relevant parameters

However, one is not necessarily interested in all the ymod
values, but only in a subset of them. This can be for two
distinct reasons:

– The other parameters being deemed less relevant. For
instance, in the SM, CP violation can be summarized
by the value taken by the Jarlskog parameter J , or by
the value taken by η (in the Wolfenstein parameteri-
zation): the other CKM parameters and the yQCD pa-
rameters may thus conceivably be considered of lower
interest. More generally, one is rarely considering a
CKM fit as a means to pin down anything else than
CKM parameters, least of all yQCD parameters10.

– Parameters that cannot be significantly constrained by
the input data of the CKM fit. This is the case for
most of the non-CKM parameters: yQCD parameters,
but also the top quark mass, etc.

In practice, the ymod parameters usually retained as
relevant for the discussion are ρ̄ and η̄. The other param-
eters λ, A, the top quark mass (etc.) and all the yQCD are
considered as subsidiary parameters, merely to be taken
into account in the analysis, but irrelevant for the discus-
sion. In that case, the aim of the metrological stage of the
analysis is to set CLs in the (ρ̄, η̄) plane.

We denote by a the subset of Na parameters under
discussion (e.g., a = {ρ̄, η̄} and µ the Nµ remaining ymod
parameters11.

The goal is to set CLs in the a space, irrespective
of the µ values.

The smaller the region in the a space where the CL is
sizeable (above CLcut = 0.05, say) the stronger the con-
straint is. The ultimate (and unattainable) goal being to
make this allowed region shrink to a point: it would then
correspond to the ‘true’ a. This means that one seeks to
exclude the largest possible region of the a space. To do
so, for a fixed value of a, one has to find the µ values
10 Although it can be argued that, while theoretical uncer-
tainties dominate, pinning down yQCD parameters might turn
out to be the main (and not so interesting) achievement of a
CKM analysis...
11 It is worth to stress that this splitting is arbitrary and that
it can be changed at will: for instance one may decide to focus
only on a = {J}, or to consider a = {sin2α, sin2β}, etc.

which maximize the agreement between data and theory,
and set the CL on a at the value corresponding to this
optimized µ

CL(a) = Maxµ{CL(a, µ)} . (36)

Proceeding that way, one uses the most conservative es-
timate for a given a point: this point will be engulfed in
the excluded region only if CL(a, µ) < CLcut, ∀µ. Stated
differently, the CLs one is interested in are upper bounds
of confidence levels. In effect, as discussed in Sect. 3.2.3,
this is the standard procedure one uses to obtain CLs for
a sub-set of fitted parameters.

3.2.2 Metrology of relevant parameters

According to the above discussion, we denote

χ2min;µ(a) , (37)

the minimal value of the χ2 function of (23), for a fixed
value of a, when letting all µ parameters free to vary. For
metrological purposes, one uses the offset-corrected χ2

∆χ2(a) = χ2min;µ(a) − χ2min;ymod
, (38)

the minimal value of which is zero, by construction: it is
reached when a enters the yoptmod domain.

Since only the minimal value of the χ2 with respect
to µ enters the Rfit analysis, when µ contains a yQCD(j)
parameter which appears only in one measurement i, it is
advisable to absorb its effect by computing beforehand

Lexp(i)max:yQCD(j) = MaxyQCD(j){Lexp(i)Ltheo(yQCD)} ,
(39)

to clarify the analysis12 (see Sect. 5).

Gaussian case: In a purely Gaussian situation one would
directly obtain the CL for a as

P(a) = Prob(∆χ2(a), Ndof) , (40)

where Ndof = Min(N eff
exp−Nµ, Na). Equivalently, one may

derive the same CL from the covariance matrix obtained
from the fit leading to the absolute minimum, if in the
a-region under consideration, the χ2 is parabolic.

Non-Gaussian case: In a non-Gaussian situation, one has
to consider ∆χ2(a) as a test statistics, and one has to rely
on a Monte Carlo simulation to obtain its expected distri-
bution in order to compute P(a). As further discussed in
Sect. 3.3, this does not imply taking a Bayesian approach
and to make use of PDFs for the unknown theoretical pa-
rameters µ.
12 This should be done for instance for FSI phases, most no-
tably for the determination of the angles α and γ. But this
cannot be done for the product fBd

√
Bd, because it appears in

∆md but also indirectly in ∆ms, since fBd

√
Bd and fBs

√
Bs

are theoretically linked
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For the sake of simplicity, we use (40) in the present
work. This implies that the experimental component Lexp
(xexp − xtheo(ymod)) is free from non Gaussian contribu-
tions and inconsistent measurements. However, the
∆χ2(a) function itself does not have to be parabolic. What
matters is that the Lexp components are derived from
Gaussian measurements (c.f., Sect. 3.2.3 for an example),
being understood that no Ltheo components are present.

3.2.3 Illustrations

To illustrate the above definitions we consider two specific
examples in this section13.

Standard situation: Consider an analysis which depends
on only two quantities: the first is a fundamental param-
eter a, and the second is a QCD parameter yQCD. We
assume here that the situation is a standard one, where
it turns out that both quantities are simultaneously mea-
surable: the full χ2(a, yQCD) function takes the form

χ2(a, yQCD) =
(

a − a0

σ[a]

)2

+

(
yQCD − y0QCD

σ[yQCD]

)2

−2c
(

a − a0

σ[a]

)(
yQCD − y0QCD

σ[yQCD]

)

+χ2min; a,yQCD
, (41)

where c is a correlation coefficient. Applying the Rfit
scheme, the 95% CL interval for a is obtained as follows.
One first computes the offset-corrected χ2

∆χ2(a) = χ2min; yQCD
(a) − χ2min; a,yQCD

, (42)

=
(

a − a0

σ[a]

)2

(1 − c2) . (43)

The limits a± of the 95% CL interval are such that

Prob(∆χ2(a±), 1) = 0.05 → ∆χ2(a±) = 3.84 , (44)

and hence

a± = a0 ± 1.96
σ[a]√
1 − c2

, (45)

which is just the standard answer for the 95% CL interval
of a, if one disregards information on yQCD.

Measurement of sin2β: If one uses a = {ρ̄, η̄}, a mea-
surement of sin2β alone yields a double infinite degeneracy
corresponding to the solutions of (21), namely

η̄ = (1 − ρ̄)
1 ± √

1 − (sin2βexp)2

sin2βexp
. (46)

Along the two above straight lines in the (ρ̄, η̄) plane,
χ2(a) = χ2min;ymod

= 0. There is no µ parameters here,
and hence
13 A more involved example is discussed in Appendix C

∆χ2(a) = χ2min;µ(a) − χ2min;ymod

=
(
sin2βexp − sin2βtheo

σ[sin2β]

)2

. (47)

Using (40) one gets the CL in the (ρ̄, η̄) plane

P(ρ̄, η̄) = Prob(∆χ2(a), 1) . (48)

While the double infinite degeneracy of∆χ2(a) = 0 clearly
precludes a parabolic behavior for this function, (48) re-
mains exact due to the right hand side of (47).

3.3 Probing the SM

By construction, the metrological phase is unable to detect
a failure of the SM to describe the data. This is because
(38) wipes out the information contained in χ2min;ymod

.
This value is a measure (a test statistics) of the best possi-
ble agreement between data and theory. Ideally, in a pure
Gaussian case, this quantity could be turned into a CL
referring to the SM as a whole in a straightforward way

P(SM) ≤ Prob(χ2min;ymod
, Ndof) , (49)

with Ndof = N eff
exp − Nmod, were it be a positive number.

The whole Standard Model being at stake one should not
rely on (49), but use a Monte Carlo simulation to obtain
the expected distribution of χ2min;ymod

. The Monte Carlo
simulation is built as follows14:

– One selects a set of ymod values within yoptmod and as-
sumes it to be the true one15.

– Then one generates all xexp(i), following the distribu-
tion of individual experimental likelihood component
Lexp(i), having reset their central values to the values
xexp(i) = xtheo(i) computed with the above ymod set.
In case of significant experimental systematics, this im-
plies the use of appropriate likelihoods as discussed in
Sect. 5.

– In contrast to the above, one does not modify the Ltheo
component of the likelihood: their central values are
kept to their original settings. This is because these
central values are not random numbers, but parame-
ters contributing to the definition of L.

– Then one computes the minimum of the χ2 by letting
all ymod free to vary, as is done in the actual data
analysis.

– From this sample of Monte Carlo simulations, one
builds F(χ2), the distribution of χ2min;ymod

, normalized
to unity.

14 For the sake of generality, the theoretical likelihood is not
assumed to be necessarily the trivial Rfit one (c.f., Sect. 3.1.2)
15 As discussed above, the various optimal realizations yield
identical theoretical predictions, the choice made for a particu-
lar ymod within yopt

mod is thus irrelevant. It was explicitly checked
that the outcome of the analysis does not depend on this choice
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The CL referring to the SM as a whole is then

P(SM) ≤
∫

χ2≥χ2
min;ymod

F(χ2) dχ2 , (50)

which is the upper bound to the CL one may set on the
SM.

3.4 Probing new physics

If the above analysis establishes that the SM cannot ac-
commodate the data, the next step is to probe for the new
physics revealed by the observed discrepancy. The goal is
akin to metrology: it is to measure new physical param-
eters yNP (whose values, for example, are zero if the SM
holds) complementing the set of ytheo parameters of the
SM. The treatment is identical to the one of Sect. 3.2, us-
ing a = {yNP}. The outcome of the analysis is for example
a 95% CL domain of allowed values for yNP defined, in a
first approximation, from (40)

P(yNP) = Prob(∆χ2(yNP), NNP) ≥ 0.05 . (51)

Even if the SM cannot be said to be in significant dis-
agreement with data, it remains worthwhile to perform
this metrology of new physics, for two reasons:

– It might be able to faster detect first signs of discrep-
ancy between data and the SM, if the theoretical ex-
tension used in the analysis turns out to be the right
one. The two approaches are complementary, the first
(c.f., Sect. 3.3) leads to a general statement about the
validity of the SM, independently of any assumption
for the new physics, the second is specific to a partic-
ular extension of the SM. In that sense it is less satis-
factory. Being complementary, the two approaches can
disagree: the first may conclude that the SM is in ac-
ceptable agreement with data, while the second may
exclude the SM value yNP = 0, and, conversely, the
first may invalidate the SM, while the second may lead
to a fairly good value of P(yNP = 0), if the extension of
the SM under consideration is not on the right track.

– The most sensitive observables, and the precision to be
aimed at for their determination cannot be derived by
any other means than by this type of analysis. When
considering new experiments, it is therefore particu-
larly valuable to have a sensitive model of new physics,
to prioritize the efforts and set the precisions to be
achieved.

4 Alternative statistical treatments

Several alternative statistical treatments are available.
Three of them are briefly discussed below: however not
all variations are considered. The relative merits and lim-
itations of the three treatments will not be discussed ex-
tensively here, except to point out features of the Rfit
scheme.

4.1 Reminder: the Rfit scheme

Let us briefly re-sketch the main steps of an analysis in
the Rfit scheme: for a given point a in the parameter space
(e.g., a = {ρ̄, η̄}) Rfit proceeds to:

– Find the overall minimal χ2min;ymod
with respect to all

theoretical parameters.
– Perform a discrete, although fine scan of the a space,

and minimize χ2min;µ(a) with respect to the remain-
ing parameters µ, for each point: the yQCD parameters
being allowed to vary freely within their [yQCD] ranges.

– Calculate the offset-corrected CL (P(a) of (40)), for
each point. It is the upper bound of the confidence
levels one may set on a, which corresponds to the best
possible set of theoretical parameters µ.

– Compute the CL of the overall χ2min;ymod
by means of a

Monte Carlo Simulation. It is the upper bound of the
confidence levels one may set on the SM, which corre-
sponds to the best possible set of yQCD parameters.

The Rfit scheme suffers from two drawbacks:

– It relies on a priori allowed ranges for the yQCD pa-
rameters.

– In the hopeful case where data are such that the
method is lead to “rule out” the SM, it provides no
indication as to which yQCD parameter(s) should be al-
lowed to trespass its allowed range, and by how much,
to rescue the SM.

4.2 The 95% scan method

The 95% CL Scan method [5] does not incorporate the the-
oretical component Ltheo except to define allowed ranges
for the yQCD values: in effect, this is equivalent to the
Rfit scheme. These yQCD values are equidistantly scanned
within their allowed ranges. For each set of yQCD values
(denoted model in the 95% CL Scan method terminology)
three operations are performed:

1. One determines

χ2min;ytheo
(yQCD) , (52)

the minimal value of the χ2 function of (23), from Lexp
only, for a fixed set of yQCD values, when letting all
ytheo parameters free to vary. One then computes the
confidence level

P(yQCD) = Prob(χ2min;ytheo
(yQCD), Ndof) , (53)

where Ndof = N eff
exp − Ntheo. If P(yQCD) is above a

threshold CLcut (usually CLcut = 0.05) the model is
considered as acceptable, and selected. The SM is ruled
out if no model is selected.

2. Among the ytheo values, a subset a is retained as cen-
tral values to be displayed for the current model (if
selected) and CLs in the a space are derived using

∆χ2(a, yQCD) = χ2min;ytheo �=a(a, yQCD)

−χ2min;ytheo
(yQCD) , (54)
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and

P(a, yQCD) = Prob(∆χ2(a, yQCD), Ndof) , (55)

where Ndof = Min(N eff
exp − Ntheo +Na, Na).

3. The method concludes by a graphical display, for all
selected models, of the contours in the a space defined
by P(a, yQCD) = CLcont (with CLcont = 0.05).

4.2.1 Comparison with Rfit

Although the outcome of the 95% CL Scan method, the
graphical display, is quite different from the Rfit one, both
schemes are close in nature: they are frequentist ap-
proaches, flawed by the same double drawback mentioned
in the previous section. In addition, while it is built on
rather firm ground, the 95% CL Scan method presents sev-
eral unwelcome features which are reviewed in Appendix
B. The main differences between the two methods are:

– whereas Rfit seeks for a statistical statement pertain-
ing to a, and only to a, the 95% CL Scan method leads
to statements on a, for given values of µ which take the
form of the 95% CL contours.

– to correct for this, the 95% CL Scan method may con-
clude by an envelope, which delimits an allowed region
in the a space with at least 95% CL.

