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Power corrections to event shapes in deep inelastic scattering?
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Abstract. We investigate the power-suppressed corrections to the mean values of various quantities that
characterise the shapes of final states in deep inelastic lepton scattering. Our method is based on an
analysis of one-loop Feynman graphs containing a massive gluon, which is equivalent to the evaluation of
leading infrared renormalon contributions. As in e+e− annihilation, we find that the leading corrections
are proportional to 1/Q. We give quantitative estimates based on the hypothesis of a universal low-energy
effective coupling.

1 Introduction

The study of final-state properties in deep inelastic lepton
scattering (DIS) has received a great impetus from the in-
creasing quantity and kinematic range of the HERA data.
The determination of the strong coupling αs from final-
state properties in DIS is an attractive possibility because
of the relative simplicity of the lepton-hadron interaction,
combined with the wide range of dynamical scales avail-
able in a single experiment at a single beam energy. It is
expected that the scale for αs will be set primarily by the
lepton-hadron momentum transfer-squared Q2, which can
range from zero to 105 GeV2 at HERA. Thus there should
be a wide region in which the value and running of αs(Q2)
can be observed with good precision.

One possible method for αs determination is the mea-
surement of jet fractions [1], defined according to one of
the several available infrared-safe jet algorithms [2, 3].
By definition, jet rates defined by an infrared-safe algo-
rithm can be computed in perturbation theory, and next-
to-leading-order calculations are now available [4, 5]. The
αs values obtained by comparing jet rates with HERA
data are consistent with those found in other processes,
and in particular they show the expected decrease with
increasing Q2.

In the present paper we consider a different set of DIS
final-state observables which can be used to determine αs.
These are the various event shape variables which can be
defined in analogy with those used in the study of e+e−
annihilation final states. In e+e− physics, event shapes
have been found to be a useful tool for testing QCD and
measuring αs. They can be defined so as to be sensitive
to different aspects of QCD dynamics (e.g. the longitudi-

? Research supported in part by the U.K. Particle Physics
and Astronomy Research Council and by the EC Programme
“Training and Mobility of Researchers”, Network “Hadronic
Physics with High Energy Electromagnetic Probes”, contract
ERB FMRX-CT96-0008

nal or transverse development of jets) are subject to dif-
ferent non-perturbative ‘hadronization’ corrections. Thus
αs determinations from a variety of event shapes comple-
ment those from jet rates and give an indication of the
systematic uncertainties due to non-perturbative effects.
The same considerations make it important to calculate
and measure event shapes in DIS.

Another reason to measure event shapes is that there
are new theoretical ideas about non-perturbative correc-
tions to them [6–10], which provide constraints on αs de-
terminations from event shapes and are interesting to test
in their own right. By looking at the behaviour of the
QCD perturbation series in high orders, one can iden-
tify unsummable, factorially divergent sets of contribu-
tions (infrared renormalons [11]) which indicate that non-
perturbative power-suppressed corrections must be inclu-
ded. The Q2-dependence of the leading correction to a
given quantity can be inferred, and by making further
universality assumptions one may also estimate its mag-
nitude. Tests of these ideas provide information on the
transition from the perturbative to the non-perturbative
regime in QCD. In particular, one can investigate the pos-
sibility that an approximately universal low-energy effec-
tive coupling may be a useful phenomenological concept
[7, 8, 12].

Such an approach has been applied with some success
to e+e− event shapes [7, 8, 13] and fragmentation func-
tions [14], and to DIS structure functions [8, 15]. In the
present paper we extend it to event shapes in DIS [16].
We find that, as in e+e− annihilation, the leading power
corrections to these quantities are typically proportional
to 1/Q. The hypothesis that they are related to a univer-
sal low-energy effective coupling implies that their mag-
nitudes are given by a single non-perturbative parameter.
We give quantitative estimates based on the value of this
parameter derived from e+e− data.

In the following section we explain how the DIS event
shape variables that we compute are defined. In Sect. 3 we
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give the leading-order perturbative predictions for these
quantities. To determine αs, one needs the predictions in
next-to-leading order, which are not yet available. How-
ever, the leading-order calculation provides a useful guide
to the relative importance of the power-suppressed correc-
tions, which we estimate in Sect. 4 using the method of [8].
We explain how these estimates can be refined and com-
bined with the next-to-leading predictions when they be-
come available. Finally, our results are summarized briefly
in Sect. 5.

