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Abstract. We review diffractive deep inelastic scattering (DIS) in the light of the collinear factorization
theorem. This theorem allows one to define diffractive parton distributions in the leading twist approach.
Due to its selective final states, diffractive DIS offers interesting insight into the form of the diffractive
parton distributions which we explore with the help of the saturation model. We find Regge-like factor-
ization with the correct energy dependence measured at HERA. A remarkable feature of diffractive DIS is
the dominance of the twist-4 contribution for small diffractive masses. We quantify this effect and make a
comparison with the data.

1 Introduction

A significant fraction (around 10%) of deep inelastic scat-
tering (DIS) events observed at HERA at small x are
diffractive events [1,2]. The proton in these events escapes
almost unscattered down the beam pipe, losing only a
small fraction xP of its initial momentum. The slightly
scattered proton is well separated in rapidity from the
rest of the scattered system, forming a large rapidity gap,
the characteristic feature of diffractive DIS. The ratio of
diffractive to all DIS events is to a good approximation
constant as a function of Bjorken x and Q2. Thus, in a
first approximation, DIS diffraction is a leading twist ef-
fect with logarithmic scaling violation. For recent reviews
of diffractive DIS, see [3–5].

Historically, the first description of diffractive DIS was
provided in terms of the Ingelman–Schlein (IS) model [6].
The model is based on Regge theory in which diffractive
processes are due to the exchange of a soft pomeron. The
novelty of the IS model lies in the assumption that the
pomeron has a partonic structure as do real hadrons. The
diffractive structure function factorizes into a “pomeron
flux” and a pomeron structure function. The latter func-
tion is written in terms of the pomeron parton distribu-
tions which obey the standard DGLAP evolution equa-
tions. The initial conditions for these equations are de-
termined from a fit to the data [1,2,7] or using the phe-
nomenology of soft hadronic reactions [8]. Despite concep-
tual difficulties (the pomeron is not a particle) this idea
turned out to be very fruitful in the description of the
data.

The IS model brings the issue of collinear factorization
into the leading twist description of DIS diffraction. By
this we mean the consistent factorization of the diffractive

cross section into a convolution of diffractive parton dis-
tributions which satisfy the DGLAP evolution equations
and computed in perturbative QCD hard cross sections,
in full analogy to inclusive DIS [9–11]. Collinear factoriza-
tion has been rigorously proven by Collins for diffractive
DIS [12]. Factorization, however, fails for hard processes
in diffractive hadron–hadron scattering [13]. The IS model
assumes collinear factorization, imposing an additional as-
sumption on the xP-dependence of the diffractive parton
distributions (called Regge factorization). In the general
framework of collinear factorization the diffractive final
state is treated fully inclusive; in particular, the mecha-
nism leading to diffraction is not elucidated. The IS model
is an attempt to provide such a mechanism.

The detailed description of diffractive processes in DIS,
starting from perturbative QCD, is achieved by modeling
the diffractive final state as well as the interaction with the
proton. Such an analysis goes beyond the leading twist de-
scription. In a first approximation, the diffractive system
(separated by the rapidity gap from the proton) is formed
by a quark–antiquark (qq̄) pair in the color singlet state
[14,15]. A higher order contribution is represented by the
qq̄ pair with an additional gluon g emitted [16–19]. In the
simplest case, the colorless exchange responsible for the
rapidity gap is modelled by the exchange of two gluons
coupled to the proton with some form factor [20,21] or
to a heavy onium which serves as a model of the proton
[22]. Higher order corrections are included by the BFKL
summation of gluon ladders [23] or using the color dipole
approach [24]. The diffractive processes in DIS have also
been studied within the semiclassical approach in [25]. In
particular, the relation between the physical pictures in
different frames was elucidated in [26]. Let us add that
a simple physical interpretation of diffractive scattering
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emerges in the proton rest frame, where the formation of
the diffractive system is stretched in time. Far upstream
the beam pipe the virtual photon decays into a virtual
diffractive system, which then elastically scatters on the
proton (without the color exchange), picking up energy to
form a real state.

The immediate problem faced in such a modeling is
the strong sensitivity to nonperturbative effects due to
the dominance of aligned jet configuration (discussed in
Sect. 3). Thus, we need a description of the interactions
in the soft regime. The saturation model [27], which has
already been very successful in describing inclusive and
diffractive DIS data [28], provides such a description (see
also [29–31] for related analyses). Recent theoretical stud-
ies [32–34] justify the assumed analytic form of this model.