– Rfit draws a single smooth CL surface. From this sur-
face one can read off the 95% CL contour, or define a
family of contours, each corresponding to a given CL.
These contours encircle a domain, the plateau of the
CL surface, where the CL is essentially equal to unity.

– Rfit is flexible. The default treatment can be extended
to atone for the second fundamental drawbacks, and
to accommodate for a smooth transition toward the
Bayesian treatment, while, nevertheless, keeping part
of the virtues of the 95% CL Scan method and of the
Rfit scheme. This is discussed in the next section.

4.3 The extended conservative method (ERfit)

The Rfit scheme uses Ltheo(i) functions which trivially
take only two values: either 1 within the allowed range,
or 0 outside, thereby strictly forbidding any yQCD to tres-
pass [yQCD]. Instead, the extended ERfit scheme uses for
Ltheo(i) functions which take values between 1 and 0. They
are equal to 1 within [yQCD] (there, they do not contribute
at all to the full χ2, and one recovers the Rfit scheme)
and drop smoothly to 0 outside. These functions are not
PDFs: they are not combined the ones with the others
through convolutions, and hence (see next section) the
ERfit scheme is not a Bayesian scheme.

The precise way the functions decrease down to zero is
obviously arbitrary: one needs to define a standard. The
proposed expressions for Ltheo(i) are presented in Sect. 5.
Their relevant characteristic is the following: they use two
continuously varying parameters, denoted ζ and κ. The
first parameter is a scale factor which fixes the allowed

range where Ltheo(i) = 1. The second parameter deter-
mines the transition to zero. The parameter values permit
to cover a large spectrum of schemes, ranging from Rfit
(ζ = 1,κ = 0), to a Gaussian scheme (ζ = 0,κ = 1) and
defining a standard16, denoted ERfit, for which ζ = 1, and
κ � 0.8.

Because ERfit acknowledges the fact that the allowed
ranges should not be taken literally, it offers two advan-
tages over Rfit:

– ERfit is more conservative than Rfit: by construction,
a ERfit CL is always larger than the corresponding Rfit
one, and in the (ρ̄, η̄) plane its CL surface exhibits the
same plateau at CL = 1 (i.e., the Rfit and ERfityoptmod
spaces are identical).

– In case the SM tends to be ruled out by Rfit, the ERfit
scheme is able to detect the eventual yQCD parame-
ter(s) which, if allowed to trespass its allowed range,
would restore an acceptable agreement between data
and theory, and which value it should take.

Despite the two above arguments in favor ofERfit, Rfit is
chosen as the scheme advocated in this paper rather than
ERfit: because it uses a simpler and unique prescription to
incorporate theoretical systematics, it is less prone to be
confused with a Bayesian treatment. Moreover, ERfit does
not provide a clear-cut distinction between statistical and
theoretical systematic errors in the fit. Finally, in cases
where one determines theoretical parameters via the fit,
as it is the case, e.g., for the quantity fBd

√
Bd, Rfit is the

natural choice. But, obviously, if Rfit concludes to a SM
failure, then ERfit should be used.

4.4 The Bayesian treatment

The Bayesian treatment [6,7] considers L as a PDF, from
which is defined F(a), the PDF of a, through the convo-
lution

F(a) = C

∫
L(ymod) δ(a − a(ymod)) dymod , (56)

where the constant C is computed a posteriori to ensure
the normalization to unity of F(a). In practice, the inte-
gral can be obtained very conveniently by Monte Carlo
techniques. For each point in the a space one sets a confi-
dence level CL(a), for example, according to

CL(a) =
∫

F(a′)≤F(a)

F(a′) da′ , (57)

but another definition for the domain of integration can
de chosen. The method concludes by a graphical display
of CL. In particular, the 95% CL contour can be read-off
among others. New physics is not meant to be detected by
the Bayesian treatment: it is aimed at metrology mostly.
16 Obviously, it would be better if theorists, and not experi-
mentalists, choose for these two parameters the values which
appear the most adequate for each of their predictions
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4.4.1 Comparison with Rfit

Although their graphical display appear similar, the
Bayesian treatment and the Rfit scheme depart signifi-
cantly: the meaning attached to a given CL value are not
the same. For the Bayesian treatment, the CL is a quantity
defined, using (56), for example by (57). The justification
of this definition lies in the understanding that a CL value
is meant to provide a quantitative measure of our quali-
tative degree of belief. Whereas one understands qualita-
tively well what is meant by degree of belief, because of its
lack of formal definition, one cannot check that it is indeed
well measured by the CL: the argument is thus circular.
One is left with the sheer definition of (57), which, being
just a definition, suffers no discussion.

The key point in the Bayesian treatment is the use of
(56), even though the likelihood contains theoretical com-
ponents. This implies that the yQCD parameters, which
stem from theorist computations, are to be considered as
random realizations (sic) of their true values. The PDFs
of these ‘random’ numbers are then drawned from guess-
work (The [yQCD] ranges do not fare better with respect
to that.). For self-consistency, if one assumes that a large
number of theorists perform the same yQCD computation,
the distribution of their results should then be interpreted
as a determination of the yQCD PDF. Once injected in
(56), this PDF, the shape of which contains no infor-
mation on nature, but information on the way physicist
mind work, will be transformed into information pertain-
ing to nature. This entails to a surprising confusion be-
tween what is an experimental result and what is a think-
ing result. As illustrated in Appendix A and in Sect. 7.2.1,
it is less the ad hoc shapes of the PDFs which are at stake
than the implication of using (56).

5 Likelihoods and systematic errors

In Sect. 3 we have defined the basic formalism of the Rfit
scheme. The treatment of experimental and theoretical
systematics is the subject of this section.

Let x0 be a quantity, which is not a random variable,
but which is not perfectly known. We will consider in turn
two quantities of this type:

– A theoretical parameter which is not well determined
(e.g., x0 = fBd

): the theoretical prediction of an ob-
servable depends on x0 (e.g., ∆MBd

).
– An experimental bias due to detector/analysis defects:

the measurement should be corrected for this bias.

It is the purpose of this section to suggest a prescription of
how to incorporate the limited knowledge of such quan-
tities into the analysis. The standard treatment of this
problem relies on a χ2 analysis

χ2 =
(

xexp − xtheo
σexp

)2

+
(

x0 − x̄0
σo

)2

, (58)

where

– xtheo (resp. xexp) depends on x0, if the latter is a the-
oretical parameter (resp. experimental systematics),

– x̄0 is the expected central value of x0,
– σo is the uncertainty on x0.

This standard treatment is satisfactory as long as the de-
gree of belief we put on the knowledge of the value of x0
is peaked at x̄0 and distributed like a Gaussian. This is
usually summarized by

x0 = x̄0 ± σo . (59)

However, this is not necessarily what is intended to be
meant by (59). Rather, the theorist (resp. the experimen-
talist) may mean that the prediction (resp. the measure-
ment) can take any value obtained by varying x0 at will
within the range [x̄0 − ζσo, x̄0+ ζσo] (denoted the allowed
range below, where ζ is a constant scale factor of order
unity), but that it is unlikely that x0 takes its true value
outside the allowed range. This does not imply that the
possible values are equally distributed within the allowed
range: they are not distributed at all17. If (59) is given
such a meaning, then the statistical analysis should treat
all x0 values within the allowed range on the same footing
(which again does not imply with equal probability): this
corresponds to the Rfit scheme (with ζ = 1).

This is not the case for the χ2 expression of (58) since
the farther x0 moves away from x̄0, the larger becomes
the related component of χ2.

On the other hand, it might also be useful to define
specific tails instead of sharp cuts, thus allowing the theo-
retical parameters to leave their allowed ranges, if needed:
this corresponds to the ERfit scheme.

The idea is to move from a pure χ2 analysis to a log-
likelihood one, redefining the χ2 to be

χ2 =
(

xexp − xtheo
σexp

)2

− 2 lnLsyst(x0) , (60)

where Lsyst(x0), hereafter termed the Hat function, is a
function equal to unity for x0 within the allowed range.
Its precise definition is given below.

5.1 The hat function

The Hat function Lsyst(x0, κ, ζ) is a continuous function
defined as

−2 lnLsyst(x0, κ, ζ)

=




0 , ∀x0 ∈ [x̄0 ± ζσo](
x0 − x̄0

κσo

)2

−
(

ζ

κ

)2

, ∀x0 /∈ [x̄0 ± ζσo]
(61)

where the constant κ determines the behavior of the func-
tion outside the allowed range. For the Rfit scheme κ =
17 In some cases (e.g., lattice QCD) statistical fluctuations
may enter in the computation. In such instances one may re-
liably define a Gaussian likelihood for this component of the
theoretical uncertainty
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Fig. 3. The κ parameter as a function of ζ (see text)

0 is used. To define a standard κ can be chosen to be
a function of ζ such that the relative normalizations of
Lsyst(x0, κ, ζ) (briefly viewed here, for the purpose of
defining a standard, as a PDF) within and outside the
allowed range equal those of a Gaussian of width σo

+∞∫
−∞

Lsyst(x0, κ, ζ) dx0 ·
ζ/

√
2∫

0

e−t2 dt =
√

π ζσ0 . (62)

The parameter κ is numerically computed as a function
of ζ. The result is shown in Fig. 3, in the range of interest
0 ≤ ζ ≤ 3. For the limit ζ → 0 one obtains κ → 1, and
the Hat becomes a pure Gaussian. The ERfit scheme is
defined by ζ = 1, for which one obtains κ � 0.8.

Examples of Hat functions with x̄0 = 0 and σo = 1 are
shown on the left plot of Fig. 4. Being a function, and not
a PDF, Lsyst(x0) needs not be normalized to unity.

5.2 Combining statistical and systematic uncertainties

Having defined Lsyst(x0), and following (39), one proceeds
with the minimization of the χ2 of (60) by allowing x0 to
vary freely.

For theoretical systematics, the result depends on the
way x0 enters xtheo, and not much more can be said in
generality.

For experimental and theoretical systematics where x0
can be assumed to be an unknown offset18: the quantity to
be confronted to the theoretical prediction xtheo is simply
xexp + x0. Omitting the details of straightforward calcu-
lations, and assuming that x̄0 = 0 (otherwise xexp should
be corrected for it), one obtains, after minimization of the
χ2 with respect to x0:
– | xexp − xtheo |≤ ζσo : χ2min; x0

= 0 .

– ζσo ≤| xexp − xtheo |≤ ζσo(1 + (σexp
κσo

)2) :

χ2min; x0
=

( |xexp−xtheo|−ζσo

σexp

)2
.

– | xexp − xtheo |≥ ζσo(1 + (σexp
κσo

)2) :

χ2min; x0
= (xexp−xtheo)2

σ2
exp+(κσo)2

−
(
ζ
κ

)2
.

18 If systematics take the form of an unknown multiplicative
factor, and this is often the case for theoretical uncertainties,
a treatment similar to the one discussed here applies
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Fig. 4. The left hand plot shows the Hat functions (x̄0 = 0
and σo = 1) used for the Rfit scheme, the ERfit scheme and the
Gaussian treatment. The right hand plot shows the combined
likelihood expLsyst (with x̄0 = 0 and σexp = σo = 1) obtained
from (39) for the Rfit scheme, the ERfit scheme, a convolution
of a Gaussian with a uniform distribution (hence taken as a
PDF, following the Bayesian approach) and a convolution of
two Gaussians (see Appendix A)

In the limit ζ → 0 (and hence, κ → 1) only the third in-
stance is met, and one recovers the usual rule of adding in
quadrature the statistical and the systematic uncertain-
ties. Otherwise, the result is non trivial. An example of
the effective likelihood expLsyst(xexp−xtheo) ≡ − 1

2χ
2
min; x0

(with x̄0 = 0 and σexp = σo = 1) is shown in the right
hand plot of Fig. 4 for the Rfit scheme, the ERfit scheme,
a convolution of a Gaussian with a uniform distribution
(hence taken as a PDF, following the Bayesian approach)
and a convolution of two Gaussians.

6 Fit ingredients

This section provides a compendium of the measurements
and SM predictions entering the overall constrained CKM
fit. In some cases, we pre-combine compatible measure-
ments by means of a simple weighted mean in order to
speed up the fit by reducing the effective number of de-
grees of freedom (see the discussion in Sect. 3.1.1). Since
the solution of a χ2 minimization of Gaussian distributed
measurements corresponds to the weighted mean, this en-
tails no loss of information. Below, we give a status of the
input quantities used. The corresponding numerical values
that enter the fit and the treatment of their uncertainties
within Rfit are summarized in Table 1.