2 Event shape variables in DIS

A complication in DIS, absent from e+e− annihilation, is
the presence in the final state of the remnant of the initial-
state hadron, i.e. the constituents that did not participate
in the hard scattering of the lepton. It is expected that
the fragmentation of the remnant will be dominated by
soft, non-perturbative physics. While of interest for study-
ing the hadronization process, the remnant fragmentation
is not so useful for αs determinations, and therefore we
concentrate here on aspects of event shapes that are not
sensitive to it. This is conveniently done by looking at the
final state in the Breit frame of reference [17, 18, 19].

We consider the deep inelastic scattering of a lepton
of momentum l from a nucleon of momentum P , with
momentum transfer q. The main kinematic variables are
Q2 = −q2, the Bjorken variable x = Q2/2P · q and y =
P · q/P · l ' Q2/xs, s being the total c.m. energy squared.
Then the Breit frame is the rest-frame of 2xP + q. In this
frame the momentum transfer q is purely spacelike, and
we choose to align it along the +z axis:

P = 1
2Q(1/x, 0, 0,−1/x) , q = 1

2Q(0, 0, 0, 2) . (2.1)

To a good approximation, the fragmentation products
of the remnant will be moving in directions close to that of
the incoming nucleon, i.e. they will remain in the ‘remnant
hemisphere’ Hr (pz < 0). On the other hand the products
of the hard lepton scattering will tend to be found in the
‘current hemisphere’ Hc (pz > 0). In fact in the parton
model the scattered parton moves along the current (+z)
axis with momentum xP + q = 1

2Q(1, 0, 0, 1). Thus in the
parton model the current hemisphere looks like one hemi-
sphere of the final state in e+e− annihilation at centre-of-
mass energy Q. Fragmentation studies have shown that
this similarity is indeed manifest in hadron spectra and
multiplicities [20]. This makes it natural to define event
shape variables in close analogy to those for e+e− annihi-
lation, but limited to particles a appearing in the current
hemisphere, a ∈ Hc.

We can now construct infrared-safe quantities that char-
acterize the shape of the event defined in this way. Perhaps
the simplest is the current jet thrust [17]

TQ = 2
∑

a∈Hc

pa · n
/

Q (2.2)

where n represents the unit 3-vector along the current di-
rection (the +z axis, in our convention). The subscript

Q indicates that T is normalized to 1
2Q. Alternatively we

may normalize to the total energy in the current hemi-
sphere,

TE =
∑

a∈Hc

pa · n
/ ∑

a∈Hc

Ea . (2.3)

Both of these quantities are equal to unity in the Born
approximation, and their deviation from this value mea-
sures the longitudinal development of the current jet. It
will therefore be convenient to study instead the quanti-
ties τQ = 1 − TQ and τE = 1 − TE , which vanish in the
Born approximation.

It is kinematically possible for the Breit frame current
hemisphere to be empty. In that case, taken literally, (2.2)
implies that TQ = 0, hence τQ = 1, while (2.3) leaves τE

undefined. For consistency with the other event shapes
defined below, we instead define τQ = τE = 0 when the
current hemisphere is empty.

Similarly we can define the current jet broadening [21]

BQ =
∑

a∈Hc

|pa × n|
/

Q , (2.4)

or
BE = 1

2

∑
a∈Hc

|pa × n|
/ ∑

a∈Hc

Ea , (2.5)

which emphasizes the transverse development of the jet.
Both the thrust and the broadening are defined here

with respect to the current direction n. Two quantities
which measure the jet development independent of direc-
tion (apart from the restriction to particles in the current
hemisphere) are the scaled current jet mass

ρQ =

(∑
a∈Hc

pa

)2/
Q2 (2.6)

and the C-parameter [22]

CQ = 3(λ1λ2 + λ2λ3 + λ3λ1) (2.7)

where λ1,2,3 are the eigenvalues of the linearized momen-
tum tensor

Θij = 2
∑

a∈Hc

(
pi

apj
a/|pa|)/Q . (2.8)

Again, we may alternatively define quantities ρE and CE ,
in which Q is replaced by twice the total energy in the
current hemisphere, so that

ρE/ρQ = CE/CQ = Q2
/(

2
∑

a∈Hc

Ea

)2

. (2.9)

3 Leading-order perturbation theory

At first order in αs, up to two final-state partons can
be emitted in the hard lepton-parton subprocess, as il-
lustrated in Fig. 1. The momentum of the struck parton
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Fig. 1. Jet production in deep inelastic scattering

is p = xP/ξ (x < ξ < 1) and we define z = P · r/P · q
(0 < z < 1).