In this paper we are going to address questions re-
lated to collinear factorization in the above approach to
DIS diffraction. How to find the diffractive parton dis-
tributions? What is their form? Do they support Regge
factorization? Is the leading twist contribution sufficient
in the description of DIS diffraction? How important are
higher twist contributions? Answers to all these questions
will be found by modeling the diffractive system with the
help of perturbative QCD. The interaction with the pro-
ton is described by the saturation model [27]. From this
perspective, we critically reexamine the assumptions made
in the Ingelman–Schlein model.

Summarizing our results, we find the diffractive quark
and gluon distributions which serve as the initial condi-
tions for the DGLAP evolution equations. Due to the spe-
cific form of the saturation model, the Regge-type fac-
torization in xP is found, although Regge theory has not
been applied. Moreover, the correct energy dependence of
diffractive DIS measured at HERA is obtained. We also
perform a numerical analysis for a comparison with the
diffractive data. As expected, see [18], the twist-4 contri-
bution from the qq̄-pair produced by longitudinally po-
larized photons plays a crucial role in the region of small
diffractive mass (M � Q). The leading twist description
with the DGLAP evolution is insufficient in this regime
and the twist-4 component (suppressed by 1/Q2) accounts
for the difference between the leading twist contribution
and the data. Thus, there is no need in our analysis for
a singular (or strongly concentrated at β ≈ 1) gluon dis-
tribution as in the pure leading twist description [1]. The
universality of the energy dependence, assumed in the IS
model, is broken by the twist-4 contribution which has
a steeper xP-dependence than the leading twist contribu-
tion. The first indication of this effect seems to be observed
in the data [2].

This paper is organized as follows. In Sect. 2 we give
a general introduction to diffractive parton distributions.
In Sect. 3 we present the initial distribution which we ex-
tracted from the perturbative QCD approach. In Sect. 4
we make a comment on Regge factorization in the context
of the saturation model. Numerical results are presented
in Sect. 5 and we finally conclude with a brief summary in
Sect. 6.
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Fig. 1. Kinematic invariants in DIS diffraction

2 Diffractive parton distributions

There are two dimensionful variables, the mass of the
diffractive system M2, and the momentum transfer t =
(p − p′)2, which characterize diffractive DIS (see Fig. 1).
They come in addition toQ2 andW 2 which are well known
from inclusive DIS.

The mass and energy related variables, M2 and W 2,
are usually rewritten in terms of the following dimension-
less variables:

xP =
Q2 +M2 − t

Q2 +W 2 , (1)

which describes the fraction of the incident momentum
lost by the proton or carried by the pomeron, and

β =
Q2

Q2 +M2 − t
, (2)

which is the Bjorken variable normalized to the pomeron
momentum. The true Bjorken variable x connects the two
variables

x =
Q2

Q2 +W 2 = xPβ. (3)

In the following we neglect t in the definition of xP and β
since usually |t| � Q2,M2.

The diffractive structure functions depend on four in-
variant variables (x,Q2, xP, t), and their definition follows
the inclusive counterparts by relating to the diffractive
DIS cross section

d4σD

dxdQ2dxPdt
=

2πα2
em

xQ4 (4)

×
{[

1 + (1 − y)2
] dFD

2

dxPdt
− y2 dFD

L

dxPdt

}
.

For simplicity, we introduce the following notation

F
D(4)
2,L (x,Q2, xP, t) ≡ dFD

2,L

dxPdt
(x,Q2, xP, t). (5)

As usual, FD(4)
2 = F

D(4)
T + F

D(4)
L , where T and L refer

to the polarization of the virtual photon, transverse and
longitudinal, respectively. The structure function FD(4)

has the dimension GeV−2 because of the differential dt in
the cross section (4). The dimensionless structure function
FD(3) is defined by integrating FD(4) over t,

F
D(3)
T,L (x,Q2, xP) =

∫
dtFD(4)

T,L (x,Q2, xP, t). (6)
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FD(3) is measured when the final state proton transverse
momentum is not detected.

