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Abstract. We present results for the complete one-loop electroweak logarithmic corrections for general
processes at high energies and fixed angles. Our results are applicable to arbitrary matrix elements that
are not mass suppressed. We give explicit results for 4-fermion processes and gauge-boson pair production
in e+e− annihilation.

1 Introduction

In the LEP regime, at energies s1/2 ∼ MZ , electroweak
radiative corrections are dominated by large electromag-
netic effects from initial-state radiation, by the contribu-
tions of the running electromagnetic coupling, and by the
corrections associated with the ρ parameter, typically of
the order 10%. Future colliders, such as the LHC [1] or
an e+e− linear collider (LC) [2], will explore a new energy
range, s1/2 � MZ . It is known since many years (see,
for instance, [3,4]) that above the electroweak scale the
structure of the leading electroweak corrections changes
and double logarithms of Sudakov type [5] as well as sin-
gle logarithms involving the ratio of the energy to the
electroweak scale become dominating. These logarithms
arise from virtual (or real) gauge bosons emitted by the
initial- and final-state particles. They correspond to the
well-known soft and collinear singularities observed in the-
ories with massless gauge bosons.

In massless gauge theories such as QED and QCD, the
soft and collinear logarithms in the virtual corrections are
singular and have to be cancelled by adding the contri-
bution of real gauge-boson radiation. In the electroweak
theory, the masses of the weak gauge bosons, Z and W ,
provide a physical cutoff, and the massive gauge bosons
can be detected as distinguished particles. Unlike for the
photon, real Z and W bremsstrahlung need not be in-
cluded, and the large logarithms originating from virtual
corrections are of physical significance.

The typical size of double-logarithmic (DL) and single-
logarithmic (SL) corrections is given by

α

4πs2w
log2

s

M2
W

= 6.6%,
α

4πs2w
log

s

M2
W

= 1.3%, (1.1)

at s1/2 = 1 TeV and increases with the energy. If the ex-
perimental precision is at the few-percent level like at the
LHC, both DL and SL contributions have to be included

at the one-loop level. In view of the precision objectives
of a LC, between the percent and the permil level, be-
sides the complete one-loop corrections also two-loop DL
effects have to be taken into account. The DL contribu-
tions represent a leading and negative correction, whereas
the SL ones often have opposite sign, and are referred to
as subleading. The compensation between DL and SL cor-
rections can be quite important [6,7], and depending on
the process and the energy, the SL contribution can be
even larger than the DL one1.

Owing to this phenomenological relevance, the infrared
(IR) structure of the electroweak theory is receiving in-
creasing interest recently. The one-loop structure and the
origin of the DL corrections have been discussed for e+e−
→ ff̄ [8,9] and are by now well established. Recipes for
the resummation of the DL corrections have been devel-
oped [10,9,7,11] and explicit calculations of the leading
DL corrections for the processes g → ff̄ and e+e− → ff̄
have been performed [12–14]. On the other hand, for the
SL corrections complete one-loop calculations are only
available for 4-fermion neutral-current processes [6,7] and
W -pair production [4]. The subleading two-loop logarith-
mic corrections have been evaluated for e+e− → ff̄ in
[7]. A general recipe for a subclass of SL corrections to all
orders has been proposed in [15], based on the infrared-
evolution equation method.

In this paper, we present results for all DL and SL con-
tributions to the electroweak one-loop virtual corrections.
The results apply to exclusive processes with arbitrary ex-
ternal states, including transverse and longitudinal gauge
bosons as well as Higgs fields. Above the electroweak scale,
the photon, Z- and W -boson loops are most conveniently
treated in a symmetric way, rather than split into elec-

1 For instance in e+e− → µ+µ− [7] at s1/2 = 1TeV one has
+13.8% for SL and −9.6% for DL corrections to the unpolar-
ized cross section



462 A. Denner, S. Pozzorini: One-loop leading logarithms in electroweak radiative corrections. I

tromagnetic and weak parts [10]; at the same time spe-
cial care has to be taken for the gap between the photon
mass and the weak scale MW . To this end we split the
logarithms originating from the electromagnetic and from
the Z-boson loops into two parts: the contributions of a
fictitious heavy photon and a Z-boson with mass MW ,
which are added to the W -boson loops resulting in the
“symmetric-electroweak” (sew) contribution, and the re-
maining part originating from the difference between the
photon or Z-boson mass and the mass of the W -boson.
The large logarithms originating in the photon loops ow-
ing to the gap between the electromagnetic and the weak
scale are denoted as “pure electromagnetic” (em) contri-
bution.

In contrast to predictions based on the unbroken
phase, our results are obtained from the high-energy limit
of the broken phase, i.e. with calculations in the physical
fields. In this way all features of the electroweak theory
are consistently implemented2. Especially, the mixing and
the mass gap between photons and Z-bosons is well un-
der control. Furthermore, the longitudinal components of
massive gauge bosons and the scalar fields are included as
external states.

On the method

We work within the ’t Hooft–Feynman gauge and use di-
mensional regularization so that ultraviolet (UV) single
logarithms depend on the regularization scale µ. Exploit-
ing the µ independence of the S matrix, we choose µ2 = s
so that the logarithms log (µ2/s) related to the UV sin-
gularities are not enhanced, and only the mass-singular
logarithms log (µ2/M2) or log (s/M2) are large. In order
to be specific we fix the field-renormalization constants
(FRCs) such that no extra wave-function renormalization
constants are required [16]. For parameter renormaliza-
tion we adopt the on-shell scheme for definiteness. This
can easily be changed. In this setup large logarithms ap-
pear in the mass-singular loop diagrams as well as in the
coupling and field-renormalization constants, and are dis-
tributed as follows:

(1) The DL contributions originate from those one-loop
diagrams where soft–collinear gauge bosons are ex-
changed between pairs of external legs. These double
logarithms are obtained with the eikonal approxima-
tion.

(2) The SL mass-singular contributions from loop dia-
grams originate from the emission of virtual collinear
gauge bosons from external lines [17]. These SL con-
tributions are extracted from the loop diagrams in
the collinear limit by means of Ward identities, and
are found to factorize into the Born amplitude times
“collinear factors”. These are the main results of this

2 As observed in [9], the Higgs mechanism is irrelevant for
the IR structure at the DL level. This seems to be less clear at
the SL level, where, through self-energy contributions, mixing
effects between gauge bosons and Goldstone bosons enter

article, and a forthcoming publication [18] will be ded-
icated to a detailed description of their calculation.

(3) The remaining SL contributions originating from soft
and collinear regions are contained in the FRCs.

(4) The parameter renormalization constants, i.e. the
charge- and weak-mixing-angle renormalization con-
stants as well as the renormalization constants for
Yukawa and scalar self couplings, involve the SL con-
tributions of UV origin. These are the leading log-
arithms that are controlled by the renormalization
group.

The DL and SL mass-singular terms are extracted from
loop diagrams by setting all masses to zero in the nu-
merators of the loop integrals. This approach is applica-
ble only if no inverse powers of gauge-boson masses are
present in the Feynman rules. In the Feynman gauge this
is true except for the polarization vectors of longitudinal
gauge bosons. However, since we are only interested in the
high-energy limit, we can use the Goldstone-boson equiv-
alence theorem [19] for processes involving longitudinal
gauge bosons taking into account the correction factors
from higher-order contributions [20].

This paper is organized as follows: in Sect. 2 we intro-
duce our basic definitions and conventions. The leading
logarithms originating from the soft–collinear region, from
the soft or collinear regions, and from parameter renormal-
ization are considered in Sects. 3, 4, and 5, respectively. In
Sect. 6 we discuss some applications of our general results
to simple specific processes. Results for the electroweak
logarithmic corrections to the production of an arbitrary
number of transverse gauge bosons in fermion–antifermion
annihilation are given in Appendix A. Finally, Appendix B
summarizes explicit results for the various generic quan-
tities appearing in our formulas.

2 Definitions and conventions

We consider electroweak processes involving n arbitrary
external particles. As a convention, all these particles and
their momenta pk are assumed to be incoming, so that the
process reads

ϕi1(p1) . . . ϕin(pn) → 0. (2.1)

The particles (or antiparticles) ϕik correspond to the com-
ponents of the various multiplets ϕ present in the standard
model. Chiral fermions and antifermions are represented
by fκσ and f̄κσ , respectively, with the chirality κ = R,L and
the isospin indices σ = ±. The gauge bosons are denoted
by Va = A,Z,W±, and can be transversally (T) or longi-
tudinally (L) polarized. For neutral gauge bosons we use
the symbol N = A,Z. The components Φi of the scalar
doublet consist of the physical Higgs particle H and the
unphysical Goldstone bosons χ, φ±, which are used to de-
scribe the longitudinally polarized massive gauge bosons
ZL and W±

L with help of the equivalence theorem.
The predictions for general processes,

ϕi1(p
in
1 ) . . . ϕim(pinm) → ϕj1(p

out
1 ) . . . ϕjn−m(poutn−m), (2.2)
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can be obtained by crossing symmetry from our predic-
tions for the n→ 0 process

ϕi1(p
in
1 ) . . . ϕim(pinm)ϕ̄j1(−pout1 ) . . . ϕ̄jn−m(−poutn−m) → 0

(2.3)
where ϕ̄i represents the charge conjugate of ϕi. Thus, out-
going particles (antiparticles) are substituted by incoming
antiparticles (particles) and the corresponding momenta
are reversed. These substitutions can be directly applied
to our results.

The couplings of the external fields ϕik to the gauge
bosons Va are denoted by ieIVa(ϕ), and correspond to the
generators of infinitesimal global SU(2) × U(1) transfor-
mations of these fields,

δVa
ϕi = ieIVa

ϕiϕi′ (ϕ)ϕi′ . (2.4)

To be precise, ieIVa
ϕiϕi′ (ϕ) is the coupling corresponding

to the Vaϕ̄iϕi′ vertex, where all fields are incoming. The
indices of the matrix IVa

ϕiϕi′ (ϕ) may be particles or antipar-
ticles, and charge conjugation of the identity (2.4) gives

I V̄a
ϕ̄iϕ̄i′ (ϕ̄) = −

(
IVa
ϕiϕi′ (ϕ)

)∗
. (2.5)

As a shorthand notation for those formulas where various
fields labelled by k = 1, . . . , n occur, the components ϕik
are replaced by their indices ik. For instance, the genera-
tors in (2.4) are denoted by Iaiki′k(k). A detailed description
of the generators and other group-theoretical operators is
given in Appendix B, together with the explicit values for
various representations.