The differential cross section is

d3σ

dxdQ2dz
=

2πα2

Q4

{ [
1 + (1 − y)2

]
FT (x, z)

+2(1 − y)FL(x, z)
}

. (3.1)

The generalized transverse and longitudinal structure func-
tions FT (x, z) = 2F1(x, z) and FL(x, z) = F2(x, z)/x −
2F1(x, z) are of the form (for z < 1)

Fi(x, z) =
αs

2π

∫ 1

x

dξ

ξ

[
CF Ci,q(ξ, z)q(x/ξ)

+TfCi,g(ξ, z)g(x/ξ)
]

(3.2)

where

q(x) =
f∑

j=1

e2
j [qj(x) + q̄j(x)] , Tf = TR

f∑
j=1

e2
j (3.3)

for f active quark flavours, CF = 4/3, TR = 1/2 and [18]

CT,q(ξ, z) =
ξ2 + z2

(1 − ξ)(1 − z)
+ 2ξz + 2

CL,q(ξ, z) = 4ξz

CT,g(ξ, z) =
[
ξ2 + (1 − ξ)2

] z2 + (1 − z)2

z(1 − z)
CL,g(ξ, z) = 8ξ(1 − ξ) .

(3.4)

In the Breit frame P and q are given by (2.1) and we
can write

p = 1
2Q(1/ξ, 0, 0,−1/ξ)

r = 1
2Q(z0, z⊥, 0, z3)

k = 1
2Q(z̄0,−z⊥, 0, z̄3)

(3.5)

where
z0 = 2z − 1 + (1 − z)/ξ

z3 = 1 − (1 − z)/ξ

z̄0 = 1 − 2z + z/ξ

z̄3 = 1 − z/ξ

z⊥ = 2
√

z(1 − z)(1 − ξ)/ξ .

(3.6)
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Fig. 2. Phase space region for jet production in deep inelastic
scattering

Table 1. Event shape variables S(ξ, z) in leading order

S A B C

τQ (1 − ξ)/ξ 1 − z3 1 − z̄3

τE 2(1 − ξ) 1 − z3/z0 1 − z̄3/z̄0

BQ z⊥ z⊥/2 z⊥/2

BE ξz⊥ z⊥/2z0 z⊥/2z̄0

ρQ (1 − ξ)/ξ 0 0

ρE ξ(1 − ξ) 0 0

CQ 3(2ξ − 1)2z2
⊥/ξ2z0z̄0 0 0

CE 3(2ξ − 1)2z2
⊥/z0z̄0 0 0

We can distinguish four subregions of phase space, as
illustrated in Fig. 2:

A: both produced parton momenta k, r in the current
hemisphere (z3, z̄3 > 0);

B: only parton momentum r in the current hemisphere
(z3 > 0, z̄3 < 0);

C: only parton momentum k in the current hemisphere
(z3 < 0, z̄3 > 0);

D: no produced parton momenta in the current hemi-
sphere (z3, z̄3 < 0).

In leading order the event shape variables defined in
Sect. 2 are given in these regions by Table 1. By definition
they are all zero in region D. By construction, they all
vanish in the soft and/or collinear limits ξ, z → 1. Note
that ρ and C also vanish throughout regions B and C.

At any particular values of x and Q2, the mean value
of a shape variable S is now given in leading order by
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〈S〉 =
2πα2

Q4

∫ 1

0
dz
{[

1 + (1 − y)2
]
F

(S)
T (x)

+2(1 − y)F (S)
L (x)

}/ d2σ0

dxdQ2 (3.7)

where

F
(S)
i (x) =

αs

2π

∫ 1

x

dξ

ξ

∫ 1

0
dzS(ξ, z)

× [CF Ci,q(ξ, z)q(x/ξ) + TfCi,g(ξ, z)g(x/ξ)] (3.8)

and the denominator is the differential cross section eval-
uated in Born approximation,

d2σ0

dxdQ2 =
2πα2

Q4

[
1 + (1 − y)2

]
q(x) . (3.9)

We discuss the numerical values of the leading-order
predictions together with the power corrections in the fol-
lowing section.