6.1 The CKM matrix elements

– |Vud| : The matrix element |Vud| has been extracted
by means of three different methods: super-allowed nu-
clear β-decays, neutron β-decay and pion β-decay.
Using the lifetime measurements of super-allowed nu-
clear β-decays with pure Fermi-transitions (0+ → 0+),
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Table 1. Inputs to the global CKM fit. If not stated otherwise: for two errors given, the first
is statistical and accountable systematic and the second stands for systematic theoretical un-
certainties. The fourth, fifth and sixth columns indicate the treatment of the parameters within
Rfit: measurements dominated by experimental errors (or statistical components of theoretical
parameters) are marked as “Gauss.” by an asterisk; parameters dominated by systematic theo-
retical uncertainties, treated as ranges in Rfit, are marked as “Theo.”; for parameters that have
experimental and systematic theoretical errors, treated in the fit according to (61), both fields,
“Exp.” and “Theo.”, are marked; parameters with small errors, marked as “Prop.”, have their
uncertainties propagated to the corresponding measurements to whose errors they are added in
quadrature. The last column indicates whether or not the parameter is floating in the fit. In gen-
eral, measurements with non-vanishing systematic theoretical errors have a floating theoretical
component. Theoretical parameters with significant errors are necessarily floating. Upper part:
experimental determinations of the CKM matrix elements. Middle upper part: CP-violating and
mixing observables. Middle lower part: parameters of the SM predictions obtained from experi-
mental data. Lower part: parameters of the SM predictions obtained from theory

Error treatment in Rfit:
Parameter Value ± Error(s) Reference(s) Gauss. Theo. Prop. Float.

|Vud| 0.97394 ± 0.00089 see text * - - -
|Vus| 0.2200 ± 0.0025 see text * - - -
|Vub| (3.49 ± 0.23 ± 0.55) × 10−3 see text * * - *
|Vcd| 0.224 ± 0.014 see text * - - -
|Vcs| 0.969 ± 0.058 see text * - - -
|Vcb| (40.76 ± 0.50 ± 2.0) × 10−3 see text * * - *

|εK | (2.271 ± 0.017) × 10−03 see text * - - -
∆md (0.487 ± 0.014) ps−1 see text * - - -
∆ms Amplitude spectrum [94], see text * - - -
sin2βWA 0.48 ± 0.16 see text * - - -

mc (1.3 ± 0.1) GeV [10] - * - *
mt(MS) (166.0 ± 5.0) GeV [10] * - - *
mK (493.677 ± 0.016) MeV [10] - - * -
∆mK (3.4885 ± 0.0008) × 10−15 GeV [10] - - * -
mBd (5.2794 ± 0.0005) GeV [10] - - * -
mBs (5.3696 ± 0.0024) GeV [10] - - * -
mW (80.419 ± 0.056) GeV [10] - - * -
GF (1.16639 ± 0.00001) × 10−5 GeV−2 [10] - - - -
fK (159.8 ± 1.5) MeV [10] - - * -

BK 0.87 ± 0.06 ± 0.13 see text * * - *
ηcc 1.38 ± 0.53 see text - * - *
ηct 0.47 ± 0.04 see text - - * -
ηtt 0.574 ± 0.004 see text - - * -
ηB(MS) 0.55 ± 0.01 see text - * - *
fBd

√
Bd (230 ± 28 ± 28) MeV see text * * - *

ξ 1.16 ± 0.03 ± 0.05 see text * * - *

|Vud| can be extracted with high precision. Averaging
the values of nine different super-allowed nuclear β-
decays [17] the result including nucleus-independent
and nucleus-dependent radiative corrections as well as
charge-dependent corrections (see [18] for a com-
pendium of references) is: |Vud| = 0.97400±0.00014exp
± 0.00048theo [18,17]. The precision of |Vud| from nu-
clear β-decays is often questioned in light of the ob-
served ‘2σ’ deviation from the unitarity condition when
combining this value with the best knowledge for |Vus|

and |Vub|. A possible enhancement of |Vud| is predicted
by a quark-meson coupling model due to a change of
charge symmetry violation for quarks inside bound nu-
cleons compared to unbound nucleons [19]. Since the
status here is unclear, the error has been enlarged by
the amount of the possible correction using the PDG
rescaling [10]: |Vud| = 0.9740 ± 0.0010.19

19 It should be kept in mind that such a procedure might hide
a possible violation of the unitarity condition in the first family
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For the neutron β-decay no nuclear structure effects
play any role. However, |Vud| has to be extracted from
two quantities, the neutron lifetime and the ratio gA/
gV . In contrast to nuclear β-decays these measure-
ments are not dominated by theoretical uncertainties.
The weighted mean for the neutron lifetime measure-
ments is τn = (885.7 ± 1.0) s [20] and the average
value for gA/gV reads −1.2699± 0.0029 [21] where the
error was rescaled by a factor of two due to inconsis-
tencies in the data set. Combining these numbers we
get: |Vud| = 0.9738±0.0020gA/gV ,τn ±0.0004rad, where
the error is dominated by the experimental error on
gA/gV .
The pion β-decay π+ → π0e+νe is a very attractive
candidate to extract |Vud| from the branching ratio and
the pion lifetime, since it is mediated by a pure vec-
tor transition and does not suffer from nuclear struc-
ture effects. However, due to the small branching ratio,
BR = (1.025±0.034)×10−8 [10], the present statistical
accuracy is not competitive with the other methods:
|Vud| = 0.967 ± 0.016BR ± 0.0009theo.
Assuming all three measurements to be Gaussian dis-
tributed20 we combine them via a weighted mean,
yielding: |Vud| = 0.97394 ± 0.00089.

– |Vus| : The analyses of kaon and hyperon semilep-
tonic decays provide the best determination of |Vus|
directly related to λ in the Wolfenstein parameteriza-
tion. However, due to theoretical uncertainties from
the breakdown of SU(3) flavor symmetry, the hyperon
decay data are less reliable [22,23]. As a consequence,
we use only the value obtained from the vector transi-
tions K+ → π0e+νe and KL → π−e+νe [10]. Owing to
the small electron mass, only one form factor plays a
role in Ke3 decays the functional dependence of which
can be extracted from data. The form factor value
at zero recoil, f1(0), is calculated within the frame-
work of chiral perturbation theory and is found to be:
fK

0π−
1 (0) = 0.961 ± 0.008 [24]. The error estimate for
this value was criticized in [25]. However, a relativistic
constituent quark model, successful in the description
of electroweak properties of light mesons gives a con-
sistent result: fK

0π−
1 (0) = 0.963±0.004 [26]. Channel-

independent and channel-dependent radiative correc-
tions [27,28] as well as charge symmetry (K+/KL)
and charge independence (π−/π0) breaking corrections
[24] are applied in order to compare the results from
both channels: fK

0π−
1 (0)|Vus| = 0.2134 ± 0.0015exp ±

0.0001rad (K+ → π0e+νe) and fK
0π−

1 (0)|Vus| =
0.2101 ± 0.0013exp ± 0.0001rad (KL → π−e+νe). The
weighted average is: fK

0π−
1 (0)|Vus| = 0.2114 ± 0.0016

where the error was rescaled by a factor of 1.6 to ac-
count for inconsistencies.

20 Being consequent, also in this case, one should treat the
theoretical errors as ranges. However, as long as the relative
uncertainty on λ from |Vud| and |Vus| is much smaller than
what one obtains for (ρ̄, η̄) from constraints like |Vub/Vcb

|, |εK |,
∆md and ∆ms/∆md, the procedure used is certainly not a
critical issue

The result then reads |Vus| = 0.2200 ± 0.0017exp ±
0.0018theo = 0.2200±0.0025. As in the case for Vud all
uncertainties were considered as Gaussian errors.

– |Vub| : Both, inclusive B-decays (b → Xu8
−ν̄#), mea-

sured at LEP [29–31], and exclusive B-decays (B0 →
π−8+ν#, B0 → ρ−8+ν#), measured by CLEO [32], al-
low an extraction of the third column element |Vub|21.
The exclusive measurements are dominated by the the-
oretical uncertainty due to the model dependence in
the determination of the form factor. The exclusive
CLEO measurements give:

|Vub| = (3.25 ± 0.14stat+0.21−0.29sys ± 0.55theo) × 10−3 ,

where the error is dominated by the theoretical uncer-
tainties. We add the statistical and experimental sys-
tematic error in quadrature and consider the theoreti-
cal error as a range: |Vub| = (3.25±0.29exp±0.55theo)×
10−3. There is some hope that exclusive measurements
in the future may take advantage of unquenched lattice
QCD calculations and thus reduce the model depen-
dent error.
The three inclusive LEP measurements rely on differ-
ent techniques and are combined in [40], taking into
account all uncorrelated and correlated errors: |Vub| =
(4.04+0.41−0.46(stat + det)+0.41−0.46(b → c)+0.24−0.25(b → u) ±
0.02(τb) ± 0.19(HQE)) × 10−3. The theoretical uncer-
tainty from the Heavy Quark Expansion (HQE) is a
combination of three sources: the neglect of higher
terms including 1/m3

b , the uncertainty in the b-quark
mass mb and from perturbative corrections. The ex-
traction of |Vub| from the inclusive semileptonic
BR(b → u 8−ν̄#) relies on the validity of quark-hadron
duality. Although quark-hadron duality can not be ex-
pected to be exact, there are good reasons that in-
clusive semileptonic decays of beauty hadrons are de-
scribed quite accurately by HQE [41]. However, since
the analyses have to apply cuts in order to suppress
the background from b → c transitions only a part of
the total semileptonic rate is measured which could
lead to sizable effects from quark-hadron duality vi-
olation which are difficult to quantify. In the case of
the inclusive measurements we combine the theoreti-
cal uncertainties from HQE and the large systematic
uncertainties due to b → c and b → u transitions
by adding them in quadrature and obtain: |Vub| =
(4.04 ± 0.44exp ± 0.54model) × 10−3.
For the combined result of inclusive and exclusive mea-
surements we obtain: |Vub| = (3.49±0.24±0.55theo)×
10−3 where only the first error was used for the
weighted mean. The maximum of both single ranges
was assigned as the final systematic theoretical uncer-
tainty.

21 The determination of |Vub| from the lepton endpoint spec-
trum, obtained by ARGUS [33] and CLEO [34,35], suffers from
large model dependencies [36–39]. In addition, possible viola-
tions of quark-hadron duality might be enhanced in this small
part of the phase space. Hence, these results were not taken
into account for this analysis
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– |Vcd| : Both matrix elements, |Vcd| and |Vcs|, can be
determined from di-muon production in deep inelastic
scattering (DIS) of neutrinos and anti-neutrinos on nu-
cleons. In an analysis performed by CDHS [42], |Vcd|
and |Vcs| are extracted by fitting the data of three
experiments, CDHS [42], CCFR [43] and CHARM II
[44], giving: |Vcd|2 × Bc = (4.63 ± 0.34) × 10−3, where
Bc = 0.0919±0.0094 [45–47] is the weighted average of
semileptonic branching ratios of charmed hadrons pro-
duced in neutrino-nucleon DIS. This results in: |Vcd| =
0.224 ± 0.014 [18].

– |Vcs| : Besides DIS, the matrix element |Vcs| can be
obtained from De3 decays, charm tagged W decays and
hadronic W decays.
The average DIS result from CDHS, CCFR and
CHARM II is κ|Vcs|2Bc = (4.53 ± 0.37) × 10−2 where
κ = 0.453 ± 0.106+0.028−0.096 is the relative size of strange
quarks in the sea compared to ū and d̄ resulting in
|Vcs| = 1.04 ± 0.16 [10].
Similar to Ke3, decays |Vcs| can be also extracted from
De3 decays. However, the theoretical uncertainty in the
form factor calculation f1(0) = 0.7±0.1 [48] limits the
precision: |Vcs| = 1.04±0.16 [18], in perfect agreement
with |Vcs| from DIS.
Under the assumption that unitarity holds for three
families, the ratio Rc = Γ (W+ → cq̄)/Γ (W+ →
hadrons) =

∑
i=d,s,b |Vci|2/(

∑
i=d,s,b;j=u,c |Vji|2) forW

decays is expected to be 1/2. The results of all LEP2
experiments are consistent with this expectation and
give |Vcs| = 0.97 ± 0.09stat ± 0.07sys [10,49–52]. The
ratio of hadronic and leptonic W decays measured
by LEP2 provides the tightest bound on |Vcs| if uni-
tarity for three families is assumed: Rc = Γ (W+ →
hadrons/Γ (W+ → leptons) =

∑
i=d,s,b;j=u,c |Vji|2 ×

(1 + αs(mW )/π). From the four LEP experiments
|Vcs| = 0.989 ± 0.016 [10] is found where the errors on
the single measurements are dominated by statistical
errors22.
Very recently, the OPAL collaboration has presented
a new direct determination of |Vcs| from W → XcX
resulting in |Vcs| = 0.969± 0.058 [53], which we use in
the fit.

– |Vcb| : In the Wolfenstein parameterization, |Vcb| de-
termines the parameter A the precision of which plays
an important part for the constraints |Vub/Vcb|, |εK |
and ∆md. It is obtained from exclusive B → D(∗)8ν̄#
and inclusive semileptonic b decays to charm, b →
8−ν̄#Xc, both measured by CLEO and the LEP ex-
periments. The theoretical framework for extracting
numerical values for |Vcb| from the measured decay
rates is Heavy Quark Effective Theory (HQET) [54]
for exclusive measurements and HQE [55] for inclusive
measurements.

22 The measurement of Rc should be used in the fit, rather
than the quoted |Vcs| determination which is derived from it.
This piece of information is not used here, for the sake of sim-
plicity

The exclusive results are given in the form FD∗(1)|Vcb|,
so that they must be divided by the value of the Isgur-
Wise function at zero-recoil. The form factor at zero-
recoil, FD∗(1), is 1 in the heavy quark limit. For fi-
nite quark masses the corrections can be calculated in
HQET. There are open discussions in the literature
concerning the calculation of the 1/m2

Q corrections for
FD∗(1). Here we use the value FD∗(1) = 0.913± 0.042
[5] for which several references have been taken into ac-
count. In the future, the most accurate determinations
of FD∗(1) are expected to come from lattice QCD. A
first result with a quite small error reads FD∗(1) =
0.935 ± 0.030 [56]. The results from LEP and CLEO
read

FD∗(1)|Vcb|LEP = 0.0350 ± 0.0007stat ± 0.0015sys
[40,57]

FD∗(1)|Vcb|CLEO = 0.0424 ± 0.0018stat ± 0.0019sys
[58]

FD∗(1)|Vcb| = 0.0373 ± 0.0013
|Vcb| = 0.0409 ± 0.0014 ± 0.0019theo.

The combined fit of the CLEO and LEP numbers re-
sults in a confidence level of 7%.
The theoretical error for the inclusive measurement
contains the uncertainty in the kinetic energy µ2π of
the b-quark inside the b-hadron and uncertainties from
perturbative corrections, the b-quark mass and the ne-
glect of higher order terms in the 1/mb expansion in-
cluding 1/m3

b terms [59]. As in the case of the inclu-
sive determination of Vub possible violations of quark-
hadron duality could imply sizable effects. Future ex-
perimental investigations should aim to shed more
light on this topic. The most recent inclusive results
read

|Vcb|LEP = 0.04076 ± 0.00050exp
±0.00204theo [40,57]

|Vcb|CLEO = 0.041 ± 0.0010stat ± 0.0020sys
±0.00205theo [60,61]

The weighted mean of exclusive and inclusive results
is |Vcb| = (40.76 ± 0.50 ± 2.0theo) × 10−3, and is dom-
inated by the inclusive measurement. In light of the
controversial experimental and theoretical situation in
the exclusive sector and possible violations of quark-
hadron duality the theoretical uncertainty was not fur-
ther reduced.

– |Vtb| : Assuming unitarity for three families, one ob-
tains |Vtb| from the ratio of the bottom quark pro-
duction in top decays to the total top decay width:
|Vtb| = 0.99±0.15 [62]. The unitarity assumption, here
explicitly used, could be removed. However, owing to
the poor precision presently achieved, we do not use
this measurement in the global CKM fit.