The diffractive parton distributions FD
a/p are intro-

duced according to the collinear factorization formula [9],

F
D(4)
2 (x,Q2, xP, t)

=
∑

a

∫ xP

0
dξFD

a/p(ξ, µ
2, xP, t)Ca(x/ξ,Q2/µ2), (7)

with a = q, g denoting a quark or gluon distribution in the
proton, respectively. In the infinite momentum frame the
diffractive parton distributions describe the probability to
find a parton with the fraction ξ of the proton momen-
tum, provided the proton stays intact and loses only a
small fraction xP of its original momentum. Ca are the co-
efficient functions describing hard scattering of the virtual
photon on a parton a. They are identical to the coefficient
functions known from inclusive DIS,

Ca(x/ξ,Q2/µ2) = e2aδ(1 − x/ξ) + O(αs). (8)

Formula (7) is the analogue of the inclusive leading
twist description for inclusive DIS. The inclusive struc-
ture function F2 is factorized in a similar way into coef-
ficient functions as computed in pQCD and nonpertur-
bative parton distributions. The scale µ2 is the factoriza-
tion/renormalization scale. Since the l.h.s. of (7) does not
depend on this scale, i.e. dFD(4)

2 /dµ2 = 0, we find the
renormalization group equations (evolution equations) for
the diffractive parton distribution

µ2 d
dµ2 FD

a/p(ξ, µ
2, xP, t)

=
∑

b

∫ xP

ξ

dz
z
Pa/b(ξ/z, αs(µ2))FD

b/p(z, µ
2, xP, t), (9)

where Pa/b are the standard Altarelli–Parisi splitting func-
tions in leading or next-to-leading logarithmic approx-
imation. Since the scale µ is arbitrary, we can choose
µ = Q 
 ΛQCD. With this scale the evolution equations
are usually presented.

The integration in (7) and (9) is only done up to the
fraction xP of the proton momentum, since the active par-
ton cannot carry more than this fraction of momentum.
The proton remnants carry the remaining fraction (1−xP).
If we refer the longitudinal momenta of the partons to
xPp instead of the proton total momentum p, the struc-
ture functions and parton distributions become functions
of β = x/xP or β′ = ξ/xP. With this notation, we rewrite
(7) and (9) in the following form:

F
D(4)
2 (β,Q2, xP, t) (10)

=
∑

a

∫ 1

0
dβ′xPFD

a/p(β
′, µ2, xP, t)Ca(β/β′, Q2/µ2),

µ2 d
dµ2 FD

a/p(β, µ
2, xP, t) (11)

=
∑

b

∫ 1

β

dz
z
Pa/b(β/z, αs(µ2))FD

b/p(z, µ
2, xP, t).

Thus, we obtain a description similar to inclusive DIS but
modified by the additional variables xP and t. Moreover,
the Bjorken variable x is replaced by its diffractive ana-
logue β, (2). Notice that xP and t play the role of parame-
ters of the evolution equations and do not affect the evolu-
tion. According to the factorization theorem the evolution
equations (11) are applicable to all orders in perturbation
theory.

In the lowest order approximation for the coefficient
functions (8), we find for the diffractive structure function

F
D(4)
2 (β,Q2, xP, t) =

∑
a=q,q̄

e2aβxPFD
a/p(β,Q

2, xP, t), (12)

where the sum over the quark flavors is performed.
The collinear factorization formula (10) holds to all

orders in αs for diffractive DIS [12]. However, this is no
longer true in hadron–hadron hard diffractive scattering
[3,13], where collinear factorization fails due to final state
soft interactions. Thus, unlike inclusive scattering, the
diffractive parton distributions are no universal quanti-
ties. They can safely be used, however, to describe hard
diffractive processes involving leptons. A systematic ap-
proach to diffractive parton distributions, based on quark
and gluon operators, is given in [11,22].

Until now, our discussion has been quite general, in
particular we have not referred to the pomeron. In the
Ingelman–Schlein (IS) model [6], diffraction is described
with the help of the concept of the soft pomeron exchange.
In addition, it is assumed that the pomeron has a hard
structure. In DIS diffraction, this structure is resolved by
the virtual photon, as in the standard DIS processes. Fol-
lowing the results of Regge theory, the IS model is based
on the assumption of Regge factorization. In the context
of the diffractive parton distributions this means that the
following factorization holds [9,11]:

xPFD
a/p(β,Q

2, xP, t) = f(xP, t) fa/P(β,Q2), (13)

where the “pomeron flux” f(xP, t) is given by

f(xP, t) =
B2(t)
8π2 x

1−2αP(t)
P

. (14)