We consider the process (2.1) with all external mo-
menta on shell, p2k = m2

k, and in the limit where all in-
variants are much larger than the gauge-boson masses, in
particular

rkl = (pk + pl)2 ∼ 2pkpl �M2
W . (2.6)

Note that this condition is not fulfilled if the cross section
is dominated by resonances. We restrict ourselves to Born
matrix elements that are not mass suppressed in this limit,
and we calculate the virtual one-loop corrections in lead-
ing and subleading logarithmic approximation (LA), i.e.
we take into account only enhanced DL and SL terms and
omit non-enhanced terms. The logarithmic contributions
are written in terms of

L(|rkl|,M2) :=
α

4π
log2

rkl
M2 , l(rkl,M2) :=

α

4π
log
rkl
M2 ,

(2.7)
and depend on different invariants rkl and masses M , ac-
cording to the Feynman diagrams they originate from. In
order to render the results as symmetric as possible, we
relate the energy-dependent part of all large logarithms
to the scales MW and s. To this end, we write all these
logarithms in terms of

L(s) := L(s,M2
W ), l(s) := l(s,M2

W ), (2.8)

and logarithms of mass ratios and ratios of invariants.
The DL contributions proportional to L(s) and to l(s)

nX
k=1

X
l<k

X
Va=A;Z;W�

Va

k

l

Fig. 1. Feynman diagrams leading to DL corrections

× log(|rkl|/s) as well as the SL contributions proportional
to l(s) are denoted as the symmetric-electroweak part of
the corrections. The IR singularities are regularized by an
infinitesimal photon mass λ, and owing to the mass hier-
archy

MH ,mt,MW ,MZ � mf �=t � λ, (2.9)

all logarithms of electromagnetic origin l(M2
W , λ

2) and
l(M2

W ,m
2
f ) involving the photon mass or light charged

fermion masses are large and have to be taken into ac-
count, whereas the logarithms l(M2

W ,M
2
Z), l(m2

t ,M
2
W ),

and l(M2
H ,M

2
W ) are neglected. Furthermore, in the limit

(2.6), the pure angular-dependent contributions log (rkl/s)
and log2 (rkl/s) can be neglected.

The lowest-order matrix element for (2.1) is denoted
by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin ,
(2.11)

i.e. they factorize as a matrix, and are split into various
contributions according to their origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are
denoted by δLSC and δSSC, respectively, the collinear loga-
rithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running
of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where
virtual gauge bosons Va = A,Z,W± are exchanged be-
tween pairs of external legs (Fig. 1). The double logarithms
arise from the integration region where the gauge-boson
momenta are soft and collinear to one of the external legs.
As in QED, they can be evaluated using the eikonal ap-
proximation, where in the numerator of the loop integral
the gauge-boson momentum is set to zero and all mass
terms are neglected. In this approximation the one-loop
corrections give

δMi1...in =
n∑
k=1

∑
l<k

∑
Va=A,Z,W±

∫
d4q

(2π)4
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× (−4ie2pkplIVa

i′kik
(k)I V̄a

i′lil
(l)Mi1...i

′
k...i

′
l...in

0 )

/ {(q2 −M2
Va

)[(pk + q)2 −m2
k′ ]

× [(pl − q)2 −m2
l′ ]}, (3.1)

and in LA, using the high-energy expansion of the scalar
three-point function [21], one obtains

δMi1...in =
1
2

n∑
k=1

∑
l �=k

∑
Va=A,Z,W±

IVa

i′kik
(k)I V̄a

i′lil
(l)

×Mi1...i
′
k...i

′
l...in

0

×[L(|rkl|,M2
Va

) − δVaAL(m2
k, λ

2)]. (3.2)

The DL term containing the invariant rkl depends on the
angle between the momenta pk and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s),
(3.3)

the angular-dependent part is isolated in logarithms of
rkl/s, and gives a subleading soft–collinear (SSC) contri-
bution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s)
can be neglected in LA. The remaining part, together
with the additional contributions from photon loops in
(3.2), gives the leading soft–collinear (LSC) contribution
and is angular-independent. The eikonal approximation
(3.1) applies to chiral fermions, Higgs bosons, and trans-
verse gauge bosons, and depends on their gauge couplings
IVa(k).

Owing to the longitudinal polarization vectors (4.24)
which grow with energy, matrix elements involving longi-
tudinal gauge bosons have to be treated with the equiv-
alence theorem, i.e. they have to be expressed by matrix
elements involving the corresponding Goldstone bosons.
A detailed description of the equivalence theorem is given
in Sect. 4. As explained there, the equivalence theorem for
Born matrix elements (4.26) receives no DL one-loop cor-
rections. Therefore, the soft–collinear corrections for ex-
ternal longitudinal gauge bosons can be obtained using
the simple relations

δDLM...W±
L ... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global
SU(2) × U(1) transformations implies

0 = δVaMi1...in = ie
∑
k

IVa

i′kik
(k)Mi1...i

′
k...in . (3.5)

For external Goldstone fields extra contributions propor-
tional to the Higgs vacuum expectation value appear,
which are, however, irrelevant in the high-energy limit.

Using (3.5), the LSC logarithms in (3.2) can be written as
a single sum over external legs,

δLSCMi1...in =
n∑
k=1

δLSCi′kik
(k)Mi1...i

′
k...in

0 . (3.6)

After evaluating the sum over A, Z, and W, in (3.2), the
correction factors read

δLSCi′kik
(k) = −1

2

[
Cew
i′kik

(k)L(s) − 2(IZ(k))2i′kik log
M2
Z

M2
W

l(s)

+ δi′kikQ
2
kL

em(s, λ2,m2
k)
]
. (3.7)

The first term represents the DL symmetric-electroweak
part and is proportional to the electroweak Casimir op-
erator Cew defined in (B.10). This is always diagonal in
the SU(2) indices, except for external transverse neutral
gauge bosons in the physical basis (B.14), where it gives
rise to mixing between amplitudes involving photons and
Z-bosons. The second term originates from Z-boson loops,
owing to the difference between MW and MZ , and

Lem(s, λ2,m2
k) : = 2l(s) log

(
M2
W

λ2

)
+L(M2

W , λ
2) − L(m2

k, λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The
LSC corrections for external longitudinal gauge bosons are
directly obtained from (3.7) by using the quantum num-
bers of the corresponding Goldstone bosons. Formula (3.7)
is in agreement with [9,11]. In [10] the logarithm L(m2

k, λ
2)

that depends on the mass of the external state is missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) re-
mains a sum over pairs of external legs,

δSSCMi1...in =
n∑
k=1

∑
l<k

∑
Va=A,Z,W±

×δVa,SSC
i′kiki

′
lil

(k, l)Mi1...i
′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neu-
tral gauge bosons contributes with

δA,SSCi′kiki
′
lil

(k, l)=2
[
l(s) + l(M2

W , λ
2)
]
log

|rkl|
s
IAi′kik

(k)IAi′lil(l),

δZ,SSCi′kiki
′
lil

(k, l)=2l(s) log
|rkl|
s
IZi′kik

(k)IZi′lil(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see
Appendix B), the couplings IN are diagonal matrices. The
exchange of charged gauge bosons yields

δW
±,SSC

i′kiki
′
lil

(k, l) = 2l(s) log
|rkl|
s
I±
i′kik

(k)I∓
i′lil

(l), (3.11)
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and owing to the non-diagonal matrices I±(k) [cf. (B.17),
(B.22) and (B.26)], contributions of SU(2)-transformed
Born matrix elements appear on the left-hand side of (3.9).
In general, these transformed Born matrix elements are
not related to the original Born matrix element and have
to be evaluated explicitly.

The SSC corrections for external longitudinal gauge
bosons are obtained from (3.9) with the equivalence theo-
rem (3.4), i.e. the couplings and the Born matrix elements
for Goldstone bosons3 have to be used on the right-hand
side of (3.9).

The application of the above formulas is illustrated in
Sect. 6 for the case of 4-particle processes, where owing to
r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±
2
[
l(s) + l(M2

W ,M
2
Va

)
]

×
{

log
|r12|
s

×
[
IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i

′
3i

′
4

0

]
+ log

|r13|
s

×
[
IVa

i′1i1
(1)I V̄a

i′3i3
(3)Mi′1i2i

′
3i4

0 + IVa

i′2i2
(2)I V̄a

i′4i4
(4)Mi1i

′
2i3i

′
4

0

]
+ log

|r14|
s

×
[
IVa

i′1i1
(1)I V̄a

i′4i4
(4)Mi′1i2i3i

′
4

0 + IVa

i′2i2
(2)I V̄a

i′3i3
(3)Mi1i

′
2i

′
3i4

0

]}
,

(3.12)

and the logarithm with rkl = s vanishes. Note that this
formula applies to 4 → 0 processes, where all particles or
antiparticles and their momenta are incoming. Predictions
for 2 → 2 processes are obtained by substituting outgo-
ing particles (antiparticles) by the corresponding incoming
antiparticles (particles), as explained in Sect. 2.

4 Collinear and soft single logarithms

In this section we consider the SL corrections originating
from field-renormalization and from mass-singular loop di-
agrams. The PR contributions associated with the renor-
malization of the electric charge, the weak-mixing angle,
and mass ratios are presented in Sect. 5. As explained in
the introduction, in our approach to SL corrections we set
the regularization scale µ2 = s so that only mass-singular
logarithms log (µ2/M2) or log (s/M2) are large.

On one hand the FRCs give the well-known factors
δZϕ/2 for each external leg, containing collinear as well as
soft SL contributions. On the other hand, mass-singular
logarithms arise from the collinear limit of loop diagrams
where an external line splits into two internal lines [17],
one of these internal lines being a virtual gauge boson

3 Note that for Goldstone bosons χ, the equivalence theorem
as well as the couplings (B.23) and (B.21) contain the imagi-
nary constant i

A,Z or W . If the two internal lines involve only fermions
and scalars no mass-singular terms emerge. The mass-
singular diagrams are evaluated in the limit of collinear
gauge-boson emission using Ward identities [18], and af-
ter subtraction of the contributions already contained in
the FRCs and in the soft–collinear corrections, we find
factorization into collinear factors δcoll times Born matrix
elements,

X
Va=A;Z;W�

8>>>>>>><
>>>>>>>: Va

k
�

Va

k

�
X
l 6=k

2
6666666664

Va

k

l

3
7777777775
eik: appr:

9>>>>>>>>>=
>>>>>>>>>;

���������������
coll:

= Æcoll(k)
k

:

(4.1)

Then the complete SL contributions originating from soft
or collinear regions can be written as a sum over the ex-
ternal legs,

δCMi1...in =
n∑
k=1

δCi′kik
(k)Mi1...i

′
k...in

0 , (4.2)

with

δCi′kik
(k) = δcolli′kik

(k) +
1
2
δZϕi′kik

∣∣∣∣
µ2=s

. (4.3)

The collinear factors δcoll(k) and the corrections δC(k)
depend on the quantum numbers of the external fields
ϕik . In the following we give the results for chiral fermions,
transverse charged gauge bosons WT, transverse neutral
gauge bosons AT, ZT, longitudinal gauge bosons WL, ZL,
and Higgs bosons. We use the conventions of [16] for the
Feynman rules, the self-energies, and the renormalization
constants.