– |VtsVtb/Vcb| : The inclusive ratio of b → s γ to b →
c 8−ν̄# production provides a measure of the third row
CKM elements. Present accuracy is only fair: |VtsVtb/
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Vcb| = 0.93 ± 0.14 ± 0.08 [63–65]. Hence, the value is
not used in the fitting procedure.

6.2 CP observables and mixing

Constraints on the CKM phase are obtained by the CP-
violating observables in the K0 − K̄0 and B0

d − B̄0
d sys-

tems, and by B0
d − B̄0

d and B0
s − B̄0

s mixing.

– |εK | : Indirect CP violation in the K0 − K̄0 system is
measured by

εK =
2
3
η+− +

1
3
η00 , (63)

with η+− (η00) being the ratio of the amplitudes of the
long-lived and short-lived neutral kaons decaying into
two charged (neutral) pions. They have been measured
to an accuracy of 1% [66–69]. The averaged value of
[10] is used in this analysis. Within the SM, CP viola-
tion is induced by ∆S = 2 transitions owing to box di-
agrams. It can be related to the CKM-matrix elements
by means of the vacuum insertion approximation, used
to determine the hadronic matrix element

〈K̄0|(s̄γµ(1 − γ5)d)2|K0〉 = 8
3
m2
Kf2KBK . (64)

Neglecting the real part of the non-diagonal element
of neutral kaon mass matrix M12, one obtains

|εK | = G2
Fm2

WmKf2K
12

√
2π2∆mK

BK

(
ηccS(xc, xc)Im

[
(VcsV ∗

cd)
2]

+ηttS(xt, xt)Im
[
(VtsV ∗

td)
2]+ 2ηctS(xc, xt)

×Im
[
VcsV

∗
cdVtsV

∗
td

])
(65)

Here, the S(xi, xj) are the Inami-Lim functions [70]

S(x) ≡ S(xi, xj)i=j

= x

(
1
4
+

9
4(1 − x)

− 3
2(1 − x)2

)

−3
2

(
x

1 − x

)3
ln(x) ,

S(xi, xj)i �=j = xixj

[(
1
4
+

3
2(1 − xi)

− 3
4(1 − xi)2

)

× 1
xi − xj

ln(xi) + (xi ↔ xj)

−3
4

1
(1 − xi)(1 − xj)

]
, (66)

depending on the masses of the virtual charm and top
quarks in the box diagrams (xi = m2

i /m
2
W ). The QCD

corrections to the Inami-Lim functions have been cal-
culated to next-to-leading order: ηcc = 1.38 ± 0.53
[72], ηtt = 0.574 ± 0.004 [73] and ηct = 0.47 ± 0.04

[72] (for a compendium see also [71]). The kaon decay
constant has been extracted from the leptonic decay
rate: fK = (159.8 ± 1.4|Vus| ± 0.44theo) MeV [10]. The
KS − KL mass difference is known with excellent ac-
curacy, ∆mK = (3.4885 ± 0.0008) × 10−15 GeV [10].
The main uncertainty in (65) originates from the bag
parameter BK which cannot be measured but has to
be predicted by theory. The most reliable calculations
of BK are supposed to come from lattice QCD. Cur-
rently, these calculations are performed only under the
assumption of SU(3) symmetry using the quenched
approximation, i.e., using quarks with infinite masses
and neglecting the contribution of sea-quarks in closed
loops, which leads to a substantial reduction in com-
puting time. The world average reads: BK = 0.87 ±
0.06 ± 0.14quench [75], where the first error combines
statistical and accountable systematic uncertainties
while the second stands for an estimate of the error
introduced by the quenched approximation and SU(3)
breaking effects.

– ε′/εK : In terms of the neutral kaon amplitude ratios
η+− and η00, one finds to a very good approximation

Re(ε′/εK) =
1
6
(1 − |η00/η+−|2) . (67)

The first evidence of direct CP violation in the neu-
tral kaon system has been found by the NA31 Col-
laboration at CERN [76] which was not confirmed by
the E731 Collaboration [77]. Since then, measurements
at KTeV [78] and NA48 [79] have obtained significant
positive results while some inconsistencies about the
central value remain. The experimental values are

Re(ε′/εK) × 104 =




23.0 ± 6.5 (NA31[76])
7.4 ± 5.9 (E731 [77])
28.0 ± 4.1 (KTeV[78])
14.0 ± 4.3 (NA48[79])

(68)

for which the weighted mean of 〈Re(ε′/εK)〉 = (19.2±
2.5) × 10−4 has a consistency of χ2/3 = 3.5. The ex-
perimental situation being somewhat inconsistent, the
theoretical prediction in the framework of the SM is
still under strong investigations. The basic expression
is of the form [80]

Re(ε′/εK) = Im [V ∗
tsVtdV

∗
usVud]Σ (B6, B8,ms〈ss̄〉)

(69)
with Σ(. . .) being a function of the hadronic matrix el-
ements, B6 and B8, of the dimension-6 and dimension-
8 non-perturbative power corrections which contribute
to the effective Hamiltonian. The quantitative size of
these operators, in particular B6, and the exact ingre-
dients of Σ(. . .) are still under consideration [80].
As a consequence, we shall not use ε′/εK in the current
analysis.

– ∆md : The frequency of B0
d − B̄0

d oscillation is given
by the mass difference, ∆md, between the two B0

d mass
eigenstates, BH and BL. It has been measured to an
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accuracy of 3%23 (see Table 1). In analogy to |εK |,
B0
d − B̄0

d oscillation in the SM is driven by effective
flavor-changing neutral current (FCNC) processes
through ∆B = 2 box diagrams. In contrary to |εK |,
where the large hierarchy in the Inami-Lim functions
is partly compensated by the CKM matrix elements,
the ∆B = 2 box diagrams are dominated by top quark
exchange between the virtual W± boson lines. This
simplifies the theoretical prediction which then reads

∆md =
G2
F

6π2
ηBmBd

f2Bd
Bdm

2
WS(xt) |VtdV ∗

tb|2 , (70)

where ηB = 0.55 ± 0.01 (for a review see [71]) is a
correction to the Inami-Lim function S(xt) (see (66))
from perturbative QCD. The leptonic decay constant
fBd

has not been measured so far and, like the bag pa-
rameter Bd, has to be determined by theory, in partic-
ular lattice QCD. Up to now, calculations are mainly
performed in the quenched approximation where the
different groups find consistent results. The most re-
cent world averages for the decay constant is fBd

=
(175 ± 20) MeV [83] where the error includes statisti-
cal and accountable systematic uncertainties. The un-
quenched result is estimated to be about 10% higher
than the quenched value, fBd

= (200±23+27−17) MeV [83,
84]. Recently, first (partly) unquenched calculations
with two degenerate sea quarks were published and
are, within the given uncertainties, in agreement with
the expected increase [85,86]. The world average for
the bag parameter in the quenched approximation is
Bd = 1.30± 0.12± 0.13, where the second error is the
estimated uncertainty due to the quenched approxi-
mation [83]. In the present work we use fBd

√
Bd =

(230 ± 28 ± 28) MeV [83], where the second error has
been symmetrized.

– ∆ms : Although ∆ms itself has only a weak depen-
dence on the CKM phase the ratio ∆ms/∆md intro-
duces a strong constraint since the dependence of the
SM prediction on the parameters ηB and mt cancel in
the ratio. Furthermore, the ratio ξ = fBs

√
Bs/fBd

√
Bd

can be calculated more reliably from lattice QCD than
fBd

√
Bd alone since most of the systematics cancel. For

ξ, we are combining the average values for quenched
calculations from [83,6] and choose:

ξ = 1.16 ± 0.03stat,sys ± 0.05quench .

Limits on B0
s − B̄0

s oscillation governed by the mass
difference ∆ms have been obtained by ALEPH [87],
DELPHI [88], OPAL [89], SLD [90] and CDF [91]. A
convenient approach to average various results on ∆ms

is the Amplitude Method [92] (see also the exhaus-
tive study in [93]), which consists of a likelihood fit to
the measured proper time distribution with the ampli-
tude of the oscillating term being the free parameter
at given frequency ∆ms. Figure 5 shows the average

23 The consistent, though preliminary measurements of BA
BAR[81] and Belle [82], were not considered in the average
quoted in Table 1
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Fig. 5. Preliminary average of the experimental amplitude
spectrum using results from ALEPH, DELPHI, OPAL, SLD
and CDF [94]. The dashed and dotted lines give the sensitiv-
ity (1.645 × σA) and the 95% limit A + 1.645 × σA), respec-
tively. Shown in addition are the distributions obtained from
a toy Monte Carlo simulation using as true values ∆ms =
8, 17, 50 ps−1

of the measured amplitude spectrum [94] with the ex-
pected spectra for different true ∆ms superimposed.
The latter have been obtained, following the prescrip-
tion of [93], from a toy simulation in which the decay
length and momentum resolutions are tuned to repro-
duce the measured errors on the amplitudes (the RMS
of the relative difference between measured and simu-
lated errors is smaller than 2% in the relevant sensitive
region of ∆ms). Shown in addition are the experimen-
tal sensitivity defined as 1.645 × σA for a given ∆ms

and the 95% CL limit which is given by the sum of
the sensitivity and the measured central amplitude. A
sensitivity of 18.0 ps−1 and a lower limit for ∆ms of
14.9 ps−1 at 95% CL is obtained [94].
The information from B0

s − B̄0
s oscillations is usually

implemented into χ2 fits using [92] χ2|1−A| = ((1 −
A)/σA)2 and CL(χ2|1−A|) = Erfc(|1 − A|/σA/

√
2)).

However, this procedure does not properly interpret
the information of the amplitude spectrum. For in-
stance, two measured amplitudes A1 and A2, where
A1 > 1 and A2 < 1 but A1 − 1 = 1 − A2, result in
the same confidence level in this approach although it
would be natural to assign a larger likelihood for an
oscillation to A1 than to A2. We propose an alterna-
tive procedure which exploits the information from the
sign of 1 − A by suppressing the module in the above
definition of χ2|1−A|:

χ21−A = 2 ·
[
Erfc−1

(
1
2
Erfc

(
1 − A√
2σA

))]2
. (71)

It has been pointed out that the maximum information
from the fit to the proper time distributions of mixed
and unmixed B0

s (B̄0
s ) decays is obtained from the ratio
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of the likelihood at given frequency ∆ms, L(∆ms), to
the likelihood at infinity, L(∆ms = ∞) [92,95,6]. The
logarithm of this ratio reads

2∆lnL∞(∆ms) =
(1 − A)2

σ2A
− A2

σ2A
, (72)

which is assigned via (23) to χ2∞. The behaviour of
the above defined χ2 and likelihood functions versus
∆ms for the measured amplitude spectrum is plotted
in Fig. 6. The dashed line shows the drawback of us-
ing χ2|1−A|: the strongest signal yield is obtained at
the crossings A = 1 and not at the maximum ampli-
tude situated around 17 ps−1. This drawback is cured
for χ21−A (solid line). The dotted line shows the ratio
χ2∞, providing a significantly stronger constraint. For
the current analysis we decided not to use the likeli-
hood ratio since the validity of the normalisation of the
likelihood which allows to identify L∞ with a proba-
bility density function is questionable. This problem
could be circumvented by means of a realistic Monte
Carlo simulation which permits the conversion of like-
lihoods to confidence levels which however is currently
not available.

– sin2β The first measurements for sin2β in B decays
to CP eigenstates containing charmonium from the B
factories, CDF and LEP give results which are com-
patible with both, the SM expectation and zero:

sin2β =




0.34 ± 0.21 (BABAR [96])
0.58 ± 0.34 (Belle [97])
0.79 ± 0.43 (CDF [98])
0.84 ± 0.93 (ALEPH [99])
3.2 ± 2.0 (OPAL [100])

(73)

From these measurements (asymmetric errors have
been averaged) we obtain the weighted mean sin2βWA
= 0.48 ± 0.16, where the (small) effect from using dif-
ferent ∆md values in the single analyses has not been
taken into account.

6.3 Future prospects: rare decays of K and B-mesons

Theoretically clean measurements of CKM matrix ele-
ments are obtained by virtue of rare K and B decays.
The countours in the (ρ̄, η̄) plane expected from rare K
decays are drawned on Fig.2.

– The decay K0
L → π0νν̄ has not been observed yet.

The current upper limit reads [10]

BR(K0
L → π0νν̄) < 5.9 × 10−7 (CL = 90%) , (74)

while the expected SM branching ratio is of the order
of 2 × 10−11. The decay proceeds via a loop induced
FCNC transition at short distance and is greatly dom-
inated by a direct CP-violating amplitude in the SM
[102], A(K0

L → π0νν̄) ∝ Im[VtdV ∗
ts]〈π0|(s̄d)V−A|K0〉,

due to the cancellation of the charm contributions. The
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Fig. 6. The measured χ2 (upper plot) and likelihood (lower
plot) functions (defined in the text) versus the frequency of
B0

s − B̄0
s oscillation, ∆ms

SM prediction for the branching fraction of the decay
reads [102,103]

BR(K0
L → π0νν̄)

= rKL

τKL

τK+

3α2

2π2
BR(K+ → π0e+ν)
|VudV 2

us|2sin4θW
×
(
ηXX0(xt)Im [V ∗

tsVtdV
∗
usVud]

)2
. (75)

Here, rKL = 0.944 corrects for isospin breaking ef-
fects and the different phase space [104] involved in
the relation between the K0

L and the K+ branching
fractions. The other parameters in (75) are the kaon
lifetimes, the QED running fine structure constant and
the Weinberg angle. The Inami-Lim function X(xt) for
xt = (mt/mW )2 is defined as

X0(x) =
x

8

(
x+ 2
x − 1

+
3x − 6
(x − 1)2

ln(x)
)

(76)

for which ηX = 0.994 ((75)) represents the NLO cor-
rection [103]. In [105] the CP conserving contribution
to K0

L → π0νν̄ has been found to be suppressed by
a factor of 6 × 10−5 with respect to the CP-violating
rate. Expressed in the Wolfenstein parameterization,
the SM prediction corresponds to

BR(K0
L → π0νν̄) ∝ λ8A4η̄2 , (77)

showing that a measurement would provide a pair of
horizontal lines in the (ρ̄, η̄) plane. Proposed exper-
iments that could measure BR(K0

L → π0νν̄) are the
KOPIO experiment at BNL [106] and KAMI at FNAL
[107] expecting 60 and 120 events, respectively. The
experiment(s) will not start before 2005 and have to
take data for several years. The expected precision on
the branching ratio in 2010 is of the order 5% to 10%,
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thereby yielding a precision of a few percent on the
measurement of η̄.