Thus, the variables (xP, t), related to the loosely scattered
proton, are factorized from the variables characterizing the
diffractive system (β,Q2). B(t) is the Dirac electromag-
netic form factor [36], αP(t) = 1.1+0.25GeV−2·t is the soft
pomeron trajectory [37] and the normalization of f(xP, t)
follows the convention of [38]. The function fa/P(β,Q2) in
(13) describes the hard structure in DIS diffraction, and
is interpreted as the pomeron parton distribution. Now,
the diffractive structure function (12) becomes

F
D(4)
2 (β,Q2, xP, t) = f(xP, t)

∑
a=q,q

e2aβfa/P(β,Q2), (15)

where the summation over quarks and antiquarks is per-
formed. The Q2-evolution of fa/P(β,Q2) is given by the
DGLAP equations (11). The t-dependence in the pomeron
parton distributions is neglected.
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The pomeron parton distributions are determined as
the parton distributions of real hadrons. Some functional
form with several parameters is assumed at an initial scale
and then the parameters are found from a fit to data [1,2,
7] using the DGLAP evolution equations. An alternative
approach for the determination of the initial distributions
makes use of the phenomenology of soft hadronic reactions
[8].

Ingelman and Schlein have conceived of their approach
primarily to describe diffractive hard scattering at hadron
colliders. This includes the concept of Regge factorization
as well as pomeron parton distributions. Unfortunately,
collinear factorization was proven to be wrong in the case
of hard diffraction at hadron colliders. Although it holds
for diffractive DIS, this does not imply Regge factoriza-
tion nor the existence of pomeron parton distributions.
Our approach discussed below does not make use of ei-
ther Regge factorization or pomeron parton distributions.
It does, however, result in diffractive parton distributions
and xP-factorization.

3 Diffractive parton distributions
and the saturation model

In [27] an analytic form for the dipole cross section σ̂(x, r)
was suggested, based on the idea of saturation [35], which
allows one to describe the proton structure function F2 at
small x,

F2(x,Q2) =
Q2

4π2αem

∫
d2rdz

(|ΨT(r, z,Q2)|2

+ |ΨL(r, z,Q2)|2) σ̂(x, r), (16)

where ΨT,L is the qq̄ dipole wave function for transverse
(T) and longitudinal (L) photons. r is the dipole trans-
verse size and z is a fraction of the virtual photon momen-
tum carried by a quark (antiquark). A distinctive feature
of the dipole cross section is its scaling form, i.e.

σ̂(x, r) = σ0g(r/R0(x)) = σ0
{
1 − exp−r2/R2

0(x)
}
, (17)

where the function R0(x) = Nxλ/2 monotonically van-
ishes when x → 0, and σ0 is an overall normalization. The
three parameters of σ0, N and λ were fitted to inclusive
DIS data at small x.

The postulated form allows for the transition to satu-
ration where σ̂ = σ0 for large dipole sizes, while for small
r color transparency is assumed, σ̂ ∼ r2. The fact that
the dipole cross section depends on r and x through the
dimensionless ratio r/R0(x) leads to the prediction of a
new scaling property for small-x data [39].

The presented model successfully describes F2 at small
x, including the region of small Q2 values. With regard
to diffractive processes in DIS, σ̂ leads to the same de-
pendence on x and Q2 of diffractive cross section as for
inclusive DIS, and gives a good description of the data
[28]. Thus, the constant ratio between the diffractive and
inclusive cross sections finds a natural explanation in this
model.

lT lT

 kT

q

p

lT lT

 kT

q

p

Fig. 2. The diffractive qq̄ and qq̄g contributions to F
D(3)
2

Following the idea of the analysis [18], the diffractive
structure function F

D(3)
2 is the sum of the three contribu-

tions shown in Fig. 2, the qq̄ production from transverse
and longitudinal photons, and the qq̄g production,

F
D(3)
2 (β,Q2, xP) = FT

qq̄ + FL
qq̄ + FT

qq̄g, (18)

where T and L refer to the polarization of the virtual pho-
ton. For the qq̄g contribution only the transverse polariza-
tion is considered, since the longitudinal counterpart has
no leading logarithm in Q2. In this approach, the diffrac-
tive qq̄ and qq̄g systems interact with the proton like in the
two gluon exchange model. The coupling of the two gluons
to the proton is effectively described by the dipole cross
section, determined from the analysis of inclusive DIS.