Chiral fermions

In LA the FRCs for fermions fκσ with chirality κ = R,L
and isospin indices σ = ± are given by

δZκfσfσ′ = δσσ′

{
−
[
Cew
fκ

+
1

4s2w

(
(1 + δκR)

m2
fσ

M2
W

+ δκL
m2
f−σ

M2
W

)]
l(µ2)

+ Q2
fσ

[
2l(M2

W , λ
2) − 3l(M2

W ,m
2
fσ

)
]}
, (4.4)

where the contribution of a non-trivial quark-mixing ma-
trix is not considered. The FRCs depend on the chirality
of the fermions, and contain Yukawa terms proportional
to the masses of the fermion fσ and of its isospin part-
ner f−σ. While these are negligible for leptons and light
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quarks, they give large contributions for fκσ = tR, tL, and
bL, where one of the masses is mt.

From the mass-singular loop diagrams we obtain the
factor [18]

δcollfσfσ′ (f
κ) = δσσ′

[
2Cew

fκ l(µ2) + 2Q2
fσ
l(M2

W ,m
2
fσ

)
]
, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′ (f
κ)

= δσσ′

{[
3
2
Cew
fκ − 1

8s2w

(
(1 + δκR)

m2
fσ

M2
W

+ δκL
m2
f−σ

M2
W

)]

×l(s) +Q2
fσ
lem(m2

fσ
)

}
, (4.6)

where the pure electromagnetic logarithms

lem(m2
f ) :=

1
2
l(M2

W ,m
2
f ) + l(M2

W , λ
2) (4.7)

originate from the photonic loops as a result of the gap
between the electromagnetic and weak scales. The sym-
metric-electroweak part of (4.6), i.e. the term proportional
to l(s), agrees with [7,15] up to the Yukawa contributions,
and the electromagnetic part (4.7) agrees with [15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −∂Σ
WW
T (k2)
∂k2

∣∣∣∣
k2=M2

W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

W l(M
2
W , λ

2), (4.8)

where bewW is the coefficient of the β-function defined in
(B.38) and contains the sum over gauge-boson, scalar,
and fermion loops, whereas Cew

W is the eigenvalue of the
electroweak Casimir operator in the adjoint representation
(B.24).

Combining the collinear factor [18]

δcoll
WσWσ′ (VT) = δσσ′Cew

W l(µ
2), (4.9)

with the FRC δZWσWσ′ = δσσ′δZWW , results in

δC
WσWσ′ (VT) = δσσ′

[
1
2
bewW l(s) +Q2

W l
em(M2

W )
]
. (4.10)

This result agrees with the revised version of [15].

Transverse neutral gauge bosons A,Z

The physical neutral gauge-boson fields N = A,Z are
renormalized by a non-symmetric matrix δZ, i.e.

N → N + δN,

δN =
1
2
δZNN ′N ′ =

1
2

[δZasymm
NN ′ + δZsymm

NN ′ ]N ′.

(4.11)

The matrix δZ has been split into antisymmetric and sym-
metric parts in order to facilitate the comparison with
the corresponding FRC δZ̃ for the symmetric components
Ñ = B,W 3,

δÑ =
1
2
δZ̃ÑÑ ′Ñ

′. (4.12)

In the following, we give δZNN ′ as obtained in LA in the
on-shell scheme [16] and compare it with δZ̃ÑÑ ′ using the
matrix relation

δZ = 2δU(θw)U−1(θw) + U(θw)δZ̃U−1(θw), (4.13)

resulting from the renormalization of the Weinberg rota-
tion U(θw) defined in (B.4).

The results for symmetric and antisymmetric parts are
expressed in terms of the coefficients of the β-function
defined in (B.41):
(1) For the antisymmetric part the diagonal components
vanish, whereas the non-diagonal ones are

δZasymm
AZ = −δZasymm

ZA = −Σ
AZ
T (M2

Z) +ΣAZT (0)
M2
Z

, (4.14)

and in LA we find

δZasymm
AZ = bewAZ l(µ

2). (4.15)

This part is related to the renormalization of the Weinberg
angle (5.6), and in LA it corresponds to the first term in
(4.13)

2
[
δU(θw)U−1(θw)

]
NN ′ =

cw
sw

δc2w
c2w
ENN ′

= bewAZ l(µ
2)ENN ′ ,

E :=

(
0 1

−1 0

)
. (4.16)

(2) The symmetric part has components

δZsymm
NN ′ = −∂Σ

NN ′
T (k2)
∂k2

∣∣∣∣∣
k2=M2

N

,

δZsymm
AZ = δZsymm

ZA = −Σ
AZ
T (M2

Z) −ΣAZT (0)
M2
Z

,(4.17)

and in LA it reads

δZsymm
NN ′ = [bewNN ′ − 2Cew

NN ′ ] l(µ2)+δNAδN ′AδZ
em
AA. (4.18)

The AA component receives a pure electromagnetic con-
tribution associated with the light-fermion loops,

δZem
AA = −4

3

∑
f,i,σ �=t

NfCQ
2
fσ
l(M2

W ,m
2
fσ,i

), (4.19)

where the sum runs over the generations i = 1, 2, 3 of
leptons and quarks f = l, q with isospin σ, omitting the
top-quark contribution.
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Apart from these pure electromagnetic logarithms,
(4.18) contains the same combination of bew and Cew as
(4.8). This part corresponds to the second term in (4.13)
originating from the renormalization of the symmetric
fields,

δZ̃ÑÑ ′ = δÑÑ ′

[
b̃ew
Ñ

− 2C̃ew
Ñ

]
l(µ2), (4.20)

which is diagonal, because the U(1) and SU(2) compo-
nents do not mix in the unbroken theory.

The SL contributions (4.15) and (4.18) have to be com-
bined with the collinear factor, for which we obtain [18]

δcollNN ′(VT) = Cew
NN ′ l(µ2). (4.21)

Then, the complete correction is given by

δCN ′N (VT) =
1
2

[EN ′Nb
ew
AZ + bewN ′N ] l(s) +

1
2
δNAδN ′AδZ

em
AA.

(4.22)
Note that owing to the antisymmetric contribution (EAZ
= −EZA = 1) the non-diagonal components read

δCAZ(VT) = bewAZ l(s), δCZA(VT) = 0, (4.23)

i.e. the correction factor for external photons does not
involve mixing with Z-bosons. This is a consequence of the
on-shell renormalization condition (4.14). The symmetric
part of (4.22) agrees with the revised version of [15].

Longitudinally polarized gauge bosons

Our approach is not directly applicable to the calculation
of the effective collinear factor (4.2) for longitudinal gauge
bosons, because the amputated Green functions involving
gauge bosons are contracted with longitudinal polariza-
tion vectors,

εµL(p) =
pµ

M
+ O

(
M

p0

)
, (4.24)

containing a mass term in the denominator so that in this
case contributions of the order of the gauge-boson mass
cannot be neglected. This problem can be circumvented
by means of the Goldstone-boson equivalence theorem, ex-
pressing the Green functions involving longitudinal gauge
bosons by Green functions with the corresponding Gold-
stone bosons. The equivalence theorem for bare ampu-
tated Green function reads (we denote bare quantities by
an index 0)

pµ〈W0,µ(p) . . .〉 = M0,W (1 + δCW0)〈φ0(p) . . .〉,
pµ〈Z0,µ(p) . . .〉 = iM0,Z(1 + δCZ0)〈χ0(p) . . .〉,

(4.25)

where the dots represent arbitrary fields. In Born approx-
imation, this gives the well-known relations

M...W±
L ...

0 = M...φ±...
0 ,

M...ZL...
0 = iM...χ...

0 , (4.26)

between matrix elements. Note however, that besides the
lowest-order contribution, (4.25) contains non-trivial
higher-order corrections δCW0 , δCZ0 owing to the mix-
ing between gauge bosons and Goldstone bosons [20]. In
one-loop approximation these corrections can be expressed
in terms of bare self-energies involving Goldstone bosons
and longitudinal gauge bosons evaluated at the mass of
the gauge bosons,

δCW0 = −Σ
WW
L (M2

W ) +MWΣWφ(M2
W )

M2
W

,

δCZ0 = −Σ
ZZ
L (M2

Z) − iMZΣZχ(M2
Z)

M2
Z

. (4.27)

Since neither δC nor the counterterms involve double log-
arithms, the equivalence theorem can be applied to the
DL corrections in the naive way, i.e. without higher-order
corrections δCW0 , δCZ0 .

The renormalization of (4.25) leads to extra mass and
field-renormalization counterterms. Especially, the renor-
malization in the neutral sector involves mixing effects,
but as expected, the physical longitudinal Z-boson does
not mix with the photon. Keeping the unphysical scalar
fields unrenormalized, and absorbing correction factors
and counterterms into new renormalized correction fac-
tors δCφ, δCχ, we can write

pµ〈Wµ(p) . . .〉 = MW (1 + δCφ)〈φ0(p) . . .〉,
pµ〈Zµ(p) . . .〉 = iMZ(1 + δCχ)〈χ0(p) . . .〉, (4.28)

with

δCφ = δCW0 +
δMW
MW

+
1
2
δZWW ,

δCχ = δCZ0 +
δMZ
MZ

+
1
2
δZZZ . (4.29)

In LA we find

δCφ =
[
Cew
Φ − N tC

4s2w

m2
t

M2
W

]
l(µ2) +Q2

W l(M
2
W , λ

2),

δCχ =
[
Cew
Φ − N tC

4s2w

m2
t

M2
W

]
l(µ2). (4.30)

The result is written in terms of the eigenvalue of Cew for
the scalar doublet Φ and contains largemt-dependent con-
tributions originating from the mass counterterms (5.4),
which are proportional to the color factor N tC = 3. With
(4.28) and with the collinear factor for Goldstone bosons
S = φ±, χ [18],

δcollSS′(Φ) = δSS′Cew
Φ l(µ

2), (4.31)

the complete collinear corrections (4.2) for longitudinal
gauge bosons are obtained by means of amplitudes in-
volving Goldstone bosons,

δCM...W±
L ... =

[
δcollφ±φ±(Φ) + δCφ

]
M...φ±...

0

= δCφ±φ±(Φ) M...W±
L ...

0 ,

δCM...ZL... = i
[
δcollχχ (Φ) + δCχ

]M...χ...
0

= δCχχ(Φ) M...ZL...
0 , (4.32)
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with

δCφ±φ±(Φ) =
[
2Cew

Φ − N tC
4s2w

m2
t

M2
W

]
l(s) +Q2

W l
em(M2

W ),

δCχχ(Φ) =
[
2Cew

Φ − N tC
4s2w

m2
t

M2
W

]
l(s). (4.33)

Note that, up to pure electromagnetic terms, the cor-
rection factors (4.29) correspond to FRCs for Goldstone
bosons. In fact, in LA δCχ = δZχ/2 and δCφ = δZφ/2 +
Q2
W l(M

2
W , λ

2).