– K+ → π+νν̄ : The SM prediction of the rare decay
K+ → π+νν̄ is given by [103]

BR(K+ → π+νν̄)

= rK+
3α2

2π2
BR(K+ → π0e+ν)

|Vus|2sin4θW
×

∑
i=e,µ,τ

∣∣∣ηXX0(xt)VtdV ∗
ts +X

(i)
NLVcdV

∗
cs

∣∣∣2 (78)

where the function X0(xt) is given by (76) and where
the X

(#)
NL terms account for the charm contributions

(not suppressed here) and are calculated in [108]. The
values depend on the QCD scale Λ

(4)
MS

and the run-

ning charm quark mass: X
(e)
NL = (8 − 13) × 10−4 and

X
(τ)
NL = (5 − 9) × 10−4. A detailed discussion of the

theoretical uncertainties connected with this and the
above SM predictions is provided in [103]. The BNL
experiment E787 has observed one event resulting in
BR(K+ → π+νν̄) = (1.5+3.4−1.2) × 10−10 [109]. About 5
- 10 events are expected to be observed by the suc-
cessor E949 [110] whereas the CKM project at FNAL
[111], starting about 2005, expects to collect about 100
events within some years of data taking. A similar pre-
cision for the branching ratio measurement as in the
case of K0

L → π0νν̄ may be achieved in the year 2010.
A theoretical uncertainty of the order 5% but likely
not well below this value might be possible [103].

– The B+ → τ+ν decay has not been observed yet. The
current upper limit for its branching fraction reads [10]

BR(B+ → τ+ν) < 5.7 × 10−4 (CL = 90%) . (79)

In the SM the branching ratio is given by

BR(B+ → τ+ν) =
G2
FmBm2

τ

8π

(
1 − m2

τ

m2
B

)
×f2Bd

|Vub|2τB , (80)

with the B meson decay constant fBd
(see Table 1) and

the lifetime of the charged B, τB = 1.653 ± 0.028 ps
[10]. Depending on the precision of the lattice calcu-
lation of fBd

, a measurement of BR(B+ → τ+ν) may
either yield a direct measurement of |Vub|, or may im-
prove the prediction of ∆md through the constraint
of fBd

which is the more likely way to proceed. Ad-
ditional information may be obtained by measuring
the radiative decay B+ → 8+ν#γ in which the helicity
suppression is circumvented due to the emission of the
photon from the primary u-quark (see, e.g., [112]). Al-
though the calculation of the branching ratio is model
dependent a measurement possibly provides a useful
experimental check of lattice calculations.

– CP-violating Partial Rate Asymmetries (PRA) of
inclusive b → s(d)γ decays can be calculated in the

SM [113–117]. They are defined by the ratio

A
b→s(d)γ
CP =

BR(B̄ → Xs(d)γ) − BR(B̄ → Xs̄(d̄)γ)
BR(B̄ → Xs(d)γ) + BR(B̄ → Xs̄(d̄)γ)

(81)
Their theoretical predictions depend on various Wilson
coefficients and CKM matrix elements involving the
CP-violating phase [115]. Lumping all coefficients to-
gether, where external parameters like the strong cou-
pling constant, the b-quark mass, the photon infrared
cut-off and the renormalization scale have to be fixed,
gives the estimate [117]

A
b→s(d)γ
CP ≈ 0.33 × Im

[
VubV

∗
us(d)

VtbV ∗
ts(d)

]
. (82)

This yields asymmetries of Ab→sγ
CP ≈ 0.6% and Ab→dγ

CP≈ −16% for some typical values of the CKM elements.
– B → πK : Due to the work of many authors (see, e.g.,

[118–122] - this list is far from being complete), it could
be shown that the (ratios of) branching fractions of
charmless Bd decays into π and K final states provide
constraints on the UT angle γ. Most recent branching
ratios read

BR(B0
d → π+π−) + BR(B̄0

d → π+π−)

= (4.43 ± 0.89) × 10−6 , (83)

BR(B0
d → K+π−) + BR(B̄0

d → K−π+)

= (17.25 ± 1.55) × 10−6 , (84)
BR(B+ → K+π0) + BR(B− → K−π0)

= (12.10 ± 1.70) × 10−6 , (85)

BR(B+ → K0π+) + BR(B− → K̄0π−)
= (17.19 ± 2.54) × 10−6 , (86)

BR(B0
d → K0π0) + BR(B̄0

d → K̄0π0)

= (10.33 ± 2.53) × 10−6 , (87)

where the values given are the weighted means of the
preliminary results on charmless B decays presented
by the BABAR, Belle and CLEO collaborations [123–
125] (asymmetric errors have been averaged). The au-
thors of [120,121] have obtained predictions of relative
amplitudes and phases of the tree and penguin dia-
grams involved in the above decays. Very recently, a
new theoretical analysis of two-body B decays to pions
and kaons, based on non-leading Factorization Approx-
imation, has been published [126]. The authors obtain
an allowed region for |Vub|e−iγ which is in agreement
with the results found in this work.
A statistical discussion and formulae for the treatment
of ratios of branching fractions or, more precisely, con-
straints from parameters with arbitrary absolute, but
known relative normalization is given in Appendix C
of this paper.

We have attempted in this section to recall some of the
most striking prospects for future CKM constraints which,
however, is far from being complete. A more quantitative
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shaded areas indicate the regions of ≥ 90%, ≥ 32% and ≥ 5%
CLs, respectively

and broader selection of CKM sensitive quantities as well
as extrapolations into the future can be found in [14]. If
∆ms is not much larger than suggested by the current SM
constraints it will likely be measured during the forthcom-
ing Tevatron II run. The precision of the combined ∆md

and ∆ms constraints on ρ̄, η̄ will then be dominated by
the QCD parameter ξ. An experimental determination of
the decay constant ratio fDs

/fDd
at a τ/charm factory

would be helpful to check lattice QCD calculations of ξ.
Measurements of time-dependent CP-asymmetries at the
Υ (4S) and at hadron machines, in particular at the forth-
coming experiments LHCb and BTeV, aim to extract the
UT angle α in non-strange, charmless two and three body
decays. The remaining angle γ is expected to be deter-
mined in Bd → DK and Bs → DsK decays, though these
measurements require very large data samples of the corre-
sponding Bd(s) mesons. The dedicated experiments LHCb
and BTeV will also measure the most promising channel
Bs → ψφ.

7 Constrained fits within the SM

After the discussions in the preceding sections, we are
prepared to perform the constrained fits of the CKM pa-
rameters and related quantities. We place ourselves in the
framework of the Rfit scheme (see Sect. 3.1.2 for an intro-
duction and Sect. 4.1 for a summary of its main features)
and hence define the theoretical likelihoods of (32) to be
one within the allowed ranges and zero outside24. As a con-
sequence, no hierarchy is introduced for any permitted set
of theoretical parameters, i.e., the χ2 which is minimized
in the fit receives no contribution from theoretical system-
atics, but theoretical paramaters cannot exit their allowed
ranges. When relevant, statistical and theoretical uncer-
tainties are combined beforehand, as presented in Sect. 5.1
(i.e., applying (39)). Floating theoretical parameters are

24 In other words, we use κ = 0 and ζ = 1 for the Hat function
Lsyst(x0) of (61)

labelled by an asterisk in the “Float.” column of Table 1.
For parameters with small uncertainties, errors are prop-
agated through the theoretical predictions, and added in
quadrature to the experimental error of the correspond-
ing measurements25: they are labelled by an asterisk in
the “Prop.” column of Table 1.

7.1 Two dimensional parameter spaces

It is customary to present the constraints on the CP-
violating phase in the two-dimensional (ρ̄, η̄) plane of the
Wolfenstein parameterization. Other representations in-
volving the UT angles α, β and γ are also considered in the
analysis. For the two-dimensional graphical displays we
define the a parameter space by the coordinates a = {x, y}
(e.g., a = {ρ̄, η̄}) and the µ space by the other CKM pa-
rameters λ and A, as well as the yQCD parameters.

7.1.1 Metrology in the (ρ̄, η̄) plane

The individual constraints, sensitive to ρ̄ and η̄, are drawn
in Fig. 7. Shown are the CLs of (40) which, according to
the frequentist approach adopted in Rfit, have to be inter-
preted as upper bounds for the optimal set of theoretical
parameters at a given point in the (ρ̄, η̄) plane (this is
implicit in the following when invoking the term CL). Ob-
viously, CLs should not be interpreted as PDFs, i.e., infer-
ring equal relative probability density from equal shades.
Instead, a CL value expresses a probability which is de-
fined for a given coordinate {ρ̄, η̄}: it is the probability
that the agreement between data and the most favorable
realization of the SM at that point be worse than the one
observed. However, although the CLs have a well defined
statistical meaning, one must be aware of their strong de-
pendence on the, to some extent, arbitrary [yQCD] ranges.
(c.f., Sect. 3.2).

The results of the global fit in the (ρ̄, η̄) plane are
shown in Fig. 8 not including (upper plot) and includ-
ing (lower plot) in the fit the world average of sin2β (see
Table 1). The dark, medium and light shaded areas cor-
respond to ≥ 90%, ≥ 32% and ≥ 5% CL, respectively.
The outer regions with lower probabilities are outside the
yoptmod domain where an adjustment of the µ parameters
can maintain maximal agreement (i.e., can reproduce the
χ2min;ymod

value). Also shown are the 5% CL contours of the
individual constraints as well as the ≥ 32% and ≥ 5% CL
regions corresponding to sin2βWA (hatched areas). As de-
scribed in Sect. 3.2, the CLs obtained belong to the metro-
logical phase of the analysis and, by construction, do not
constitute a test of goodness of the theory. A probe of the
SM is obtained from the numerical value of χ2min;ymod

as
discussed in Sect. 3.3 and used in Sect. 7.3.

25 This procedure neglects the correlations occurring when
such parameters are used in more than one theoretical predic-
tion
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Fig. 8. Upper plot: confidence levels in the (ρ̄, η̄) plane for
the global CKM fit. The shaded areas indicate the regions of
≥ 90%, ≥ 32% and ≥ 5% CLs, respectively. Also shown are
the 5% CL contours of the individual constraints. The ≥ 32%
and ≥ 5% CL constraints from the world average of the sin2β
measurements, not entering the combined fit, are depicted by
the dashed areas. See Table 1 for a compendium of the fit input
values. Lower plot: confidence levels obtained when including
the world average of sin2β in the combined fit

7.1.2 Other two dimensional parameter spaces

Except for possible multi-valuedness problems26, it is
straightforward to replace the (ρ̄, η̄) plane by any other
one, two or higher dimensional parameter constellation.
Figures 9 and 10 show the results from the global fits and
for the individual constraints in the planes (sin2α, sin2β),
(sin2α, γ) and (sin2β, γ), respectively. The constraint
from sin2β does not enter the fits. As aforementioned,
the individual constraints are given as 5% CL contours,
and the shaded areas depict ≥ 90%, ≥ 32% and ≥ 5%
CL areas. In general, for the (ρ̄, η̄) plane as well as for
any parameter spaces, the individual inputs are less con-
straining than what they yield in the combined fit: i.e., a
combination of input variables can lead to a suppression
of solutions thus enhancing the individual constraints. An
example for this is drawn in the lower plot of Fig. 10: the

26 For example, when exploring the (sin2α, sin2β) plane, care
should be taken to account for multiple solutions. A given value
of sin2ω (ω = α or β) can be obtained with four values of
ω (ω1 = 1

2arcsin(sin2ω), ω2 = π
2 − ω1, ω3 = π + ω1, ω4 =

3π
2 −ω1) and corresponds to a pair of curves in the (ρ̄, η̄) plane
intersecting on the η̄ = 0 axis. Each intersection of one of the
sin2β curves with one of the sin2α curves should be considered
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Fig. 9. Confidence levels in the (sin2α, sin2β) plane for
the global CKM fit. The shaded areas indicate the regions of
≥ 90%, ≥ 32% and ≥ 5% CLs, respectively. Also shown are the
5% CL contours of the individual constraints. The ≥ 32% and
≥ 5% CL constraints from the world average of the sin2β mea-
surements, not entering the global fit, are given by the dashed
areas

individual contribution of |εK | is stronger in combination
with |Vub/Vcb| (indicated by the arrows). The lower plot of
Fig. 10 visualises the complementarity between |Vub/Vcb|
and |εK |, constraining sin2β, on one hand, and ∆ms/∆md

and |εK |, constraining γ, on the other hand.

7.2 One dimensional parameter spaces

Following the line of the preceding sections we can derive
one-dimensional constraints for all parameters involved,
such as the various CKM parameters, the moduli of the
CKM matrix elements, branching ratios of rare K and B
meson decays as well as theoretical parameters. Conse-
quently, we define the parameter we are interested in to
be a and all others to be µ (c.f., Sect. 3.2), and scan a. Nu-
merical and graphical results are obtained for CKM fits
not including (including) the world average value of sin2β
(see Table 1 for the input parameters).