The computation of the diffractive structure functions
in this case was presented in [28]. Here we quote only the
final results. The transverse qq̄ part is given by

FT
qq̄ =

3
64π4BDxP

∑
f

e2f
β2

(1 − β)3
(19)

×
∫ Q2(1−β)

4β

0
dk2

1 − 2β
1 − β

k2

Q2√
1 − 4β

1 − β

k2

Q2

φ2
1(k, β, xP),

and the longitudinal qq̄ contribution takes the form

FL
qq̄ =

3
16π4BDxP

∑
f

e2f
β3

(1 − β)4
(20)

×
∫ Q2(1−β)

4β

0
dk2 k2/Q2√

1 − 4β
1 − β

k2

Q2

φ2
0(k, β, xP),

where the “impact factors” φi=0,1 read

φi(k, β, xP) = k2
∫ ∞

0
drrKi

(√
β

1 − β
kr

)
Ji(kr)σ̂(xP, r),

(21)
and Ki and Ji are the Bessel functions. The quoted formu-
lae correspond to (32) and (33) in [28], respectively, with
the angular integration already done; see also the second
paper of [29] for a similar result.BD is the diffractive slope,
present due to the integration over t of FD(4) with the as-
sumed t-dependence: FD(4) = exp(BDt)FD(3). Its value is
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taken from the HERA experiments. The k-integration in
(19) and (20) is performed over the transverse momentum
of the quarks in the qq̄-pair, k = |k⊥|. The final result
depends on the squared “impact factors”, and thus on the
square of the dipole cross section σ̂.

One should realize that the longitudinal contribution
is suppressed by a power of Q2 in comparison to the trans-
verse contribution, i.e. the longitudinal structure function
is a higher twist contribution. Although of higher twist
nature this contribution has some importance as will be
seen later.

The leading twist part of the transverse structure func-
tion, which corresponds to the diffractive qq̄ production,
can be extracted from (19) by neglecting the factors with
powers of k2/Q2 under the integral and taking the up-
per limit of the integration to infinity. Strictly speaking,
energy conservation is violated in this case, but the correc-
tions are of higher twist nature which in this case will be
neglected because of their smallness. With the new limit
the integral is still finite, and we can write the leading
twist part of (19) as

F
T(LT)
qq̄ =

3
64π4BDxP

∑
f

e2f
β2

(1 − β)3

∫ ∞

0
dk2φ2

1(k, β, xP).

(22)
A detailed analysis based on the dipole representation of
the qq̄ wave function shows that the approximation lead-
ing to (22) corresponds to the aligned jet configuration of
the qq̄-pair in the proton rest frame. The smallness of the
factor

β

1 − β

k2

Q2 =
k2

M2 = z(1 − z), (23)

which we neglected in (19) (M is the diffractive mass and
z, (1 − z) are the longitudinal momentum fractions of the
final state quarks with respect to the photon momentum)
means that one of the quarks takes almost the whole lon-
gitudinal photon momentum (e.g. z ≈ 1) while the other
quark forms the remnant with (1 − z) ≈ 0. Similar con-
clusions on the leading twist part of diffractive DIS have
been drawn in [26].

Now, we can determine the diffractive quark distribu-
tions according to (12) (integrated over t),

F
T(LT)
qq̄ = 2

∑
f

e2fβq
D(β,Q2, xP). (24)

Hence the diffractive quark distribution is given by (inde-
pendent of the quark flavor f)

qD(β,Q2, xP) ≡ xPFD
q/p(β,Q

2, xP) (25)

=
3

128π4BDxP

β

(1 − β)3

∫ ∞

0
dk2φ2

1(k, β, xP).

Notice the lack of the Q2-dependence on the r.h.s. of (25).
This may be viewed as a consequence of not having in-
cluded ultraviolet divergent corrections which would re-
quire a cutoff. With those corrections the parton distri-
butions become µ2-dependent, and evolution would relate

the distributions at different µ2 values. Still, we may use
the found diffractive quark distributions as the input dis-
tributions for the DGLAP evolution equations at some
initial scale. Of course, the choice of the initial scale in-
troduces an uncertainty for the prediction.