Higgs bosons

In LA the FRC for Higgs bosons reads

δZH =
[
2Cew

Φ − N tC
2s2w

m2
t

M2
W

]
l(µ2), (4.34)

with a large Yukawa contribution coming from the top-
quark loop. For the collinear factor we find [18]

δcollHH(Φ) = Cew
Φ l(µ

2), (4.35)

and the complete correction is

δCHH(Φ) =
[
2Cew

Φ − N tC
4s2w

m2
t

M2
W

]
l(s). (4.36)

Note that up to pure electromagnetic contributions, lon-
gitudinal gauge bosons and Higgs bosons receive the same
collinear SL corrections.

5 Logarithms connected
to parameter renormalization

Finally, there are logarithms related to UV divergences.
These logarithms originate from the renormalization of
the dimensionless parameters, i.e. the electric charge e,
the weak-mixing angle cw, and the mass ratios

ht =
mt
MW

, hH =
M2
H

M2
W

, (5.1)

and are obtained from the Born matrix element M0 =
M0(e, cw, ht, hH) in the high-energy limit by

δPRM =
δM0

δe
δe+

δM0

δcw
δcw

+
δM0

δht
δht +

δM0

δhH
δheffH

∣∣∣∣
µ2=s

. (5.2)

The mass ratios ht and hH are related to the top-quark
Yukawa coupling and to the scalar self-coupling, respec-
tively. They appear only in processes where these cou-
plings enter. The renormalization of the masses in the
propagators or in couplings with mass dimension yields
only mass-suppressed contributions which are irrelevant

in the high-energy limit in amplitudes that are not mass
suppressed.

The logarithms connected to parameter renormaliza-
tion can simply be obtained by the replacements e →
e+ δe, cw → cw + δcw, sw → sw + δsw, ht → ht + δht and
hH → hH+δheffH in the lowest-order matrix elements in the
high-energy limit. In the case of processes with longitudi-
nal gauge bosons, these substitutions must be performed
in the matrix elements resulting from the equivalence the-
orem.

Mixing-angle renormalization

In the on-shell scheme, the renormalization of the weak-
mixing angle (B.5) is given by

δc2w
c2w

=
δM2

W

M2
W

− δM
2
Z

M2
Z

=
ΣWT (M2

W )
M2
W

− Σ
Z
T (M2

Z)
M2
Z

. (5.3)

After tadpole renormalization, i.e. omitting the tadpole
diagrams, the mass counterterms give

δM2
W

M2
W

= − [bewW − 4Cew
Φ ] l(µ2) − N tC

2s2w

m2
t

M2
W

l(µ2),

δM2
Z

M2
Z

= − [bewZZ − 4Cew
Φ ] l(µ2) − N tC

2s2w

m2
t

M2
W

l(µ2), (5.4)

and contain large (m2
t/M

2
W )l(µ2) terms. However, these

terms cancel in (5.3), and using

bewAZ =
cw
sw

(bewZZ − bewW ), (5.5)

which follows from (B.42), we can express the mixing-
angle counterterm by theAZ component of the β-function:

δc2w
c2w

=
sw
cw
bewAZ l(µ

2). (5.6)

Charge renormalization

In the on-shell scheme, the coupling-constant countert-
erms are related to the FRCs by Ward identities. For the
electric charge counterterm we have

δZe = −1
2

[
δZAA +

sw
cw
δZZA

]

=
1
2
∂ΣAAT (k2)
∂k2

∣∣∣∣
k2=0

− sw
cw

ΣAZT (0)
M2
Z

= −1
2
bewAAl(µ

2) + δZem
e , (5.7)

where the pure electromagnetic part

δZem
e = −1

2
δZem
AA =

2
3

∑
f,i,σ �=t

NfCQ
2
fσ
l(M2

W ,m
2
fσ,i

) (5.8)
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is related to the running of the electromagnetic coupling
constant from zero momentum transfer to the electroweak
scale,

∆α(M2
W ) = 2δZem

e . (5.9)

The counterterms to the U(1) and SU(2) gauge couplings,

g1 =
e

cw
, g2 =

e

sw
, (5.10)

can be written as

δg1
g1

= δZe − 1
2
δc2w
c2w

= −1
2
b̃ewB l(µ

2) + δZem
e ,

δg2
g2

= δZe +
1
2
c2w
s2w

δc2w
c2w

= −1
2
b̃ewW l(µ

2) + δZem
e ,(5.11)

where we have used the relations (B.42).

Yukawa-coupling renormalization

In the on-shell scheme, the renormalization of the top-
quark mass is given by

δmt =
mt
2
[
Σt,L(m2

t ) +Σt,R(m2
t ) + 2Σt,S(m2

t )
]
. (5.12)

This leads to the following logarithmic contributions

δmt
mt

=
[

1
4s2w

+
1

8s2wc2w
+

3
2c2w
Qt− 3

c2w
Q2
t +

3
8s2w

m2
t

M2
W

]
l(µ2).

(5.13)
Using (5.4), the counterterm for ht reads

δht
ht

=
δmt
mt

− 1
2
δM2

W

M2
W

=
1
2
bewW l(µ

2)

+
[
− 3

4s2w
− 3

8s2wc2w
+

3
2c2w
Qt − 3

c2w
Q2
t

]
l(µ2)

+
3 + 2N tC

8s2w

m2
t

M2
W

l(µ2). (5.14)

The counterterm to the top-quark Yukawa coupling,

gt =
e√
2sw
ht, (5.15)

is given by

δgt
gt

=
1
2
∆α(M2

W ) − 1
2
bewW l(µ

2) +
δht
ht
. (5.16)

Scalar self-coupling renormalization

In the on-shell scheme, the renormalization of the Higgs
mass is given by

δM2
H = ΣH(M2

H), (5.17)

or in logarithmic accuracy

δM2
H

M2
H

=
1

2s2w

[
9M2

W

M2
H

(
1 +

1
2c4w

)
− 3

2

(
1 +

1
2c2w

)

+
15
4
M2
H

M2
W

]
l(µ2) +

N tC
2s2w

m2
t

M2
W

(
1 − 6

m2
t

M2
H

)
l(µ2).

(5.18)

The renormalization of the scalar self-couplings gets an
extra contribution from the tadpole renormalization (cf.
[22])

δt = −T =
1

eswMW

[
−3

2
M2
W

(
M2
Z

c2w
+ 2M2

W

)

− M2
H

4
(2M2

W +M2
Z + 3M2

H) + 2N tCm
4
t

]
l(µ2).

(5.19)

Including this in the renormalization of hH and using
(5.4), we find the effective counterterm

δheffH
hH

=
δM2

H

M2
H

− δM
2
W

M2
W

+
e

2sw
δt

MWM2
H

= bewW l(µ
2) +

3
2s2w

[
M2
W

M2
H

(
2 +

1
c4w

)

−
(

2 +
1
c2w

)
+
M2
H

M2
W

]
l(µ2)

+
N tC
s2w

m2
t

M2
W

(
1 − 2

m2
t

M2
H

)
l(µ2). (5.20)

The counterterm to the scalar self-coupling

λ =
e2

2s2w
hH (5.21)

is given by

δλ

λ
= ∆α(M2

W ) − bewW l(µ2) +
δheffH
hH

. (5.22)

The logarithms resulting from parameter renormalization
are the ones that determine the running of the couplings.

6 Applications to simple processes

In this section, the above results for Sudakov DL, collinear
or soft SL, and PR corrections are applied to simple pro-
cesses. We discuss relative corrections to polarized Born
amplitudes,

δA→B =
δMA→B

MA→B
0

. (6.1)

Note that the corrections to the cross sections are twice
as large. The complete logarithmic corrections are pre-
sented in analytic form. The numerical results are given



470 A. Denner, S. Pozzorini: One-loop leading logarithms in electroweak radiative corrections. I

for the coefficients of the genuine electroweak (ew) loga-
rithms. These are obtained by omitting the pure electro-
magnetic contributions that result from the gap between
the electromagnetic and the weak scale. Accordingly they
include the symmetric-electroweak contributions and the
l(s) terms originating from Z-boson loops in (3.7). In or-
der to keep track of the origin of the various l(s) terms, we
introduce different subscripts: collinear, Yukawa, PR con-
tributions, and the Z-boson contributions from (3.7) are
denoted by lC, lYuk, lPR, and lZ respectively. The numer-
ical results have been obtained using the following values
for the physical parameters:

MW = 80.35 GeV, MZ = 91.1867 GeV, mt = 175 GeV,

α =
1

137.036
, s2w = 1 − M

2
W

M2
Z

≈ 0.22356. (6.2)

6.1 Four-fermion neutral-current processes

The Sudakov DL corrections (3.7) and the collinear or soft
SL corrections (4.6) depend only on the quantum num-
bers of the external legs, and can be applied to 4-fermion
processes in a universal way. However, we are interested
also in the SSC and PR corrections, which depend on the
specific properties of the process. A general description
of these corrections requires a decomposition of the Born
matrix element into neutral-current (NC) and charged-
current (CC) contributions. In order to simplify the dis-
cussion we restrict ourselves to pure NC transitions. To
simplify notation, we consider processes involving a lep-
ton–antilepton and a quark–antiquark pair. However, our
analysis applies to the more general case of two fermion–
antifermion pairs of different isospin doublets. The four
external states and their momenta are chosen to be in-
coming, so that the process reads

l̄κσl
κ
σq
λ
ρ q̄
λ
ρ → 0, (6.3)

where κ, λ = R,L are the chiralities and σ, ρ = ± the
isospin indices. All formulas for the 4 → 0 process (6.3)
are expressed in terms of the particle eigenvalues INlκσ , INqλ

ρ
.

In the high-energy limit, the Born amplitude is given
by

Ml̄κσl
κ
σq

λ
ρ q̄

λ
ρ

0 = e2Rlκσqλ
ρ

A12

r12
, (6.4)

where

Rφiφk
:=

∑
N=A,Z

INφi
INφk

=
1

4c2w
YφiYφk

+
1
s2w
T 3φi
T 3φk
, (6.5)

and terms of orderM2
Z/r12, originating from the difference

between the photon and the Z-boson mass, are neglected.
Note that (6.5) and the following formulas have an impor-
tant chirality dependence, owing to the different values of
the group-theoretical operators in the representations for
right-handed and left-handed fermions.

l��

�l��

q��

�q��

A;Z

l��

�q��

A;Z

l��

�q��

Fig. 2. Lowest-order diagrams for l̄κσlκσ → q̄λ
ρ qλ

ρ and q̄λ
ρ lκσ →

q̄λ
ρ lκσ

The Sudakov soft–collinear corrections give according
to (3.7) the leading contribution

δLSCl̄κσl
κ
σq

λ
ρ q̄

λ
ρ

= −
∑

fµ
τ =lκσ,qλ

ρ

[
Cew
fµL(s) − 2(IZfµ

τ
)2 log

M2
Z

M2
W

lZ

+ Q2
fτ
Lem(s, λ2,m2

fτ
)

]
. (6.6)

The angular-dependent SSC corrections are obtained
from (3.12). The contribution of the neutral gauge bosons
N = A,Z is diagonal in the SU(2) indices, and factor-
izes into the Born matrix element (6.4) times the relative
correction∑

N=A,Z

δN,SSC
l̄κσl

κ
σq

λ
ρ q̄

λ
ρ

= −2l(s)