As an example, Fig. 11 shows the CLs obtained for the
Wolfenstein parameters, the UT angles and the Jarlskog
parameter, without (solid line, gray area) and with (dot-
ted line) including the world average sin2βWA in the global
fit. As in the two-dimensional case, the CLs shown corre-
spond to the most compatible theory for a given point in
a. Since the parameter λ is not significantly constrained
by the other inputs, its CL corresponds to the error func-
tion for one degree of freedom. In contrast, parameters
such as, e.g., ρ̄, η̄, are constrained by observables whose
SM predictions are dominated by systematic theoretical
errors. The positions of the flanks of the CL functions
are determined by the [yQCD] ranges, whereas their sharp
rises are determined by statistical errors. Therefore, one
should not attribute an absolute meaning to the precise
locations of the flanks: they are due to the assumptions
made to define the [yQCD] ranges. In particular, when the
world average sin2βWA is used, the CL function obtained
(c.f., Fig. 11) exhibits a triangular shape: whereas the fall
off on the right hand side of the function is well defined,
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Table 2. Fit results for the various CKM parameters, the CKM matrix elements, branching
ratios of some rare K and B meson decays and theoretical quantities. Ranges are quoted for
the quantities that are limited by systematic theoretical errors. The last three lines give the
ranges obtained for chosen theoretical parameters when removing their respective bounds in
the fit

Parameter ≥ 32% CL half width ≥ 5% CL half width

λ 0.2221 ± 0.0021 0.2221 ± 0.0041
A 0.770 - 0.888 0.059 0.754 - 0.906 0.076
ρ̄ 0.08 - 0.35 0.14 0.04 - 0.38 0.17
η̄ 0.22 - 0.46 0.12 0.21 - 0.49 0.14

J (10−5) 2.0 - 3.5 0.8 1.9 - 3.7 0.9

sin2α −0.91 - 0.34 0.63 −0.96 - 0.49 0.73
sin2β 0.50 - 0.86 0.18 0.47 - 0.89 0.21
α 80◦ - 123◦ 22◦ 75◦ - 127◦ 26◦

β 15.0◦ - 29.7◦ 7.4◦ 14.0◦ - 31.4◦ 8.7◦

γ = δ 37◦ - 75◦ 19◦ 34◦ - 82◦ 24◦

sinθ12 0.2221 ± 0.0021 0.2221 ± 0.0041
sinθ13 (10−3) 2.70 - 4.31 0.81 2.49 - 4.55 1.03
sinθ23 (10−3) 38.4 - 43.2 2.4 37.9 - 43.6 2.8

|Vud| 0.97504 ± 0.00049 0.97504 ± 0.00094
|Vus| 0.2221 ± 0.0021 0.2221 ± 0.0042
|Vub| (10−3) 2.70 - 4.31 0.81 2.49 - 4.55 1.03
|Vcd| 0.2220 ± 0.0021 0.2220 ± 0.0042
|Vcs| 0.97422 ± 0.00056 0.97422 ± 0.00102
|Vcb| (10−3) 38.4 - 43.2 2.4 37.9 - 43.6 2.8
|Vtd| (10−3) 6.6 - 9.2 1.3 6.3 - 9.6 1.6
|Vts| (10−3) 37.7 - 42.8 2.6 37.3 - 43.2 3.0
|Vtb| 0.99907 - 0.99927 10 × 10−5 0.99905 - 0.99929 12 × 10−5

∆ms (ps−1) 15.5 - 33.7 9.1 15.0 - 42.0 13.5

BR(K0
L → π0νν̄) (10−11) 1.3 - 4.0 1.4 1.2 - 4.4 1.6

BR(K+ → π+νν̄) (10−11) 5.1 - 9.6 2.3 4.8 - 10.5 2.9
BR(B+ → τ+ντ ) (10−5) 4.6 - 20.0 7.7 3.6 - 23.6 10.0
BR(B+ → µ+νµ) (10−7) 1.8 - 7.9 3.1 1.5 - 9.3 3.9

fBd

√
Bd (MeV) 193 - 271 39 184 - 284 50

BK > 0.55 > 0.50
mt (GeV) 106 - 406 150 93 - 565 236

the location of the flank on the left hand side is somewhat
arbitrary and hence arguable.

The results for all relevant parameters considered in
this work are listed in Table 2, without sin2β in the fit, and
Table 3 when including sin2βWA. Given are the ranges for
≥ 32% and ≥ 5% CLs in the case of theoretically limited
quantities and the corresponding Gaussian errors in the
case of experimentally limited quantities. The 95% CL
allowed ranges for the CKMmatrix elements are similar to
the ones quoted by the PDG. Numerical results involving
B → ππ/Kπ decays are not presented here27.

27 It proved however straightforward to implement them into
the Rfit scheme of the CkmFitter package (see also the discus-
sion in Sect. 6.3)

7.2.1 Indirect evidence for CP violation

It is interesting to investigate the possibility of an indi-
rect evidence for CP violation, from the measurements
of non CP-violating observables. The dashed curves in
Fig. 11 give the CLs which are obtained when using nei-
ther sin2β, nor |εK | in the fits. For η̄ = 0 (hence no
CP violation) Rfit yields CL � 50%. Therefore, we find
that CP conservation cannot be excluded without sin2β
or |εK |: a better knowledge of |Vub/Vcb| and ∆md (∆ms) is
needed to draw any further conclusions. The large value of
CL(η̄ = 0) stems from the fact that the quoted CLs are up-
per bounds. There exist realizations of the SM, with η̄ = 0
and with all yQCD parameters within their allowed [yQCD]
ranges, which provide a perfectly acceptable description
of data (without |εK | and sin2β). The realizations of the
SM which yield the best agreement are chosen to compute
CL(η̄ = 0).
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Table 3. Fit results including the world average on sin2βWA. As in Table 2, ranges are given for the
quantities that are limited by systematic theoretical errors. The two right columns give the relative
improvements (in percent) of the ≥ 32% CL and ≥ 5% CL half widths with respect to the fit results
without sin2β given in Table 2. The last three lines give the ranges obtained for chosen theoretical
parameters when removing their respective bounds in the fit

Parameter ≥ 32% CL half width ≥ 5% CL half width δ32 δ5

λ 0.2221 ± 0.0021 0.2221 ± 0.0041 0 0
A 0.782 - 0.888 0.053 0.758 - 0.906 0.074 10 3
ρ̄ 0.09 - 0.29 0.10 0.04 - 0.37 0.16 29 6
η̄ 0.22 - 0.32 0.05 0.21 - 0.42 0.11 58 21

J (10−5) 2.0 - 2.9 0.5 1.9 - 3.5 0.8 38 11

sin2α −0.88 - 0.04 0.46 −0.95 - 0.33 0.64 27 12
sin2β 0.50 - 0.67 0.09 0.47 - 0.81 0.17 50 19
α 89◦ - 121◦ 16◦ 80◦ - 126◦ 23◦ 27 12
β 15.0◦ - 21.0◦ 3.0◦ 14.0◦ - 27.0◦ 6.5◦ 59 25
γ = δ 42◦ - 74◦ 16◦ 34◦ - 82◦ 24◦ 16 0

sinθ12 0.2221 ± 0.0021 0.2221 ± 0.0041 0 0
sinθ13 (10−3) 2.70 - 4.03 0.67 2.49 - 4.38 0.95 17 8
sinθ23 (10−3) 38.4 - 43.2 2.4 38.0 - 43.6 2.8 0 0

|Vud| 0.97504 ± 0.00049 0.97504 ± 0.00094 0 0
|Vus| 0.2221 ± 0.0021 0.2221 ± 0.0042 0 0
|Vub| (10−3) 2.70 - 3.71 0.51 2.45 - 4.38 0.96 37 7
|Vcd| 0.2220 ± 0.0021 0.2220 ± 0.0042 0 0
|Vcs| 0.97414 ± 0.00049 0.97414 ± 0.00098 13 4
|Vcb| (10−3) 38.7 - 43.2 2.3 38.1 - 43.6 2.8 4 0
|Vtd| (10−3) 7.2 - 9.2 1.0 6.6 - 9.6 1.5 23 6
|Vts| (10−3) 38.0 - 42.7 2.4 37.4 - 43.1 2.9 8 3
|Vtb| 0.99907 - 0.99926 9 × 10−5 0.99905 - 0.99928 11 × 10−5 10 8

∆ms (ps−1) 15.5 - 33.7 9.1 15.0 - 41.3 13.1 0 3

BR(K0
L → π0νν̄) (10−11) 1.2 - 2.6 0.7 1.1 - 3.8 1.4 50 13

BR(K+ → π+νν̄) (10−11) 6.6 - 9.5 1.5 5.4 - 10.4 2.5 35 14
BR(B+ → τ+ντ ) (10−5) 4.6 - 12.4 3.9 3.6 - 21.0 8.7 49 13
BR(B+ → µ+νµ) (10−7) 1.8 - 4.9 1.6 1.4 - 8.3 3.5 48 10

fBd

√
Bd (MeV) 194 - 246 26 185 - 272 44 33 12

BK > 0.72 > 0.55 31 10
mt (GeV) 124 - 406 141 102 - 550 224 6 5

This result is not in qualitative agreement with the one
obtained in [6]: this illustrates how widely different conclu-
sions can be reached depending on the choice made for the
statistical treatment. The Bayesian approach, while com-
puting CL(η̄ = 0), is incorporating in passing, through
the use of PDFs and (56), the “volume” of the domain
in the yQCD space (weighted by the theoretical PDFs)
where realizations of the SM are in agreement with data.
The “volume” of this yQCD domain is small, as a result
CL(η̄ = 0) is small. The frequentist Rfit scheme does not
consider PDFs for yQCD parameters as a valid concept,
it thus cannot define “volume” of a domain in this space
deprived of metric: only the best realizations are retained
to define the CL.

An expanded view of the Rfit CL(η̄) function is shown
on the left hand side of Fig. 12 in the range [−1,+1]. Since

no observable sensitive to CP violation is incorporated
in the fit, CL(η̄) is an even function. The Bayesian PDF
of η̄ (c.f., (56)) is shown on the right hand side of the
same figure. The solid (resp. dashed) line is obtained using
Gaussian (resp. uniform) PDFs for the yQCD parameters.
One observes that, independently of the definition used to
derive a CL from the PDF, both Bayesian CLs will be low
(at the percent level if one uses (57)) and most notably
the one obtained from the uniform PDFs, although the
inputs to the fit are identical to the ones used by Rfit.

7.2.2 Impact of the new sin2β measurements

The measurement of sin2β provides the UT angle β up to
a four-fold ambiguity. To illustrate this, we have enlarged
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Fig. 10. Confidence levels in the (sin2α, γ) (upper plot) and
the (sin2β, γ) plane (lower plot), obtained from the global
CKM fit. The shaded areas indicate the regions of ≥ 90%,
≥ 32% and ≥ 5% CLs, respectively. Shown in addition are the
5% CL contours of the individual constraints. The ≥ 32% and
≥ 5% CL constraints from the world average of the sin2β mea-
surements are given by the dashed areas. It does not enter the
global fit

the borders of the (ρ̄, η̄) plane in Fig. 13. Shown are the
individual constraints and the result from the global fit
corresponding to Fig. 8, as well as the four solutions from
the world average sin2βWA. It is a non-trivial outcome of
the SM fit that it leads to an exclusion of three out of the
four ambiguities.

The confidence levels for the sin2β measurements of
BABAR[96] and Belle [97] together with the world aver-
age28 and the result of Rfit (without sin2β) are shown29 in
Fig. 14. Given in addition are the results of the integrated

28 As stated before, the measurements are assumed to be
Gaussian distributed. Therefore, the CLs given are direct con-
fidence levels and not upper bounds, as one obtains when the-
oretical systematics contribute significantly to the uncertainty
of a quantity
29 The plateau of the CL function obtained from Rfit corre-
sponds to sin2β values belonging to the yopt

mod domain. The CL
on the plateau is not exactly equal to unity. The slight slope
which is observed is due to the |Vcd| input: being a function
of ρ̄ and η̄, and having a statistically dominated uncertainty,
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Fig. 11. Confidence levels for one-dimensional parameter fits
of the CKM parameters, UT angles and the Jarlskog parame-
ter, not including sin2β in the fits. The solid (dashed) lines give
the results with (without) the CP-violating |εK | as fit input.
The fits corresponding to the dotted lines include sin2βWA and
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Fig. 12. The Rfit CL(η̄) function (left hand side) and the
Bayesian PDF of η̄ (right hand side) obtained using the same
inputs. The solid (resp. dashed) line is obtained using Gaussian
(resp. uniform) PDFs for the yQCD parameters

PDFs obtained in the Bayesian analysis, when ascribing
Gaussian or uniform PDFs to the systematic theoretical
errors. While they significantly differ in the precision they
claim for, the Rfit and Bayesian indirect determinations
of sin2β are both compatible with the world average.

The last two columns of Table 3 give the relative im-
provements (in percent) of the parameter constraints
gained by including sin2βWA in the CKM fit: the two
quoted numbers δ32 and δ5 refer respectively to the ranges
allowed at 32% and 5% CLs. All quantities sensitive to CP
violation benefit from significantly smaller 32% allowed
ranges, with a relative reduction of up to 50%. This re-
duction however gets suppressed when going to 5% CLs.
This reduced improvement is explained by the fact that a

|Vcd| lifts by a very slight amount the degeneracy discussed in
Sect. 3.2
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Fig. 14. Confidence levels of the recent sin2β measurements
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age. These CLs are compared to the indirect SM constraints
obtained from Rfit in this work (solid line). Also shown are
the results from the integrated PDFs obtained in the Bayesian
analysis using Gaussian and uniform PDFs for the systematic
theoretical errors

significant fraction of 5% CL limits remain determined by
the border of the yoptmod domain, as can be seen on Fig. 11.
Although the Gaussian shape of the additional constraint
from sin2βWA leads to significant structures within the
allowed ranges of CLs, the [yQCD] ranges still determine
part of the CL function tails.

7.2.3 Numerical comparison with Bayesian results

As discussed previously, the Bayesian treatment identi-
fies experimental and theoretical likelihoods as probabil-
ity density functions which are folded according to (56)
(c.f., Sect. 4.4, Appendix A, and also [6,7]). In practice,
the convolution integrals are solved within the CkmFitter
package using Monte Carlo techniques generating some
108 test samples. All input quantities fluctuate accord-
ing to Gaussian distributions, using their statistical ex-
perimental uncertainties σexp, and to the PDFs ascribed
to systematics, characterized by their systematical uncer-
tainties σsyst. For the sake of simplicity, two choices are
discussed here for the latter PDFs: all are taken to be
Gaussians with standard deviations identified to σsyst, or
all are taken to be uniform distributions with half-widths
identified to σsyst. In the latter case, one does not identify
the half-widths to

√
3σsyst in order to use PDFs which

(naively) would lead the Bayesian approach to yield re-
sults the closest to the one of the Rfit scheme. Because
of that, in the uniform case the RMS is smaller than in
the Gaussian case: one thus expects to claim for signif-
icantly smaller uncertainties for the former choice than
for the latter choice. A comparison of the results for both
choices is given in Table 4. The central values quoted cor-
respond to the mean values of the resulting PDFs, while
the errors are their RMS (i.e., when present, asymmet-
ric errors have been averaged). The corresponding ranges
provide a good approximation of the 68% confidence inter-
vals which can be defined from an explicitly asymmetrical
integration of the PDFs, since most of them closely resem-
ble Gaussian distributions. As expected, the uncertainties
are larger for the Gaussian choice. We observe a factor of
about 2.2 (resp. 2.8) for the ratio between the ≥ 32% CL
intervals of Rfit (Table 2) and the Bayesian ranges, for the
Gaussian choice (resp. the uniform choice). For the Gaus-
sian choice, this ratio reduces to about 1.3 for the ≥ 5%
CL.