The detailed discussion of the qq̄g contribution can
be found in [28] and [16] with the details of the calcula-
tions in the Appendix. The new contribution was com-
puted assuming strong ordering in transverse momenta of
the gluon and the qq̄-pair, i.e. k⊥g � k⊥q ≈ k⊥q̄. This
assumption allows one to treat the qq̄g system as a gḡ
dipole in the transverse configuration space r, where r
is the Fourier conjugate variable to the quark transverse
momentum k⊥.

The formula for the qq̄g diffractive structure function
which we quote below corresponds to (39) in [28], inte-
grated over the azimuth angle in configuration space1.
Thus we have

FT
qq̄g(β,Q

2, xP) =
81β

256π4BDxP

×
∑

f

e2f
αs

2π

∫ 1

β

dβ′

β′

[(
1 − β

β′

)2

+
(
β

β′

)2
]

× β′

(1 − β′)3

∫ Q2(1−β′)

0
dk2 log

(
Q2(1 − β′)

k2

)
×φ2

2(k, β
′, xP), (26)

where the impact factor φ2 is given by (21) with i = 2.
The variable β′ describes the momentum fraction of the
t-channel exchanged gluon with respect to the pomeron
momentum xPp. The combination k2/(1−β′) which enters
the logarithm is its mean virtuality, and k = |k⊥| is the
transverse momentum of the final state gluon. The term
in square brackets under the first integral is the Altarelli–
Parisi splitting function for g → qq, which results from
the approximation that the transverse momentum of the
emitted gluon is smaller than transverse momenta of the
quarks.

The diffractive gluon distribution can be found from
(26). In the calculation of this contribution strong order-
ing between the gluon and quark transverse momenta was
assumed. In this approximation the integration over the
transverse momentum of the quark loop gives a logarith-
mic contribution which has a natural lower cutoff, the vir-
tuality of the gluon k2/(1 − β′). At the same time the
virtuality of the gluon should not exceed Q2. This is the
origin of the logarithmic term in (26). Collinear factor-
ization means that we can pull that logarithm out of the
integral over the gluon transverse momenta, and add to it
an arbitrary initial scale Q2

0 < Q2. Thus we can write

FT
qq̄g = 2

∑
f

e2fβ

{
αs

2π
log

Q2

Q2
0

(27)

×
∫ 1

β

dβ′

β′
1
2

[(
1 − β

β′

)2

+
(
β

β′

)2
]
xPFD

g/p(β
′, xP)

}
,

1 A factor 1/2 missing in (39) of [28] was correctly pointed
out in [29]. This does not affect the numerical results in [28]
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Fig. 3. Diffractive quark (25) and gluon (28) distributions
based on the saturation model as a function of β for xP =
0.0042 at the initial scale Q2

0

where the diffractive gluon distribution is given by

gD(β, xP) ≡ xPFD
g/p(β, xP) (28)

=
81

256π4BDxP

β

(1 − β)3

∫ ∞

0
dk2φ2

2(k, β, xP),

and φ2 is given by (21) with i = 2. As in the case of the
quark distribution (25), the gluon distribution found does
not depend on Q2, and serves as the initial distributions
at some fixed scale Q2

0.
The motivation for the above identification of the

diffractive gluon distributions is the structure in the curly
brackets on the r.h.s. of (27). It is identical to the structure
resulting from the DGLAP evolution with one splitting of
the gluon into a qq̄-pair.

The combined initial parton distributions (25) and
(28) (depicted in Fig. 3) allow a complete description of
the leading twist part of diffractive DIS by serving as
the initial conditions for the DGLAP evolution equations.
DGLAP evolution means that our diffractive system be-
comes more complicated due to additional parton emis-
sions.

The longitudinal, higher twist contribution requires a
separate treatment. It becomes important for large values
of β, where the qq̄ and the qq̄g production from transverse
photons is negligible [28,16,18]. In our present analysis we
simply add this contribution to the evolved leading twist
part. The complete expression of the structure function
reads

F
D(3)
2 = F

D(3)(LT)
2 + FL

qq̄, (29)

where F
D(3)(LT)
2 is given by

F
D(3)(LT)
2 = 2

∑
f

e2fβq
D(β,Q2, xP), (30)

with the full DGLAP evolution. FL
qq̄ is given by (20).

In the following we present a comparison of the descrip-
tion based on (29) with the diffractive data from HERA.
Before doing that we briefly discuss xP-factorization.