4 Power corrections

Our estimate of the leading power corrections to the per-
turbative results given above is based on the approach of
[8]. Non-perturbative effects at long distances are assumed
to give rise to a modification δαeff(µ2) in the QCD effec-
tive coupling at low values of the scale µ2. The effect on
some observable F is then given by a characteristic func-
tion F(x, ε), as follows:

δF (x, Q2) =
∫ ∞

0

dµ2

µ2 δαeff(µ2)Ḟ(x, ε = µ2/Q2) (4.1)

where
Ḟ(x, ε) ≡ −ε

∂

∂ε
F(x, ε) . (4.2)

The characteristic function is obtained by computing the
relevant one-loop graphs with a non-zero gluon mass µ =
Q

√
ε [6, 23].
Arbitrary finite modifications of the effective coupling

at low scales would generally introduce power corrections
of the form 1/µ2p into the ultraviolet behaviour of the
running coupling αs itself. Such a modification would de-
stroy the basis of the operator product expansion [24]. One
must therefore require that at least the first few integer
moments of the coupling modification should vanish:∫ ∞

0

dµ2

µ2

(
µ2)p δαeff(µ2) = 0 ; p = 1, . . . , pmax . (4.3)

The upper bound pmax could be set by instanton–anti-
instanton contributions (pmax ∼ 9). The constraint (4.3)
means that only those terms in the small-ε behaviour of
the characteristic function that are non-analytic at ε =
0 will lead to power-behaved non-perturbative contribu-
tions. These are just the the terms that give rise to infrared
renormalons in perturbation theory [23].

1

z

ξ

PB

C

D A

1
1+ε0

Fig. 3. Phase space region with gluon mass-squared µ2 = εQ2

For gluon mass-squared µ2 = εQ2 the quark coefficient
functions in (3.4) become

CT,q(ξ, z, ε) =
(1 − z)(1 − ξ) + 2ξz(1 − z)2 − ξε

(1 − z − ξε)2

+
2ξz(1 − ε)

(1 − z − ξε)(1 − ξ)
+

(1 − z)(1 − ξ) − ξε

(1 − ξ)2

CL,q(ξ, z, ε) =
4ξz(1 − z)2

(1 − z − ξε)2
. (4.4)

Processes involving an incoming gluon are not expected to
give terms that are non-analytic at ε = 0, and therefore
we do not consider them as a source of power corrections.
The kinematic variables that give the momenta according
to (3.5) are now

z0 = 2z − 1 + (1 − z)/ξ − ε

z3 = 1 − (1 − z)/ξ + ε

z̄0 = 1 − 2z + z/ξ + ε

z̄3 = 1 − z/ξ − ε

z⊥ = 2
√

z(1 − z)(1 − ξ)/ξ − εz .

(4.5)

Thus the phase space region is now 0 < z < 1−εξ/(1−ξ),
as illustrated in Fig. 3. The regions A, . . . D defined above
in terms of the signs of z3 and z̄3 are as indicated.

The corresponding characteristic function for the mean
value of some event shape variable S is given by (3.7) with
F

(S)
i (x) replaced by (CF /2π)F (S)

i (x, ε) where

F (S)
i (x, ε) =

∫ 1

x

dξ

ξ

∫ 1

0
dzS(ξ, z, ε)Ci,q(ξ, z, ε)

×Θ(1 − z − ξ + ξz − εξ) q(x/ξ) . (4.6)

Note that for brevity we have extracted the overall fac-
tor of CF /2π. The expressions for the shape variables
S(ξ, z, ε) are as given in Table 1, but with the kinematic
variables now given by (4.5) instead of (3.6).

Finding the leading non-analytic term in the behaviour
of the integral (4.6) as ε → 0, differentiating as instructed
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in (4.2), and inserting the result in (4.1), we obtain the cor-
responding predicted power correction. Generally speak-
ing, the small-ε behaviour of the characteristic function is
dominated by the region around the boundary point P in
Fig. 3, and therefore the leading power correction is in-
dependent of whether we normalize the shape variable to
Q/2 or to the energy in the current hemisphere.

Following [8], we may express the magnitudes of power
corrections in terms of the moment integrals

A2p =
CF

2π

∫ ∞

0

dµ2

µ2 µ2p δαeff(µ2) , (4.7)

which vanish for integer p, and their p-derivatives

A′
2p =

CF

2π

∫ ∞

0

dµ2

µ2 µ2p log µ2 δαeff(µ2) , (4.8)

which are in general non-vanishing for any p. The leading
corrections to the event shapes we are considering cor-
respond to p = 1

2 , and therefore, on the assumption that
δαeff is universal, they can all be expressed in terms of the
two non-perturbative parameters A1 and A′

1. Studies of
event shapes in e+e− annihilation suggest that A1 ' 0.25
GeV [8], with A′

1 as yet undetermined.
As an alternative representation of the magnitudes of

power corrections, we may adopt the approach of [7] and
express them directly in terms of moments of αeff over the
infrared region. We substitute for δαeff in (4.7)