Figure 15 provides a graphical comparison between the
Rfit result (the broad solid curve) and the Bayesian results
(the dashed-dotted and dotted curves) on sin2β. Shown in
addition is the result obtained when asymmetrically inte-
grating the output PDF obtained from the Bayesian anal-
ysis of [6] (the narrow solid curve) where mostly uniform
PDFs were chosen for the dominant theoretical uncertain-
ties. The plot visualizes the tendency observed in Table 4
for the tails of lower CLs from Rfit and the Bayesian ap-
proach to evolve towards comparable uncertainty ranges.
However, the curves do not converge the ones to the oth-
ers: the various treatments do not provide identical results,
even for very low CLs.

7.3 Probing the standard model

We have seen in the introduction that the metrological
phase is intrinsically unable to detect a failure of the SM
to describe the data. The interpretation of the test statis-
tics χ2min;ymod

is performed by means of a toy Monte Carlo
simulation as described in Sect. 3.3. The fits in the previ-



A. Höcker et al.: A new approach to a global fit of the CKM matrix 251

Table 4. Results for the CKM parameters, the UT angles and theoretical parameters, using Bayesian
statistics with Gaussian (second column) or uniform (third column) distributed probability density
functions for the systematic theoretical part of the input parameters. Note that asymmetric errors
have been averaged. The constraint from sin2β is not used. The fourth and fifth columns give the
ratios of the half widths of the ≥ 32% and ≥ 5% CL Rfit error intervals of Table 2, to the Bayesian
errors given for the Gaussian case in the second column

∆Freq./∆Bayes(Gauss)
Parameter Gaussian Uniform ≥ 32% CL ≥ 5% CL

λ 0.2219 ± 0.0021 0.2219 ± 0.0021 1.0 1.0
A 0.832 ± 0.040 0.830 ± 0.028 1.5 1.0
ρ̄ 0.217 ± 0.063 0.203 ± 0.048 2.2 1.3
η̄ 0.331 ± 0.056 0.330 ± 0.039 2.1 1.3
J (2.70 ± 0.36) × 10−5 (2.70 ± 0.25) × 10−5 2.2 1.3
sin2α −0.32 ± 0.30 −0.30 ± 0.24 2.1 1.2
sin2β 0.710 ± 0.093 0.705 ± 0.065 1.9 1.1
γ 57.0◦ ± 8.7◦ 58.5◦ ± 7.0◦ 2.2 1.4

fBd

√
Bd (230 ± 27) MeV (227 ± 13) MeV 1.4 0.9

BK 0.91 ± 0.12 0.89 ± 0.08 - -
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Fig. 15. Comparison between Rfit (broad solid curve) and
Bayesian fits for the indirect CKM constraint on sin2β. The
lower plot displays the identical curves as in the upper plot but
in logarithmic scale. For the Bayesian fits: Gaussian (uniform)
systematic theoretical PDFs are depicted as dashed-dotted
(dotted) curves. Shown in addition is the (integrated) result
obtained in the Bayesian analysis of [6] (narrow solid curve)
for which mostly uniform PDFs were chosen for the dominant
theoretical uncertainties

ous section yield for the point of best compatibility

χ2min;ymod
= 2.3 (2.4) , (88)

for the data set without (with) sin2βWA. We now gen-
erate the distribution F(χ2) of χ2min;ymod

by fluctuating
the measurements and parameters according to their non-
theoretical errors around the theoretical values obtained
using the parameter set yoptmod for which is obtained
χ2min;ymod

. The resulting toy distributions are shown by
the solid (with sin2βWA in the fit) and dashed (no sin2β)
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Fig. 16. Simulated F(χ2) distributions and corresponding
CLs not including (solid lines) and including sin2βWA (dashed
lines) in the fit. Indicated by the arrows are the corresponding
minimal χ2

min;ymod
found in the analyses

histograms in Fig. 16. Integrating the distributions accord-
ing to (50) yields the corresponding CL (smooth curves in
Fig.16). We find

P(SM) ≤ CL(χ2min;ymod
) = 69% (71%) , (89)

for the validity of the SM without (with) sin2βWA. Re-
peating the study using the sin2β measurement of BAB
AR (Belle) instead of the world average, gives confidence
levels of CL(χ2min;ymod

) = 59% (77%) for the validity of
the SM.
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8 Supersymmetric extensions
of the standard model

Having considered both metrology and probing the SM
with the present data set, one is now led to attempt an
example analysis within an extended theoretical frame-
work. This section aims to illustrate the search for specific
new physics within a simple, predictive supersymmetric
(SUSY) extension of the SM.

There exist a considerable number of SUSY models in
which new phases appear in the coupling between super-
symmetric and SM fields. However, these models remain
unpredictive as long as the additional phases are uncon-
strained. We therefore cannot forecast how the shape of
the UT is affected by the new fields. As a starting point,
one can use restrictive assumptions which lead to more
predictive models. In particular, one may only retain mod-
els which do not involve additional CP violating phases,
so that flavour-changing processes are described by the
same quark flavor mixing matrix V as in the SM. Super-
symmetric contributions to the transitions between the
down-type quarks (b → s, b → d, s → d) are then propor-
tional to the SM CKM matrix elements. This restriction
defines the category of the so-called Minimal Flavour Vi-
olation (MFV) models which comprise some variants of
the Minimal Supersymmetric Standard Model (MSSM),
as well as the Two Higgs Doublet Models.

The MSSM has been extensively studied in the litera-
ture, and next-to-leading order (NLO) corrections to the
SM have been calculated [127,128]. In this framework, the
SUSY correction to neutral K and B meson mixing can
be described by a single parameter which scales with the
Inami-Lim function (66) of the top-quark loops in the box
diagrams [129]:

S(xt) → S(xt)(1 + f) , (90)

leading to the following modified expressions

∆md(MSSM) = ∆md(SM) [S(xt) → S(xt)(1 + fd)] ,(91)
∆ms(MSSM) = ∆ms(SM) [S(xt) → S(xt)(1 + fs)] ,(92)
|εK |(MSSM) = |εK |(SM) [S(xt) → S(xt)(1 + fε)] .(93)

As pointed out in [131,129], the parameters fd, fs and fε
belong to the same subprocesses so that the equality

f ≡ fd = fs = fε , (94)

holds in general. The numerical value for f is assumed to
vary within the range 0 ≤ f ≤ 0.75 [129], while other au-
thors find broader ranges 0 ≤ f ≤ 1.13 [130],depending on
whether or not Supergravity constraints (i.e., additional
relations between masses and other terms of the MSSM
Lagrangian) are applied to the MSSM.

The constraint from |εK | in the ρ̄− η̄ plane follows the
form of a hyperbola [131]

η̄ ∝ 1
(1 − ρ̄)S(xt) + Pc

, (95)

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

current data

current data + ∆ms (estim. 2005)
current data + ∆ms, sin 2β (estim. 2005)

current data + ∆ms, sin 2α (estim. 2005)

f

C
on

fi
de

nc
e 

L
ev

el

Fig. 17. Confidence level bounds of the global fit versus the
MSSM offset f (solid line). The ledge at f ≈ 1 starts at the up-
per frequency limit to which ∆ms amplitudes have been mea-
sured. It continues as a plateau due to the theoretically limited
∆md information and eventually decreases statistically. Also
shown are the estimated constraints from additional measure-
ments of ∆ms (CDF, D0) (dashed line), sin2β (dotted line)
and sin2α (dashed-dotted line) (both BABAR, Belle) for the
year 2005 [14]

where Pc = ηctS(xc, xt) + ηccS(xc) stems from the charm
loop contribution for which the SUSY contribution is ex-
pected to be small. The neutral B mass difference ∆md

measures the side Rt of the UT (18), where:

Rt ∝ 1√
S(xt)

, (96)

so that SUSY will reduce Rt in case of positive f . Using
the above formulae, one readily derives the dependence of
sin2β on the SUSY parameter f [131]

sin2β =
2η̄(1 − ρ̄)

R2
t

∝ (const − η̄Pc) . (97)

The first, constant term dominates by a factor of two to
three the second term, while SUSY modifies the second
term via the parameter η̄ only. Note also that if the charm
contribution to K0 − K̄0 mixing were negligeable, SUSY
effects would be totally absent in sin2β. It follows from
this that γ constitutes the most sensitive UT angle to the
SUSY contribution f .

8.1 Supersymmetric fits

The above SUSY parameterization has been included in
CkmFitter and constrained fits are performed by setting
a = {f} and µ to all other parameters ymod. The resulting
confidence level bounds for the global CKM fit is shown
in Fig. 17 from which one obtains for the present data set
the upper limit

f ≤ 5.2 (95% CL) . (98)



A. Höcker et al.: A new approach to a global fit of the CKM matrix 253

This is in agreement with the findings of [131]. Also shown
in Fig. 17 are the improved constraints from future mea-
surements assumed to yield ∆ms = (17.0 ± 0.9) ps−1

(CDF, D0), sin2β = 0.77 ± 0.03 and sin2α = −0.32 ±
0.20 (BABAR, Belle) (see also the more detailed discus-
sion about future precision measurements in [14]).

9 Conclusions

We present a new approach to a global fit of the CKM ma-
trix. It is denoted Rfit and is based on frequentist statis-
tics. We emphasize the thorough statistical definition of
the method and discuss differences from Bayesian statis-
tics [6,7] and from the 95% CL Scan method [5]. The
choice for the fit input parameters, their values and errors
are discussed to some detail; in cases of doubts we favor
the more conservative estimates. The CKM analysis is for-
mally subdivided into three distinct phases: a metrological
phase in which the Standard Model is assumed to be valid
and confidence levels for the parameters are computed; a
probing phase addressing the issue of the validity of the
Standard Model description of data; a probing phase for
new physics relying on predictive parameterizations. For
the first phase of the analysis, graphical results are dis-
played in several one and two dimensional representations
and numerical results are given for relevant CKM param-
eterizations, CKM matrix elements, Standard Model pre-
dictions of rare K and B meson decays, and selected the-
oretical parameters. For the parameters related to the CP
violating phase of the CKM matrix, we find for the differ-
ent parameterizations (the fit includes the present world
average of sin2β measurements)

J = (1.9 − 3.5) × 10−5 ,

ρ̄ = 0.04 − 0.37 ,

η̄ = 0.21 − 0.42 ,

sin2α = −0.95 − 0.33 ,

sin2β = 0.47 − 0.81 ,

α = 80◦ − 126◦ ,

β = 14◦ − 27◦ ,

γ = δ = 34◦ − 82◦ ,

where the ≥ 5% confidence level ranges are quoted. The
second phase of the analysis provides an upper bound for
the validity of the Standard Model,

P(SM) ≤ 71% .

A simple predictive supersymmetric extension of the Stan-
dard Model has been studied in the third analysis phase.

Acknowledgements. We gratefully acknowledge the most inter-
esting and helpful discussions with our colleagues from other
active CKM analysis groups: F. Parodi, S. Plaszczynski,
P. Roudeau, M.H. Schune and A. Stocchi, who have led pi-
oneering analyses on this subject. We are indebted to the ad-
vice of D. Abbaneo, M. Artuso, C. Bernard, I. Bigi, G. Boix,
A. Falk, A. El Khadra, A. Kronfeld, Z. Ligeti, D. London,

G. Martinelli, M. Neubert, J. Ocariz, H. Quinn, A.I. Sanda,
H. Wittig and many others. We thank our BABAR collabo-
rators for the many discussions on this subject and especially
acknowledge the very fruitful conversations with G. Dubois-
Felsmann, G. Hamel de Monchenault, H.L. Lynch and K. Schu-
bert. Special thanks to H. Lynch and K. Schubert for the
careful reading of this manuscript and their thoughtful and
most constructive comments. The work of HL was supported
by the Fifth Framework Programme of the European Com-
mission Community Research under the grant No. HPMF-CT-
1999-00032.

Appendix

A Critical issues of the Bayesian approach

The Bayesian approach injects in the analysis pieces of in-
formation in the form of probability density distributions
for the yQCD parameters. The Rfit scheme proposed in the
present paper advocates a non-Bayesian approach because
most theoretical uncertainties on the yQCD parameters do
not stem from statistical fluctuations. The yQCD parame-
ters are not random variables following probability density
functions: there are poorly known, but fixed, parameters.
The following examples serve the purpose to illustrate in
a simplified framework the impact of using the Bayesian
approach.

Let xi denote N yQCD parameters taking their val-
ues in identical allowed ranges [xi] = [−∆,+∆]. These N
yQCD parameters are assumed to combine to form T

(N )
P ,

the theoretical prediction for an observable, as follows30

T
(N )
P =

N∏
i=1

xi . (99)

The theoretical prediction T
(N )
P enters in the analysis as

an unique yQCD parameter, which

– within the Rfit scheme, is characterized by its allowed
range

[T (N )
P ] = [−∆N ,+∆N ] , (100)

– within the Bayesian approach, is characterized by its
PDF

ρ(T ) =

∞∫
−∞

...

∞∫
−∞

N∏
i=1

dxiG(xi)δ(T − T
(N )
P ) , (101)

where we assumed that identical PDFs, G(xi), were
attributed to the xi quantities.