4 The issue of Regge factorization

Up to now, we have not made use of the particular form
(17) of the dipole cross section σ̂. We only implicitly as-

sumed that the integrals involving σ̂ are finite. The scal-
ing property, i.e. that σ̂ is a function of the dimensionless
ratio r/R0(x), has the remarkable consequence that the
xP-dependent part of the found diffractive parton distri-
butions (DPD) factorizes.

Introducing the dimensionless variables k̂ = kR0(x)
and r̂ = r/R0(x) in (25) and (28) and assuming Q2

0 to be
a fixed scale, we find the following factorized form:

qD(β, xP) =
1

xPR2
0(xP)

fq/P(β), (31)

gD(β, xP) =
1

xPR2
0(xP)

fg/P(β). (32)

We have introduced a notation similar to that in (13) for
the β-dependent factors. This type of factorization looks
like Regge factorization but has nothing to do with Regge
theory. It merely results from the scaling properties of the
saturating cross section σ̂. Since the evolution does not
affect the xP-dependence of the DPD, the factorized form
will be valid for any scale Q2.

Now, we can rewrite (30) as

F
D(3)(LT)
2 =

1
xPR2

0(xP)
2
∑

f

e2fβfq/P(β,Q2), (33)

in which the xP-dependence is factored out. In the satu-
ration model (R0(x) ∼ xλ/2) the parameter λ = 0.29 was
determined from a fit to inclusive DIS data only [27]. The
same value holds for diffractive interactions; thus, we find
a definite prediction for the xP-dependence of the leading
twist diffractive structure function:

F
D(3)(LT)
2 ∼ x−1−λ

P
. (34)

At present, the bulk of diffractive data in DIS support
the factorized form (34). They are usually interpreted [1,
2] in terms of the t-averaged pomeron intercept αP, i.e.

F
D(3)
2 ∼ x1−2αP

P
. (35)

Such a dependence has been introduced in the spirit of the
Ingelman–Schlein model (15), with the t-integration per-
formed, FD(3)

2 ∼ ∫
dtf(xP, t) ∼ x1−2αP

P
. Thus, according

to (34) and (35) we find

αP =
λ

2
+ 1 ≈ 1.15, (36)

which is in remarkable agreement with the values found at
HERA, αP = αP(0)− 0.03 = 1.17 by H1 [1] and αP = 1.13
by ZEUS [2].

Summarizing, the leading twist description extracted
from the saturation model of DIS diffraction leads to the
factorization of the xP-dependent part of the cross sec-
tion similar to Regge factorization. It correctly predicts
the value of the “effective pomeron intercept”. The Q2-
dependence of the diffractive structure function does not
affect the xP-factorization. This means that the satura-
tion model for the dipole cross section gives effectively
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Fig. 4. The comparison with H1 data [1]. The dashed lines
correspond to the leading twist contribution with the twist-
4 component added, (29). The leading twist contribution is
shown by the dotted lines

the result which coincides with the Regge approach to
DIS diffraction, although the physics behind it is com-
pletely different. The relative hardness of the intrinsic
scale 1/R0(xP) ∼ 1GeV in the saturation model suggests
that DIS diffraction is a semihard process rather than a
soft process as Regge theory would require.

In the presented description, the leading twist struc-
ture function vanishes when β → 1, i.e. for small diffrac-
tive mass M2 � Q2. This is not the case for the higher
twist longitudinal contribution FD

Lqq̄, (20), which dom-
inates in the region of β ≈ 1 [18]. The expected xP-
dependence for this contribution is given by

FL
qq̄ ∼ 1

xPR4
0(xP)

∼ x−1−2λ
P

, (37)

which clearly violates the universality of the effective
pomeron intercept assumed in the Ingelman–Schlein
model. The first indication of this effect is observed at
HERA by measuring the effective pomeron intercept in
different regions of the diffractive mass as a function of Q2

[2]. The intercept seems to be larger for smaller diffractive
masses (β → 1), and the description based on perturbative
QCD gives a satisfactory explanation [28].
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Fig. 5. The comparison with ZEUS data [2]. The dashed lines
correspond to the leading twist contribution with the twist-
4 component added, (29). The leading twist contribution is
shown by the dotted lines

5 Comparison with data

In this section we present a comparison of the leading twist
part of diffractive DIS including DGLAP evolution plus
the corresponding longitudinal twist-4 component (29)
with the diffractive data from the HERA experiments.