×
{

(Rlκσlκσ +Rqλ
ρ q

λ
ρ
) log

|r12|
s

+ 2Rlκσqλ
ρ

log
|r13|
|r14|

}
−2l(M2

W , λ
2)

×
[
(Q2
lσ +Q2

qρ
) log

|r12|
s

+ 2QlσQqρ
log

|r13|
|r14|

]
, (6.7)

where IN
f̄f̄

= −INff has been used and terms involving
l(M2

W ,M
2
Z) have been omitted. The contribution of the

charged gauge bosons to (3.12) gives
∑

Va=W ±
δVa,SSCMl̄κσlκσqλ

ρ q̄λ
ρ =

− 1
s2
w

l(s)
{(

δκLMl̄κ−σlκ−σqλ
ρ q̄λ

ρ

0 + δλLMl̄κσlκσqλ
−ρq̄λ

−ρ

0

)
log

|r12|
s

+ δκLδλL

[
δσρ

(
Ml̄κ−σlκσqλ

−ρq̄λ
ρ

0 + Ml̄κσlκ−σqλ
ρ q̄λ

−ρ

0

)
log

|r13|
s

− δ−σρ

(
Ml̄κ−σlκσqλ

ρ q̄λ
−ρ

0 + Ml̄κσlκ−σqλ
−ρq̄λ

ρ

0

)
log

|r14|
s

]}
, (6.8)

where the non-diagonal couplings (B.17) have been used.
On the left-hand side, the SU(2)-transformed Born ma-
trix elements involving the isospin partners lκ−σ, qλ−ρ, have
to be evaluated explicitly. The NC matrix elements (first
line) are obtained from (6.4), and for the CC amplitudes
we find up to mass-suppressed terms using the non-diag-
onal couplings (B.17),

Ml̄κ
σ′ lκ−σ′qλ

ρ′ q̄λ
−ρ′

0 =
e2

2s2w

A12

r12
. (6.9)
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Then, dividing (6.8) by the Born matrix element, we ob-
tain the relative correction∑
Va=W±

δVa,SSC
l̄κσl

κ
σq

λ
ρ q̄

λ
ρ

= − 1
s2wRlκσqλ

ρ

l(s)
{(
δκLRlκ−σq

λ
ρ

+ δλLRlκσqλ
−ρ

)
log

|r12|
s

+
δκLδλL
s2w

[
δσρ log

|r13|
s

− δ−σρ log
|r14|
s

]}
.

(6.10)

The angular-dependent corrections for 2 → 2 processes,
like those depicted in Fig. 2, are directly obtained from
(6.7) and (6.10) by substituting the invariants rkl by the
corresponding Mandelstam variables s, t, u. For the
s-channel processes l̄κσl

κ
σ → q̄λρ q

λ
ρ , we have to substitute

r12 = s, r13 = t, r14 = u, and the SSC corrections simplify
to

δSSCl̄κσl
κ
σ→q̄λ

ρ q
λ
ρ

= −l(s)
[
4Rlκσqλ

ρ
log
t

u
+
δκLδλL
s4wRlκσqλ

ρ

×
(
δσρ log

|t|
s

− δ−σρ log
|u|
s

)]

− 4QlσQqρ l(M
2
W , λ

2) log
t

u
. (6.11)

If one subtracts the photonic contributions from (6.11)
one finds agreement with (50) of [7]. For the t-channel pro-
cesses q̄λρ l

κ
σ → q̄λρ l

κ
σ, the substitution reads r12 = t, r13 =

s, r14 = u, whereas for qλρ l
κ
σ → qλρ l

κ
σ one has to choose

r12 = t, r13 = u, r14 = s.
The collinear or soft SL contributions (4.6) give

δCl̄κσlκσqλ
ρ q̄

λ
ρ

=
∑

fµ
τ =lκσ,qλ

ρ

[
3Cew

fµ lC

− 1
4s2w

(
(1 + δµR)

m2
fτ

M2
W

+ δµL
m2
f−τ

M2
W

)
lYuk

+ 2Q2
fτ
lem(m2

fτ
)
]
, (6.12)

and the Yukawa contribution depends on the chiralities µ
and on the masses of the fermions fµτ and their isospin
partners fµ−τ .

The PR logarithms for NC processes are obtained from
the renormalization of the electric charge and the weak-
mixing angle in the Born amplitude (6.4). Using (5.6) and
(5.7) this gives the relative correction

δPRl̄κσlκσqλ
ρ q̄

λ
ρ

=
[
sw
cw
bewAZ∆lκσqλ

ρ
− bewAA

]
lPR + 2δZem

e , (6.13)

where

∆φiφk
:=

− 1
4c2w
YφiYφk

+ c2w
s4w
T 3φi
T 3φk

Rφiφk

(6.14)

gives a chirality-dependent contribution owing to mixing-
angle renormalization of (6.5), and bewAA represents the uni-
versal contribution of electric charge renormalization.

In order to give an impression of the size of the genuine
electroweak part of the corrections, we consider the rela-
tive corrections δκeκf ,ew

e+e−→f̄f to NC processes e+e− → f̄f

with chiralities κe, κf = R or L, and give the numeri-
cal coefficients of the electroweak logarithms for the cases
f = µ, t, b. For muon-pair production we have

δRR,ewe+e−→µ+µ− = −2.58L(s) − 5.15
(

log
t

u

)
l(s) + 0.29lZ

+ 7.73lC + 8.80lPR,

δRL,ewe+e−→µ+µ− = −4.96L(s) − 2.58
(

log
t

u

)
l(s) + 0.37lZ

+ 14.9lC + 8.80lPR,

δLL,ewe+e−→µ+µ− = −7.35L(s)

−
(

5.76 log
t

u
+ 13.9 log

|t|
s

)
l(s) + 0.45lZ

+ 22.1lC − 9.03lPR, (6.15)

and δLR,ewe+e−→µ+µ− = δRL,ewe+e−→µ+µ− . For top-quark pair pro-
duction we find

δRR,ewe+e−→t̄t = −1.86L(s) + 3.43
(

log
t

u

)
l(s) + 0.21lZ

+ 5.58lC − 10.6lYuk + 8.80lPR,

δRL,ewe+e−→t̄t = −4.68L(s) + 0.86
(

log
t

u

)
l(s) + 0.50lZ

+ 14.0lC − 5.30lYuk + 8.80lPR,

δLR,ewe+e−→t̄t = −4.25L(s) + 1.72
(

log
t

u

)
l(s) + 0.29lZ

+ 12.7lC − 10.6lYuk + 8.80lPR,

δLL,ewe+e−→t̄t = −7.07L(s)

+
(

4.90 log
t

u
− 16.3 log

|u|
s

)
l(s) + 0.58lZ

+ 21.2lC − 5.30lYuk − 12.2lPR, (6.16)

and for bottom-quark pair production we obtain

δRR,ew
e+e−→b̄b = −1.43L(s) − 1.72

(
log
t

u

)
l(s) + 0.16lZ

+ 4.29lC + 8.80lPR,

δRL,ew
e+e−→b̄b = −4.68L(s) + 0.86

(
log
t

u

)
l(s) + 0.67lZ

+ 14.0lC − 5.30lYuk + 8.80lPR,

δLR,ew
e+e−→b̄b = −3.82L(s) − 0.86

(
log
t

u

)
l(s) + 0.24lZ

+ 11.5lC + 8.80lPR,

δLL,ew
e+e−→b̄b = −7.07L(s)

−
(

4.04 log
t

u
+ 19.8 log

|t|
s

)
l(s) + 0.75lZ

+ 21.2lC − 5.30lYuk − 16.6lPR. (6.17)

The Mandelstam variables are defined as usual, i.e. s =
(pe+ + pe−)2, t = (pe+ − pf̄ )2 and u = (pe+ − pf )2.



472 A. Denner, S. Pozzorini: One-loop leading logarithms in electroweak radiative corrections. I

Note that the corrections to light quark-pair production
f = u, c(d, s) are obtained from the results for heavy
quarks f = t(b) by omitting the Yukawa contributions. In-
dependently of the process and of the chirality, the DL and
SL terms appear in the combination (−L(s)+3lC), so that
the negative DL contribution becomes dominating only
above 400 GeV, and at s1/2 = 1 TeV the cancellation be-
tween SL and DL corrections is still important. The SU(2)
interaction, which is stronger than the U(1) interaction,
generates large corrections for left-handed fermions. Also
the PR logarithms show a strong chirality dependence: the
RR and RL transitions receive positive corrections from
the running of the abelian U(1) coupling, whereas the LL
transition is dominated by the non-abelian SU(2) interac-
tion and receives negative PR corrections.

6.2 Production of W -boson pairs in e+e− annihilation

We consider the polarized scattering process4 e+κ e
−
κ →

W+
λ+
W−
λ− , where κ = R,L is the electron chirality, and

λ± = 0,± represent the gauge-boson helicities. In the
high-energy limit only the following helicity combinations
are non-suppressed [4,23]: the purely longitudinal final
state (λ+, λ−) = (0, 0), which we denote by (λ+, λ−) =
(L,L), and the purely transverse and opposite final state
(λ+, λ−) = (±,∓), which we denote by (λ+, λ−) = (T,T).
All these final states can be written as (λ+, λ−) = (λ,−λ).
The Mandelstam variables are s = (pe+ + pe−)2, t =
(pe+ − pW+)2 ∼ −s(1− cos θ)/2, and u = (pe+ − pW−)2 ∼
−s(1+cos θ)/2, where θ is the angle between e+ andW+.
The Born amplitude gets contributions of the s- and t-
channel diagrams in Fig. 3 and reads

Me+κ e
−
κ →W+

L W
−
L

0 = e2Re−
κ φ−

As
s
,

Me+L e
−
L →W+

TW
−
T

0 =
e2

2s2w

At
t
, (6.18)

up to terms of order M2
W /s, where R is defined in (6.5).

The amplitude involving longitudinal gauge bosons WL
is expressed by the amplitude involving Goldstone bosons
φ± and is dominated by the s-channel exchange of neutral
gauge bosons. The amplitude for transverse gauge-boson
production is dominated by the t-channel contribution,
which involves only the SU(2) interaction. Therefore, it is
non-vanishing only for left-handed electrons in the initial
state.

The DL corrections read

δLSC
e+κ e

−
κ →W+

λ W
−
−λ

= −
∑

ϕ=e−
κ ,W

−
λ

[
Cew
ϕ L(s) − 2(IZϕ )2 log

M2
Z

M2
W

lZ

+Q2
ϕL

em(s, λ2,m2
ϕ)

]
. (6.19)

4 The momenta and fields of the initial states are incoming,
and those of the final states are outgoing

e�

e+

��

�+

A;Z

e�

e+

�e

W�

T

W+
T

Fig. 3. Dominant lowest-order diagrams for e+e− → φ+φ−

and e+e− → W+
T W −

T

Here and in the following formulas, for longitudinally po-
larized gauge bosons W±

L the quantum numbers of the
Goldstone bosons φ± have to be used.