30 This is not an academic exercize: products of yQCD terms
are not rare in the theoretical predictions. For example, the
∆md expression (c.f., (70) of Sect. 6.2) involves the product of
ηB , f2

Bd
and Bd. However, the choice of [xi] ranges containing

the origin is not met in practice. This choice is made here to
highlight the difference between the Rfit scheme and a PDF-
based Bayesian approach. However, the singularity discussed
below is present when Gaussian PDFs are used, as a matter of
principle, whether or not [xi] ranges contains the origin
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Independently of the details of the shape of G(x), if this
PDF is non-zero at the origin, ρ(T ) will exhibit a singu-
larity at T = 0 with leading term (− ln |T |)(N−1). Hence,
the larger N is, the more pronounced the peak at the
origin of ρ(T ) is. If one chooses a uniform distribution
G(x) = 1/(2∆), that is to say the PDF the “closest” to
the Rfit assumptions (albeit being a fundamentally dif-
ferent object), one obtains a striking result. For N = 1,
the Bayesian approach and the Rfit scheme are equivalent
(though not for the associated CLs), insofar no other vari-
able is involved: both state that the value of T (1)

P is simply
within the allowed range [−∆,+∆]. However, though orig-
inally no xi values were favored, the Bayesian approach
departs drastically from Rfit as soon as N ≥ 2: it states
that TP is most likely close to zero. In effect, when the
number of yQCD parameters entering the computation of
the theoretical prediction increases, and hence when our
knowledge of the corresponding observable decreases, the
Bayesian approach claims the converse.

This is less a consequence of the initial ad hoc choice
for the PDF G(x), than a consequence of the inescapable
properties of (101), when applied to a product of terms.
For instance, the peaking effect remains present for a sum
of terms, but it is far less pronounced. The above gener-
alities are illustrated, for N = 3 and ∆ =

√
3, in Fig. 18.

The choice N = 3 is made because the resulting allowed
ranges for the product T

(3)
P = x1x2x3 and for the sum

T
(3)
S = x1+ x2+ x3 are identical when using Rfit, namely

[−3∆, 3∆]. The figure shows the Bayesian PDF of T
(3)
S

(left hand side) and T
(3)
P (right hand side) assuming for

G(x) either a Gaussian distribution of standard deviation
σ = 1 (the solid lines) or a uniform distribution in the
range [−√

3,+
√
3] (the dashed lines) for the three pa-

rameters x = xi, i = 1, 2, 3. The latter case is the clos-
est to the Rfit scheme for which the allowed range is
[T ] = [−3

√
3,+3

√
3], indicated by the arrows in Fig. 18.

For both, the sum TS and the product TP, the uniform and
the Gaussian PDFs yield similar ρ(T ) distributions, be-
cause their RMS are chosen identical. The still noticeable
difference between the two G(x) PDFs is damped away by
(101), even for such a moderate number like N = 3. As a
consequence, when following the Bayesian approach, it is
not a particularly conservative choice to adopt a uniform
PDF instead of a Gaussian PDF.

It is a remarkable difference between the two treat-
ments that, whereas within the Rfit scheme the two theo-
retical predictions TP and TS are genuinely indistinguish-
able, they yield sharply different PDFs in the Bayesian
approach. This shows that, even more than the ad hoc
choice made to ascribe PDF to the yQCD parameters, it is
the functional dependence of the theoretical predictions in
these parameters, and the interplay between the various
theoretical predictions within the complete CKM analy-
sis, which play the central role. The attractiveness of the
Bayesian approach, offering a straightforward procedure
for analyses, is fallacious. The deep implication of ascrib-
ing PDFs to non-random variables is hidden inside an
apparently innocuous convolution, the outcome of which
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Fig. 18. Convolution of the sum T
(3)
S = x1 + x2 + x3 (left

hand plot) and the product T (3)
P = x1x2x3 (right hand plot) of

N = 3 yQCD parameters as defined in the text. Plotted is the
PDF ρ(T ) obtained from Bayesian statistics using for the G(x)
PDF a uniform (solid lines, ∆ =

√
3) or a Gaussian (dashed

lines, σ = 1) distribution. Both PDFs ρ(T ) of T (3)
P present a

singularity at the origin which is not shown. The Rfit ranges
of T (3)

S and T
(3)
P are indicated by the arrows located in both

instances at ±3
√
3

reflects, more than anything else, the mathematical struc-
ture of the problem at hand.

B Critical issues of the 95% CL scan method

The 95% CL Scan method 4.2 presents several unwelcome
features which are reviewed below.

Drawing features: Its final graphical result depends
strongly on the choices made for CLcut, the selection
threshold used to retain models, and for CLcont, the con-
stant defining the contours to be drawn. It is not possible
to infer how a given drawing is modified by changing these
choices. Regions of weak statistical confidence, just barely
passing the selection threshold, and thus retained, bear
the same graphical weight than regions of fair CL. Simi-
larly, regions of lower CL, barely not passing the selection
threshold, and thus not retained, are ignored.

Contour features: The relevance of drawing the contours
is not obvious. Whereas a given contour has a clear-cut
meaning, the message it carries is to show how precise the
determination of a would be, in the academic situation
where all theoretical uncertainties would supposedly be
resolved. These contours are not ellipses in general. For in-
stance, in the case of the measurement of sin2β alone, they
are built from straight lines (c.f., Sect. 3.2.3). They can
take complicate shapes, depending on the choice made for
the a variables, and depending on the presence of sizeable
secondary minima. In simple situations, using the 95% CL
Scan method yields awkward results. For instance, in the
first example given in Sect. 3.2.3, where a standard situa-
tion is considered, the method would conclude by a set of
short intervals in a, each obtained for a fixed yQCD value
instead of providing the overall allowed interval, i.e., ap-
plying the Rfit scheme.
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Envelope features: In the a space no information can
be carried about possibly more or less favored regions: a
point is either within the envelope of the countours, and
thus acceptable, or outside, and thus not acceptable. The
envelope of the contours can be unstable with respect to
change of CLcut. Indeed, the envelope can be a discontinu-
ous function of this parameter: if lowering CLcut allows an
outsider model to be selected outside of the envelope, this
outsider model surfaces in the a space with its full contour
and thus lead to an abrupt change of the envelope. The
envelope provided by the 95% CL Scan method tends to
be over-conservative. For the example of Sect. 3.2.3, the
method yields for the envelope of the 95% CL intervals:

a± = a0 ± 1.96
σ[a]√
1 − c2

(
c+

√
1 − c2

)
, (102)

which is always larger than the correct result given by (45)
(the two limiting cases c → 0 and c → 1 excepted).

C Comments on statistics of normal ratios

Ratios of branching fractions of rare b → u transitions
have attracted much attention in recent theoretical and
experimental analyses, by virtue of their potential to con-
strain the unitarity angle γ (see Sect. 6.3). It is shown
in this section that the extraction of physical observables
out of ratios of normally (Gaussian) distributed quanti-
ties, e.g., branching fractions, requires some precaution.

C.1 A Numerical Example

The statistical discussion will be accompanied by a nu-
merical example for rare charmless B decays. It is as-
sumed that branching ratios are measured via the rela-
tion BRz = Nz/(εz σL), where the reconstruction effi-
ciencies of the two considered final states, z ≡ x, y, shall
be εx = εy = 13%, the collected integrated luminosity
L = 20 fb−1, and the production cross section σ = 1.1 nb.
The “measured” branching fractions

BRx = (16.0 ± 2.4) × 10−6 ,

BRy = (8.0 ± 1.7) × 10−6 , (103)

correspond thus to 46 and 23 detected signal events in the
channels x and y, respectively. The number of events is
sufficient to escape from Poissonian to normal PDFs for
the branching fractions31. To derive constraints from the
above measurements one needs a predictive theory which,
in our example, shall be given by the expressions

BRx, theo(γ) = |F (0)Ax(γ)|2 ,

BRy, theo(γ) = |F (0)Ay(γ)|2 , (104)

31 As ratios of branching fractions are the subject of discus-
sion here, the difference between normal and Poissonian statis-
tics is much reduced in the resulting PDF, so that the results
obtained in this section remain approximately valid also for a
low number of signal events

with the “form factor” F (0), being identical for both final
states, and where the “amplitudes”, which are functions
of the “angle” γ, shall read

Ax(γ) = 1 + eiγ ,

Ay(γ) = 1 − eiγ . (105)

Our theory depends on the external parameters F (0) and
γ. The latter provides an example of a quantity we are
interested in (a = {γ}), while the modulus-squared of the
first is an example of a yQCD parameter. In the framework
of Rfit, |F (0)|2 can be eliminated according to Sect. 3.2.2,
using (39), as illustrated in Sect. 5.2. It can also be elimi-
nated by taking the ratio Rtheo(γ) ≡ BRx, theo(γ)/
BRy, theo(γ) = |Ax(γ)|2/|Ay(γ)|2. Although it appears
more straightforward to use the ratio than the Rfit treat-
ment, it is shown below that the converse is true: using
the ratio leads to cumbersome formulae.

C.2 Probability Density Functions

We define a set of two statistically independent measure-
ments

x = x0 ± σx , (106)
y = y0 ± σy , (107)

obeying normal distributions

G(z, z0, σz) =
1√
2π σz

exp
(

− (z − z0)2

2σz2

)
, (108)

with z ≡ x, y. For the ratio

R =
x

y
, (109)

the marginal PDF obtained from error propagation

ρ1(R) ≈ G


R, R0, R0

√
σ2x
x2

+
σ2y
y2


 , (110)

where R0 = x0/y0, is only a coarse approximation of the
exact solution

ρ0(R) =

∞∫
−∞

∞∫
−∞

δ

(
R − x

y

)
G(x, x0, σx)

×G(y, y0, σy) dx dy ,

= G(0, x0, σx)G(0, y0, σy)
2

η(R)

×
[
1 +

√
πξ(R) eξ(R) Erf

(√
ξ(R)

)]
. (111)

Here, the functions ξ and η are defined as

ξ(R) =
1

2η(R)

(
R

x0
σ2x

+
y0
σ2y

)2
,

η(R) =
1
σ2x

R2 +
1
σ2y

.
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Fig. 19. Probability density functions ρ0(R) (solid line),
ρ1(R) (dashed line), and the likelihood ρmin(R) (dotted line),
where R = x/y. The numerical values are those chosen for the
example (see text). The distribution of ρ1(R) is symmetric by
construction. The likelihood ρmin is normalized in such a way
that its maximal value (not its integral) is unity (see (120))

Equations (110) and (111) satisfy

∞∫
−∞

ρ0,1(R) dR = 2 ·
R0∫

−∞
ρ0,1(R) dR = 1 . (112)

The densities ρ0(R) and ρ1(R) are plotted in Fig. 19 for
the example of the previous section. The maximum of
ρ0(R) is shifted from the naive expectation, MaxR{ρ1(R)}
= ρ1(R0), to lower values, while its mean value is larger
than the naive mean: 〈ρ0〉 = 2.10 > 〈ρ1〉 = 2. The root
mean square (RMS) of the correct solution exceeds the one
of the naive approximation: RMS(ρ0) = 0.62 > RMS(ρ1)
= 0.51, so that the use of (110) will tend to over-optimistic
results.

C.3 Confidence Levels

In our example, the analysis of the branching fractions, or
of their ratio, aims at constraining the physical quantity
γ. Figure 20 shows in its upper plot the theoretical ra-
tio Rtheo(γ) versus γ, together with the asymmetric, one
standard deviation error band (using (116)) of the “experi-
mental” value. Without loss of generality, we may assume
in the following that, apart from γ, the theoretical pre-
dictions (104) and (105) suffer only from the theoretical
uncertainty on F (0), which shall be maximally unknown:
i.e., we do not assume that |F (0)|2 takes its values within
an a priori finite range. An approach to obtain confidence
levels for γ, that is often met in the literature, is to elimi-
nate the factor F (0) by using the ratio (109) and defining
the χ2 as

χ21(γ) =
(

R0 − Rtheo(γ)
σR

)2
, (113)

where σR is the RMS of ρ1 (see (110)). The associated CL
is then given by the cumulative distribution of a normal
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Fig. 20. Upper plot: “measured” ratio of branching fractions
within its asymmetric, one standard deviation error band (grey
zone), corresponding to the example (103), and the “theoret-
ical prediction” (104) (solid curve) versus γ. Lower plot: con-
fidence levels obtained from (113) (dotted line), (115) (dashed
line) (both using (114)), and (116) (solid line), the latter being
identical to (119)

PDF

CL1(γ) = Erfc
(√

χ21(γ)/2
)

, (114)

shown versus γ by the dotted line in the lower plot of
Fig. 20.

Yet, we have seen that the PDF ρ1 is only an approx-
imation of the correct PDF ρ0 and hence, one is tempted
to build a more accurate χ2 by means of

χ20a(γ) = −2 lnρ0(Rtheo(γ)) , (115)

where one may wish to build the corresponding CL,
CL0a(γ), via (114). However, this again constitutes an ap-
proximation since the error function assumes a normal
PDF. The dotted curve in the lower plot of Fig. 20 shows
the CL corresponding to (115) and (114) as a function of
γ. Indeed, the correct CL is obtained via an asymmetric
integration of the PDF ρ0:

CL0(γ) =




2
R(γ)∫
−∞

ρ0(R′) dR′ , ∀R(γ) ≤ R0

2
∞∫

R(γ)
ρ0(R′) dR′ , ∀R(γ) > R0

(116)

plotted versus γ as solid line in the lower plot of Fig. 20.
The complication of (116) can be readily circumvented

when not explicitly using the ratio, but keeping the origi-
nal branching fractions in the definition of the χ2:

χ2(γ, yQCD) =
(

x − yQCD · |Ax(γ)|2
σx

)2
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+
(

y − yQCD · |Ay(γ)|2
σy

)2
. (117)

Applying (39), hence eliminating yQCD, yields the mini-
mum

χ2min;yQCD
(γ) =

(x − yRtheo(γ))2

σ2x + σ2yR
2
theo(γ)

, (118)

which, by construction, only depends on Rtheo(γ). The
CL obtained using (114)

CLmin(γ) = Erfc
(√

χ2min;yQCD
(γ)/2

)
, (119)

is identical to the one obtained using (116). The likelihood
corresponding to (118)

ρmin(Rtheo(γ)) = e
− 1

2χ
2
min;yQCD

(γ)
, (120)

is shown as the dotted curve in Fig. 19. The likelihood is
equal to unity for Rtheo(γ) = x/y. It is worth emphasizing
that ρmin(R), which yields the correct CL, when using
(114), is not identical to ρ0(R), although the latter is the
correct PDF, which yields the correct CL, when not using
(114), but (116) instead.
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