In Fig. 3 we show the quark and gluon diffractive dis-
tributions at some initial scale Q2

0. This scale, however, is
not determined in this approach. Thus, it can be treated
as a phenomenological parameter which may be tuned to
obtain the best description of the DIS diffractive data. We
tried various options and found that Q2

0 ≈ 3 GeV2 is the
best choice for this purpose. We used the leading logarith-
mic evolution equations with three massless flavors, and
the value of ΛQCD = 200MeV in αs.

Figure 4 shows the results of our studies with data from
H1 and Fig. 5 data from ZEUS. The dashed lines represent
the total contribution according to (29). The pure lead-
ing twist structure function F

D(3)(LT)
2 with the leading

DGLAP evolution is shown by the dotted lines. The dif-
ference (if visible) between the dashed and dotted lines is
the effect of the longitudinal twist-4 component FL

qq̄ added
to the leading twist result. As expected, the twist-4 com-
ponent is significant in the large-β domain; see also [18]
for a detailed discussion. Notice the change of the slope
in xP when the twist-4 component is added. The overall
agreement between the data and the model of (29) is rea-
sonably good, taking into account the fact that the only
tuned parameter is the initial scale for the evolution, Q2

0.
The parameters of the evolution equations are standard,
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and the diffractive slope BD which effects the normaliza-
tion is taken from the measurements as in the analysis
[28]. The significance of the twist-4 contribution at large
β is clearly demonstrated.

Looking at Figs. 4 and 5, we realize that at large β
and Q2 the agreement between the data and the model
with evolution starts to deteriorate. The reason for this is
illustrated in Fig. 6 where we show FD

2 for the fixed value
of xP = 0.0042 as a function of β, for different values
of Q2. The DGLAP evolution depopulates the region of
large β, shifting the parton distributions towards smaller
values of β (compare the dotted lines showing the initial
distributions and the dashed lines showing the evolved
distributions). The twist-4 component FL

qq̄ (the difference
between the solid and the dashed lines) largely compen-
sates for this effect. Its significance, however, diminishes
as Q2 rises due to the 1/Q2-dependence of twist-4.

There are at least two effects which may enhance FL
qq̄

when Q2 rises, thus accounting for the difference between
the data and the discussed description. In principle, twist-
4 should also have a logarithmic evolution, in addition
to the 1/Q2-dependence, which could push FL

qq̄ into the
right direction. Unfortunately, this aspect is beyond the
scope of the present paper. Another effect which is im-
portant at large β is skewedness of the diffractive parton
distributions; see [40] for a recent discussion and references
therein. This effect is known to enhance FT,L

qq̄ at large β.
Since the enhancement increases with Q2, the skewedness
may account for the discussed difference between the data
and their description in the region of large β and Q2.

6 Conclusions

We have reviewed the description of diffractive deep in-
elastic scattering in the light of the collinear factorization
theorem. This theorem applies to the leading twist terms
of the cross section and introduces the notion of diffrac-
tive parton distributions. We have extracted a precise an-
alytic form for these distributions from the approach in
which the diffractive state is formed by the qq̄ and qq̄g sys-
tems, computed in pQCD. The convolution with a dipole
cross section from the saturation model leads to the xP-
factorization of the diffractive structure functions, similar
to Regge factorization, which correctly describe the en-
ergy dependence found at HERA by the H1 and ZEUS
collaborations. We further evolved the diffractive parton
distributions with the DGLAP evolution equations and
pointed out the significance of the twist-4 component at
large β for the agreement with the data. The latter was
originally advocated in [18] and originates from the lon-
gitudinal qq̄ contribution. The twist-4 component breaks
the universality of the effective xP-dependence, making it
stronger at large β. This stays in contrast to the assumed
universality in the Ingelman–Schlein model. Finally, we
suggest some necessary modifications of the description
at large β and Q2 to improve the agreement with the data
in this kinematic region.
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Fig. 6. The effect of the DGLAP evolution in Q2. The dotted
lines show the leading twist structure function at the initial
scale Q2

0 = 3GeV2. The dashed lines correspond to the evolved
structure function at the indicated values of Q2. The solid line
is the sum of the evolved leading twist contribution and twist-4
component, (29). The ZEUS data at xP = 0.0042 are shown
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