The SSC corrections are obtained by applying (3.12)
to the crossing symmetric process e+κ e

−
κW

−
λ W

+
−λ → 0. The

contribution of the neutral gauge bosons N = A,Z gives

∑
N=A,Z

δN,SSC
e+κ e

−
κ →W+

λ W
−
−λ

= −4Re−
κW

−
λ
l(s) log

t

u

− 4Qe−QW− l(M2
W , λ

2) log
t

u
,

(6.20)

and corresponds to the result (6.7) for 4-fermion s-channel
NC processes. The contribution of soft W±-bosons to
(3.12) yields

∑
Va=W±

δVa,SSCMe+κ e
−
κ φ

−φ+
= −2l(s)δκL√

2sw

×
∑
S=H,χ

[
I+S Mν̄κe

−
κ Sφ

+

0 − I−
S Me+κ νκφ

−S
0

]
log

|t|
s
,

∑
Va=W±

δVa,SSCMe+L e
−
LW

−
T W

+
T = − 2l(s)√

2sw

×
∑

N=A,Z

[
I+NMν̄Le

−
LNTW

+
T

0 − I−
NMe+L νLW

−
T NT

0

]
log

|t|
s
,

(6.21)

where, depending on the polarization of the final states,
one has to use the non-diagonal W± couplings to Gold-
stone bosons (I±

S ) defined in (B.22) or the W± couplings
to gauge bosons (I±

N ) defined in (B.26). The SU(2)-trans-
formed Born matrix elements on the left-hand side of
(6.21) have to be evaluated explicitly. For Goldstone
bosons, we have s-channel CC amplitudes

Mν̄κe
−
κ Sφ

+

0 = −e2I−
S

δκL√
2sw

As
s
,

Me+κ νκφ
−S

0 = e2I+S
δκL√
2sw

As
s
, (6.22)

similar to the NC Born amplitude in (6.18), whereas for
transverse gauge bosons we have

Mν̄κe
−
κNTW

+
T

0 = Me+κ νκW
−
T NT

0

= e2
δκL√
2sw

(
INνκ

At
t

+ IN
e−

κ

Au
u

)
, (6.23)
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where At = Au up to mass-suppressed contributions. In
contrast to (6.18), the transformed amplitude (6.23) re-
ceives contributions from both t- and u-channels. Express-
ing (6.21) as relative corrections to the Born matrix ele-
ments we obtain

∑
Va=W±

δVa,SSC
e+κ e

−
κ →W+

L W
−
L

= −l(s) δκL
s4wRe−

L φ
−

log
|t|
s
,

∑
Va=W±

δVa,SSC
e+L e

−
L →W+

TW
−
T

= − 2
s2w

(
1 − t

u

)
l(s) log

|t|
s
.

(6.24)

The SL corrections can be read off from (4.6), (4.10), and
(4.33),

δC
e+κ e

−
κ →W+

L W
−
L

=
[
3Cew

eκ
+ 4Cew

Φ

]
lC − 3

2s2w

m2
t

M2
W

lYuk

+
∑
ϕ=e,W

2lem(m2
ϕ),

δC
e+L e

−
L →W+

TW
−
T

=
[
3Cew

eL + bewW
]
lC +

∑
ϕ=e,W

2lem(m2
ϕ).

(6.25)

Despite of their different origin, the lC contributions for
longitudinal and transverse gauge bosons have similar nu-
merical values 4Cew

Φ = 14.707 and bewW = 14.165. The
strong W -polarization dependence of δC is due to the
large Yukawa contributions occurring only for longitudinal
gauge bosons.

The PR logarithms are obtained from the renormal-
ization of (6.18) and read according to (5.6)–(5.11)

δPR
e+κ e

−
κ →W+

L W
−
L

=
[
sw
cw
bewAZ∆e−

κ φ− − bewAA
]
lPR + 2δZem

e ,

δPR
e+L e

−
L →W+

TW
−
T

= −bewW lPR + 2δZem
e , (6.26)

where ∆ is defined in (6.14). Note that for transverse
polarizations, the symmetric-electroweak parts of the PR
corrections (−bewW lPR) and the collinear SL corrections
originating from external gauge bosons (bewW lC) cancel. As
illustrated in Appendix A, this kind of cancellation takes
place for all processes with production of arbitrary many
charged or neutral transverse gauge bosons in fermion–
antifermion annihilation.

The results (6.19)–(6.26) can be compared with those
of [4]. After subtracting the real soft-photonic corrections
from the results of [4] we find complete agreement for the
logarithmic corrections. The coefficients for the various
electroweak logarithmic contributions to the relative cor-
rections δκλe+e−→W+W− read

δLL,ewe+e−→W+W− = −7.35L(s)

−
(

5.76 log
t

u
+ 13.9 log

|t|
s

)
l(s)

+ 0.45lZ + 25.7lC − 31.8lYuk − 9.03lPR,
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Fig. 4. Dependence of the electroweak correction factor
δew

e+
κ e−

κ →W+
λ

W −
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on the scattering angle θ at s1/2 = 1TeV for

polarizations RL, LL, and LT

δRL,ewe+e−→W+W− = −4.96L(s) − 2.58
(

log
t

u

)
l(s) + 0.37lZ

+ 18.6lC − 31.8lYuk + 8.80lPR,

δLT,ewe+e−→W+W− = −12.6L(s)

− 8.95
[
log
t

u
+
(

1 − t

u

)
log

|t|
s

]
l(s)

+ 1.98lZ + 25.2lC − 14.2lPR. (6.27)

Recall that the pure electromagnetic contributions have
been omitted. These correction factors are shown in Figs. 4
and 5 as a function of the scattering angle and the energy,
respectively. If the electrons are left-handed, large negative
DL and PR corrections originate from the SU(2) interac-
tion. Instead, for right-handed electrons the DL correc-
tions are smaller, and the PR contribution is positive. For
transverse W -bosons, there are no Yukawa contributions
and the other contributions are in general larger than for
longitudinal W -bosons. Nevertheless, for energies around
1 TeV, the corrections are similar. Finally, note that the
angular-dependent contributions are very important for
the LL and LT corrections: at s1/2 ≈ 1 TeV they vary
from +15% to −5% for scattering angles 30◦ < θ < 150◦,
whereas the angular-dependent part of the RL corrections
remains between ±2%.

6.3 Production of neutral gauge-boson pairs
in e+e− annihilation

We consider the polarized scattering process e+κ e
−
κ →

N1
TN

2
T with incoming electrons of chirality κ = R,L and

outgoing gauge bosons Nk = A,Z. The amplitude is non-
suppressed only for transverse and opposite gauge-boson
polarizations (λ1, λ2) = (±,∓) [24]. In lowest order the t-
and u-channel diagrams (Fig. 6) yield

Me+κ e
−
κ →N1

TN
2
T

0 = e2IN
1

e−
κ
IN

2

e−
κ

[
At
t

+
Au
u

]
(6.28)

up to terms of order M2
W /s, where the Mandelstam vari-

ables are defined as in Sect. 6.2. In the ultra-relativistic
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limit the amplitude is symmetric with respect to exchange
of the gauge bosons, and up to mass-suppressed contribu-
tions we have

At = Au. (6.29)

The DL corrections read [cf. (3.7)]

δLSCMe+κ e
−
κ →N1

TN
2
T

= −
[
Cew
eκ
L(s) − 2(IZeκ

)2 log
M2
Z

M2
W

lZ + Lem(s, λ2,m2
e)
]

×Me+κ e
−
κ →N1

TN
2
T

0 − 1
2

[
Cew
N ′N1Me+κ e

−
κ →N ′

TN
2
T

0

+Cew
N ′N2Me+κ e

−
κ →N1

TN
′
T

0

]
L(s), (6.30)

with a non-diagonal contribution associated with the ex-
ternal neutral gauge bosons. Using

Cew
N ′NI

N ′
=

2
s2w
UNW 3(θw)ĨW

3
=

2
s2w
UNW 3(θw)

T 3

sw
,

(6.31)
where UNÑ (θw) is the Weinberg rotation defined in (B.4),
we can derive a correction relative to the Born matrix
element,

δLSC
e+κ e

−
κ →N1

TN
2
T

=

−
[
Cew
eκ
L(s) − 2(IZeκ

)2 log
M2
Z

M2
W

lZ + Lem(s, λ2,m2
e)
]

−
T 3
e−

κ

s3w

∑
k=1,2

UNkW 3(θw)
IN

k

e−
κ

L(s). (6.32)

Note that only the SU(2) component of the neutral gauge
bosons is self-interacting and can exchange soft gauge
bosons. For this reason, only left-handed electrons (T 3 �=
0) yield a contribution to (6.31) and to the corresponding
term in (6.32).

Angular-dependent logarithmic corrections (3.12) arise
only from the exchange of soft W±-bosons between ini-
tial and final states, and with the non-diagonal couplings
(B.26)

δSSCMe+κ e
−
κN

1
TN

2
T =

2l(s)δκL√
2sw

×
{[
I+N1Mν̄κe

−
κW

+
T N

2
T

0 − I−
N2Me+κ νκN

1
TW

−
T

0

]
log

|t|
s

+
[
I+N2Mν̄κe

−
κN

1
TW

+
T

0 − I−
N1Me+κ νκW

−
T N

2
T

0

]
log

|u|
s

}
.

(6.33)

The SU(2)-transformed Born matrix elements on the left-
hand side are given by

Mν̄κe
−
κW

+
T NT

0 = Me+κ νκNTW
−
T

0

= e2
δκL√
2sw

(
IN
e−

κ

At
t

+ INνκ

Au
u

)
, (6.34)

and by (6.23) with At = Au. Expressing the correction
(6.33) relative to the Born matrix element (6.28), we ob-
tain

δSSC
e+κ e

−
κ →N1

TN
2
T

=
δκL
s2w
l(s)

2∑
k=1

∑
r=t,u

IN
k

W−

IN
k

e−
L

×

r′
s

+
r

s

IN
k′

νL

IN
k′

e−
L


 log

|r|
s
, (6.35)

where r′ = (t, u) for r = (u, t), and k′ = (1, 2) for k =
(2, 1).

Using (4.6) and (4.22) we obtain for the SL corrections
relative to the Born matrix element

δC
e+κ e

−
κ →N1

TN
2
T

= 3Cew
eκ
lC + 2lem(m2

e) + δCN1
T

+ δCN2
T
, (6.36)

with

δCA := δCAA(VT) =
1
2
bewAAlC − δZem

e ,

δCZ := δCZZ(VT) + δCAZ(VT)
Me+κ e

−
κ →ATNT

0

Me+κ e
−
κ →ZTNT

0

=

[
1
2
bewZZ + bewAZ

IA
e−

κ

IZ
e−

κ

]
lC. (6.37)

The PR logarithms result from the renormalization of
(6.28). As shown in Appendix A, they are opposite to the
collinear SL corrections up to pure electromagnetic loga-
rithms. Relative to the Born matrix element they read

δPR
e+κ e

−
κ →N1

TN
2
T

= δPRN1
T

+ δPRN2
T
, (6.38)
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with

δPRA := −δCA, δPRZ := −δCZ + δZem
e . (6.39)

For right-handed electrons, κ = R, the various electroweak
logarithmic contributions to the relative corrections
δκTe+e−→N1N2 give

δRT,ewe+e−→AA = −1.29L(s) + 0.15lZ + 0.20lC + 3.67lPR,

δRT,ewe+e−→AZ = −1.29L(s) + 0.15lZ − 11.3lC + 15.1lPR,

δRT,ewe+e−→ZZ = −1.29L(s) + 0.15lZ − 22.8lC + 26.6lPR.
(6.40)

Note that there is no angular dependence. The PR con-
tributions are numerically compensated by the SL and
DL Sudakov contributions, and at s1/2 = 1 TeV the elec-
troweak logarithmic corrections are less than 1%. For left-
handed electrons, we find

δLT,ewe+e−→AA = −8.15L(s) + 8.95F1(t)l(s) + 0.22lZ
+ 7.36lC + 3.67lPR, (6.41)

δLT,ewe+e−→AZ = −12.2L(s) + (17.0F1(t) − 8.09F2(t))l(s)
+ 0.22lZ + 28.1lC − 17.1lPR,

δLT,ewe+e−→ZZ = −16.2L(s) + (25.1F1(t) − 45.4F2(t))l(s)
+ 0.22lZ + 48.9lC − 37.9lPR,

with the (t, u)-symmetric angular-dependent functions

F1(t) : =
u

s
log

|t|
s

+
t

s
log

|u|
s
,

F2(t) : =
t

s
log

|t|
s

+
u

s
log

|u|
s
. (6.42)

For left-handed electrons all contributions are larger than
for right-handed electrons owing to the SU(2) interac-
tion. The non-abelian effects are particularly strong for
Z-boson pair production (see Figs. 7, 8), where the to-
tal corrections are almost −25% for s1/2 = 1 TeV and
θ = 90◦. The angular-dependent contribution is forward–
backward symmetric, and for ZZ production it varies from
+15% to −5% for scattering angles 30◦ < θ < 90◦.

7 Conclusion

We have considered general electroweak processes at high
energies. We have given recipes and explicit formulas for
the extraction of the one-loop leading electroweak log-
arithms. Like the well-known soft–collinear double log-
arithms, also the collinear single logarithms can be ex-
pressed as simple correction factors that are associated
with the external particles of the considered process. Up
to electromagnetic terms, the collinear SL corrections for
external longitudinal gauge bosons and for Higgs bosons
are equal. The subleading single logarithms arising from
the soft–collinear limit are angular-dependent and can be
associated to pairs of external particles. Their evaluation
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requires in general all matrix elements that are linked to
the lowest-order matrix element via global SU(2) rota-
tions. Finally, the logarithms originating from coupling-
constant renormalization are associated with the explicit
dependence of the lowest-order matrix element on the cou-
pling parameters.

Our results are applicable to general amplitudes that
are not mass suppressed, as long as all invariants are
large compared to the masses. As illustration, we have
applied our general results to fermion–antifermion pro-
duction and the pair production of charged and neutral
gauge bosons. For processes involving resonances, like in
e+e− → W+W− → 4f , the corresponding invariants are
evidently not large and our results must be applied to the
subprocesses e+e− →W+W− and W± → 2f .

Acknowledgements. We thank W. Beenakker, M. Melles,
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Appendix A
Production of transverse gauge bosons
in fermion–antifermion annihilation

For transverse W -pair production, we have observed that
the symmetric-electroweak parts of the PR contributions
and of the collinear SL corrections originating from the
external gauge bosons cancel exactly. Here we illustrate
how this cancellation takes place when arbitrarily many
charged or neutral gauge bosons are produced in fermion–
antifermion annihilation. To be specific, we consider elec-
tron–positron annihilation into n transverse charged
gauge-boson pairs and m transverse neutral gauge bosons
N = A,Z,

e+κ e
−
κ →W+

1,T . . .W
+
n,TW

−
1,T . . .W

−
n,TN1,T . . . Nm,T.

(A.1)
Collinear SL contributions give the correction factor

δCMe+e−W+
1 ...W

−
n N1...Nm =[

2δCee(Lκ) + 2nδCWW (VT)
]Me+e−W+

1 ...W
−
n N1...Nm

+
m∑
k=1

δCN ′
kNk

(VT)Me+e−W+
1 ...W

−
n N1...N

′
k...Nm

0 , (A.2)

and owing to mixing we have a non-diagonal factor (4.22)
in the neutral sector.

For the processes considered, it turns out that in the
high-energy limit the contribution of coupling-constant
renormalization can be written as a sum over the exter-
nal gauge bosons. This can be easily shown, starting from
the unbroken phase. If one considers the production of n
W -boson pairs and m neutral gauge bosons Ñ = B,W 3,

e+κ e
−
κ →W+

1,T . . .W
+
n,TW

−
1,T . . .W

−
n,TÑ1,T . . . Ñm,T,

(A.3)
the Born matrix element receives a factor gW = g2 for
each SU(2) gauge boson and a factor gB = g1 for each U(1)
gauge boson, and neglecting masses in the propagators we
arrive at

M̃e+e−W+
1 ...W

−
n Ñ1...Ñm

0

=

(
g2n2

m∏
k=1

gÑk

)
Ã
e+e−W+

1 ...W
−
n Ñ1...Ñm

0 . (A.4)

The coupling-constant renormalization gives

δPR =

(
2n
δg2
g2

+
m∑
k=1

δgÑk

gÑk

)∣∣∣∣∣
µ2=s

. (A.5)

In the broken phase, the charged gauge bosons remain
pure SU(2) eigenstates, and only the neutral gauge bosons
mix. In the high-energy limit, if we neglect the gauge-
boson masses in propagators, we can decompose the Born
matrix elements into the symmetric amplitudes (A.4) us-
ing the Weinberg rotation. For the production ofm neutral

gauge bosons (n = 0), we find

Me+e−N1...Nm
0 = M̃e+e−Ñ1...Ñm

0

[
m∏
k=1

U−1
ÑkNk

(θw)

]

= Ãe
+e−Ñ1...Ñm
0

[
m∏
k=1

U−1
ÑkNk

(θw)gÑk

]
,

(A.6)

where sums over Ñ1 . . . Ñm are implicitly understood, and
the renormalization of coupling constants and mixing an-
gle gives

δPRMe+e−N1...Nm

= Ãe
+e−Ñ1...Ñm
0

m∑
l=1

{(
δU−1
ÑlNl

(θw)gÑl
+ U−1

ÑlNl
(θw)δgÑl

)

×

 m∏
k=1,k �=l

U−1
ÑkNk

(θw)gÑk


}

=
m∑
l=1

Me+e−N1...N
′
l ...Nm

0

(
UN ′

l Ñl
(θw)δU−1

ÑlNl
(θw)

+UN ′
l Ñl

(θw)
δgÑl

gÑl

U−1
ÑlNl

(θw)

)
. (A.7)

Therefore, the complete PR correction can be written as

δPRMe+e−W+
1 ...W

−
n N1...Nm =

2nδPRWWMe+e−W+
1 ...W

−
n N1...Nm

+
m∑
k=1

δPRN ′
kNk

Me+e−W+
1 ...W

−
n N1...N

′
k...Nm

0 , (A.8)

with the correction factors

δPRWW =
δg2
g2

∣∣∣∣
µ2=s

= −1
2
bewW l(s) + δZem

e ,

δPRN ′N =
{[
U(θw)δU−1(θw)

]
N ′N +

(
δg

g

)
N ′N

}∣∣∣∣
µ2=s

= −1
2

[EN ′Nb
ew
AZ + bewN ′N ] l(s) + δZem

e δN ′N , (A.9)

where we have used (4.16), UδU−1 = −δUU−1, and the
coupling-renormalization matrix(

δg

g

)
N ′N

:= UN ′Ñ (θw)
δgÑ
gÑ
U−1
ÑN

(θw)

= −1
2
bewN ′N l(µ

2) + δZem
e δN ′N , (A.10)

generated by Weinberg rotation of the two gauge-coupling
counterterms (5.11).

Comparing the PR and collinear SL contributions for
transverse gauge bosons, (A.9), (4.10) and (4.22), we find
that all symmetric-electroweak logarithms are related to
the β-function and cancel in the sum so that only large
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logarithms of pure electromagnetic origin contribute to
the complete SL corrections,

δCWW (VT) + δPRWW = δZem
e +Q2

W l
em(M2

W ),

δCN ′N (VT) + δPRN ′N = δZem
e δN ′ZδNZ . (A.11)

Note that this cancellation between PR and collinear log-
arithms occurs already in the symmetric basis and is a
consequence of Ward identities, like the identity between
the electric charge and the photonic FRC in QED. In
the physical basis, both coupling and field-renormalization
constants receive additional terms owing to mixing of the
neutral gauge bosons, but also these terms cancel. The
same relation holds for an arbitrary fermion–antifermion
pair in the initial state.

Appendix B
Representation of SU(2) × U(1) operators

Generators of the gauge group and various group-theoret-
ical matrices used in the article are presented in detail.
Our notation for the components of such matrices is

Mϕiϕi′ (ϕ), (B.1)

where the argument ϕ represents a multiplet and fixes
the representation for the matrix M , whereas ϕi are the
components of the multiplet. In this appendix we give ex-
plicit representations for left- and right-handed fermions
(ϕ = fL, fR, f̄L, f̄R), for gauge bosons (ϕ = V ) and for
the scalar doublet (ϕ = Φ). Where the representation is
implicit, the argument ϕ is omitted. For the eigenvalues
of diagonal matrices we write

Mϕiϕi′ = δϕiϕi′Mϕi
. (B.2)

Symmetric and physical gauge fields
and gauge couplings

For gauge bosons we take special care of the effect of
Weinberg rotation (mixing). The symmetric basis Ṽa =
B,W 1,W 2,W 3, is formed by the U(1) and SU(2) gauge
bosons, which transform as a singlet and a triplet, respec-
tively, and quantities in this basis are denoted by a tilde.
The physical basis is given by the charge and mass eigen-
states Va = A,Z,W+,W−. The physical charged gauge
bosons,

W± =
W 1 ∓ iW 2

√
2

, (B.3)

are pure SU(2) states, whereas in the neutral sector the
SU(2) and U(1) components mix, and the physical fields
N = A,Z are related to the symmetric fields Ñ = B,W 3

by the Weinberg rotation,

N = UNÑ (θw)Ñ , U(θw) =

(
cw −sw
sw cw

)
, (B.4)

with cw = cos θw and sw = sin θw. In the on-shell renor-
malization scheme the Weinberg angle is fixed by

cw =
MW
MZ

. (B.5)

The gauge couplings are given by the generators of global
gauge transformations (2.4). In the symmetric basis, they
read

ĨB = − 1
cw

Y

2
, ĨW

a

=
1
sw
T a, a = 1, 2, 3, (B.6)

where Y is the weak hypercharge and T a are the compo-
nents of the weak isospin. In the physical basis we have

IA = −Q, IZ =
T 3 − s2wQ
swcw

,

I± =
1
sw
T± =

1
sw

T 1 ± iT 2√
2

, (B.7)

with Q = T 3 + Y/2.

Casimir operators

The SU(2) Casimir operator is defined by

C =
3∑
a=1

(T a)2. (B.8)

Loops involving charged gauge bosons are often associated
with the product of the non-abelian charges

(IW )2 :=
∑
σ=±

[
IσI−σ] =

[
C − (T 3)2

s2w

]
, (B.9)

and if one includes the contributions of neutral gauge
bosons, one obtains the effective electroweak Casimir op-
erator

Cew :=
∑

Va=A,Z,W±
IVaI V̄a =

1
c2w

(
Y

2

)2

+
1
s2w
C. (B.10)

For irreducible representations (fermions and scalars) with
isospin Tϕ, the SU(2) Casimir operator is proportional to
the identity and reads

Cϕiϕi′ (ϕ) = δϕiϕi′Cϕ, Cϕ = Tϕ[Tϕ + 1]. (B.11)

For gauge bosons we have a reducible representation. In
the symmetric basis C̃(V ) is a diagonal 4 × 4 matrix

C̃ṼaṼb
= δabC̃Ṽa

, (B.12)

with U(1) and SU(2) eigenvalues

C̃B = 0, C̃Wa = 2. (B.13)

The transformation of a matrix like (B.12) to the physical
basis, yields a 4 × 4 matrix with diagonal 2 × 2 block
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structure, i.e. without mixing between the charged sector
(W±) and the neutral sector (N = A,Z). In the neutral
sector C(V ) becomes non-diagonal owing to mixing of the
U(1) and SU(2) eigenvalues,

CNN ′ =
[
U(θw)C̃U−1(θw)

]
NN ′

= 2

(
s2w −swcw

−swcw c2w

)
,

(B.14)
whereas in the charged sector it remains diagonal,

CWσWσ′ = 2δσσ′ . (B.15)

Explicit values for Y , Q, T 3, C, (IA)2, (IZ)2, (IW )2,
Cew, and I±

Here we list the eigenvalues (or components) of the opera-
tors Y , Q, T 3, C, (IA)2, (IZ)2, (IW )2, Cew, and I±, that
have to be inserted in our general results. For incoming
particles or outgoing antiparticles the values for the parti-
cles have to be used, for incoming antiparticles or outgoing
particles the values of the antiparticles.

Fermions

The fermionic doublets fκ = (fκ+, f
κ
−)T transform accord-

ing to the fundamental or trivial representations, depend-
ing on the chirality κ = L,R. Except for I±, the above
operators are diagonal. For lepton and quark doublets,
Lκ = (νκ, lκ)T and Qκ = (uκ, dκ)T, their eigenvalues
are (see (B.16) on top of the next page). For left-handed
fermions, I±(fL) have the non-vanishing components

Iσfσ′f−σ′ (f
L) = −Iσf̄−σ′ f̄σ′ (f̄

L) =
δσσ′√
2sw
, (B.17)

whereas for right-handed fermions I±(fR) = 0.

Scalar fields

The symmetric scalar doublet, Φ = (φ+, φ0)T, Φ∗ = (φ−,
φ∗
0)

T, transforms according to the fundamental represen-
tation, and its quantum numbers correspond to those of
left-handed leptons (B.16) with

φ+ ↔ l̄L,

φ0 ↔ ν̄L, φ− ↔ lL, φ∗
0 ↔ νL. (B.18)

After symmetry breaking the neutral scalar fields are pa-
rameterized by the mass eigenstates

φ0 =
1√
2

(v +H + iχ). (B.19)

With respect to this basis S = (H,χ) the operators Q,C,
(IN )2, and Cew remain unchanged, while T 3 and Y be-
come non-diagonal in the neutral components

T 3SS′ = −
(
Y

2

)
SS′

= −1
2

(
0 −i
i 0

)
, (B.20)

and

IZHχ = −IZχH =
−i

2swcw
. (B.21)

The W± couplings read

Iσ
Sφ−σ′ = −Iσ

φσ′S = δσσ′IσS , (B.22)

with

IσH := − σ

2sw
, Iσχ := − i

2sw
. (B.23)

Gauge fields

For transversely polarized external gauge bosons we have
to use the adjoint representation. In the symmetric basis
the diagonal operators have eigenvalues

Y/2 Q T 3 C (IA)2 (IZ)2 (IW )2 Cew

W± 0 ±1 ±1 2 1 c2w
s2w

1
s2w

2
s2w

W 3 0 0 0 2 0 0 2
s2w

2
s2w

B 0 0 0 0 0 0 0 0
(B.24)

In the neutral sector, owing to the Weinberg rotation,
the non-trivial operators Cew, C and (IW )2 become non-
diagonal in the physical basis N = A,Z, with components

Cew
NN ′ =

1
s2w
CNN ′ = (IW )2NN ′ =

2
s2w

(
s2w −swcw

−swcw c2w

)
,

(B.25)
whereas the trivial operators Y/2 = Q = T 3 = (IA)2 =
(IZ)2 = 0 remain unchanged. In the physical basis the
non-vanishing components of the I± couplings are

Iσ
NW−σ′ = −Iσ

Wσ′N = δσσ′IσN , (B.26)

with
IσA = −σ, IσZ = σ

cw
sw
. (B.27)

Dynkin operator

The group-theoretical object appearing in gauge-boson
self-energies is the Dynkin operator

Dew
ab (ϕ) := Tr

{
Ia(ϕ)Ib(ϕ)

}
. (B.28)

The indices a, b are those of the gauge group, and the
trace is over the isospin doublet for ϕ = Φ, fL, fR and
over the gauge group for ϕ = V . In the latter case the
Dynkin operator corresponds to the electroweak Casimir
operator,

Dew
ab (V ) = Cew

ab (V ). (B.29)

In the symmetric basis D̃ew is diagonal,

D̃ew
ab (ϕ) = δabD̃ew

a (ϕ). (B.30)
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Y/2 Q T 3 C (IA)2 (IZ)2 (IW )2 Cew

νL, ν̄L ∓ 1
2 0 ± 1

2
3
4 0 1

4s2wc2w
1

2s2w
1+2c2w
4s2wc2w

lL, l̄L ∓ 1
2 ∓1 ∓ 1

2
3
4 1 (c2w−s2w)2

4s2wc2w
1

2s2w
1+2c2w
4s2wc2w

lR, l̄R ∓1 ∓1 0 0 1 s2w
c2w

0 1
c2w

uL, ūL ± 1
6 ± 2

3 ± 1
2

3
4

4
9

(3c2w−s2w)2
36s2wc2w

1
2s2w

s2w+27c
2
w

36c2ws2w

dL, d̄L ± 1
6 ∓ 1

3 ∓ 1
2

3
4

1
9

(3c2w+s
2
w)

2

36s2wc2w
1

2s2w
s2w+27c

2
w

36c2ws2w

uR, ūR ± 2
3 ± 2

3 0 0 4
9

4
9
s2w
c2w

0 4
9c2w

dR, d̄R ∓ 1
3 ∓ 1

3 0 0 1
9

1
9
s2w
c2w

0 1
9c2w

(B.16)

The SU(2) and U(1) eigenvalues of the fundamental rep-
resentation, ϕ = Φ, fL, read

D̃ew
B (ϕ) =

Y 2
ϕ

2c2w
, D̃ew

W (ϕ) =
1

2s2w
, (B.31)

while for right-handed fermions

D̃ew
B (fR) =

Y 2
fR
+

+ Y 2
fR

−

4c2w
, D̃ew

W (fR) = 0. (B.32)

In the physical basis we have

Dew
WσWσ′ (ϕ) = δσσ′D̃ew

W (ϕ) (B.33)

for the charged components, whereas in the neutral sector
the U(1) and SU(2) eigenvalues mix, resulting in

Dew
NN ′(ϕ) =

[
U(θw)D̃ew(ϕ)U−1(θw)

]
NN ′

=
1
2




1 + Y 2
ϕ

Y 2
ϕ s

2
w − c2w
swcw

Y 2
ϕs

2
w−c2w
swcw

Y 2
ϕs

4
w+c

4
w

s2wc
2
w


 (B.34)

for ϕ = Φ, fL, and

Dew
NN ′(fR) =

Y 2
fR
+

+ Y 2
fR

−

4c2w

(
c2w cwsw
cwsw s2w

)
. (B.35)

The explicit values of the components of the Dynkin oper-
ator for the leptonic doublets (and for the scalar doublet)
are

Dew
AA Dew

AZ Dew
ZZ Dew

W

LL, Φ 1 s2w−c2w
2swcw

s4w+c
4
w

2s2wc2w
1

2s2w

LR 1 sw
cw

s2w
c2w

0

LL + LR 2 3s2w−c2w
2swcw

3s4w+c
4
w

2s2wc2w
1

2s2w

(B.36)

and for the quark doublets

Dew
AA Dew

AZ Dew
ZZ Dew

W

QL 5
9

s2w−9c2w
18swcw

s4w+9c
4
w

18s2wc2w
1

2s2w

QR 5
9

5
9
sw
cw

5
9
s2w
c2w

0

QL +QR 10
9

11s2w−9c2w
18swcw

11s4w+9c
4
w

18s2wc2w
1

2s2w
(B.37)

β-function coefficients

In gauge-boson self-energies and mixing energies, the sums
of gauge-boson, scalar, and fermionic loops give the follow-
ing combination of Dynkin operators

bewab :=
11
3
Cew
ab (V ) − 1

3
Dew
ab (φ) − 2

3

∑
f,i

NfC
∑
λ

Dew
ab (fλ),

(B.38)
which is proportional to the one-loop coefficients of the
β-function. The fermionic sum runs over the generations
i = 1, 2, 3 for leptons and quarks f = l, q. In the symmetric
basis b̃ewab is diagonal, and its eigenvalues

b̃ewB = − 41
6c2w
, b̃ewW =

19
6s2w
, (B.39)

describe the running of the U(1) and SU(2) coupling con-
stants. In the physical basis bewab remains diagonal in the
charged sector

bew
WσWσ′ = δσσ′bewW , (B.40)

with bewW = b̃ewW , whereas the neutral components

bewNN ′ =
[
U(θw)b̃ewU−1(θw)

]
NN ′

(B.41)

are

bewAA = c2wb̃
ew
B + s2wb̃

ew
W = −11

3
,

bewAZ = cwsw(b̃ewB − b̃ewW ) = −19 + 22s2w
6swcw

,

bewZZ = s2wb̃
ew
B + c2wb̃

ew
W =

19 − 38s2w − 22s4w
6s2wc2w

. (B.42)

The AA component determines the running of the elec-
tric charge, and the AZ component is associated with the
running of the weak-mixing angle [cf. (5.7) and (5.6)].
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