δαeff(µ2) ' αeff(µ2) − αPT
s (µ2) , (4.9)

where αPT
s represents the expression for αs corresponding

to the part already included in the perturbative predic-
tion. As discussed in [7], if the perturbative calculation
is carried out to second order in the MS renormalization
scheme, with renormalization scale µ2

R, then we have

αPT
s (µ2) = αs(µ2

R) + [b ln(µ2
R/µ2) + k]α2

s(µ
2
R) (4.10)

where (CA = 3)

b =
11CA − 2f

12π
, k =

(67 − 3π2)CA − 10f

36π
. (4.11)

The constant k comes from a change of scheme from MS
to the more physical scheme [25] in which αeff is defined.
Then above some infrared matching scale µI we assume
that αeff(µ2) and αPT

s (µ2) approximately coincide, so that

A1 ' CF

2π

∫ µ2
I

0

dµ2

µ2 µ
(
αeff(µ2) − αs(µ2

R)

−[b ln(µ2
R/µ2) + k]α2

s(µ
2
R)
)

=
CF

π
µI

(
ᾱ0(µI) − αs(µ2

R)

−[b ln(µ2
R/µ2

I ) + k + 2b]α2
s(µ

2
R)
)

, (4.12)

where
ᾱ0(µI) ≡ 1

µI

∫ µI

0
αeff(µ2) dµ . (4.13)

Thus in this notation the value of A1 determines the av-
erage value of the effective coupling below the matching
scale µI. The dependence of ᾱ0 on µI is partially com-
pensated by the µI-dependence of the other terms on the
right-hand side of (4.12). The dependence on the renor-
malization scale µ2

R should help to compensate the scale
dependence of the perturbative part. Notice that if we
take µ2

R ∝ Q2 then A1 has a logarithmic dependence on
Q2. In general we do expect ‘power’ corrections to have
additional logarithmic Q2-dependence (anomalous dimen-
sions), but this cannot yet be calculated reliably for event
shapes.

In [7] it was found that the formula (4.12) with µ2
R =

Q2, µI = 2 GeV and ᾱ0(2 GeV) = 0.52 gave good agree-
ment with e+e− event shape data. Similar results were
obtained in [13].

4.1 Current jet thrust

In the case of the shape variables τQ or τE , the behaviour
of the expression (4.6) for the transverse contribution F (τ)

T
(x, ε) as ε → 0 is found to be of the form

F (τ)
T (x, ε) ∼ F (τ)

T (x, 0) − 8
√

ε q(x) , (4.14)

while the longitudinal part F (τ)
L is less singular at ε = 0.

Thus from (3.7), (4.1) and (4.7) we obtain the leading
non-perturbative contribution

δ 〈τ〉 ∼ 4
A1

Q
. (4.15)

The behaviour (4.14) at small ε follows from the fact
that the derivative Ḟ (τ)

T is dominated by the phase space
boundary z = 1 − εξ/(1 − ξ):

Ḟ (τ)
T (x, ε) ∼ ε

∫ 1

x

dξ

∫ 1

0
dzτ(ξ)Ci,q(ξ, z, 0)

×δ(1 − z − ξ + ξz − εξ) q(x/ξ) . (4.16)

From Table 1 and (4.5), on this boundary we have

τ(ξ, z, 0) = (1 − ξ)/ξ for ξ > ξP ,

= (1 − z)/ξ for ξ < ξP
(4.17)

where ξP = 1/(1 +
√

ε). Thus

Ḟ (τ)
T (x, ε) ∼

∫ ξP

x

dξ

ξ
ε

1 + ξ2

(1 − ξ)2
q

(
x

ξ

)

+
∫ 1

ξP

dξ

ξ

1 + ξ2

ξ
q

(
x

ξ

)
∼ 4

√
ε q(x) , (4.18)

in agreement with (4.14).
Numerical predictions for the mean value of the cur-

rent jet thrust in ep scattering at
√

s = 296 GeV are
shown in Fig. 4 as a function of Q for various values of
x. The MRS A′ parton distributions [26] were used, with
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Fig. 4. Predictions for the mean value of the current jet thrust
in deep inelastic scattering. Left- and right-hand plots are
for the two definitions (2.2) and (2.3), respectively. Dashed:
leading-order perturbation theory. Solid: leading order plus
leading power correction. In each case the four curves (top
to bottom) are for x = 0.003, 0.01, 0.03, 0.10

the corresponding value Λ
(4)
MS

= 231 MeV in the two-loop
expression for αs(Q2). The leading-order perturbative pre-
dictions given by (3.7) are shown by the dashed curves. For
the power correction coefficient A1 we used (4.12) with
µ2

R = Q2, µI = 2 GeV and ᾱ0(2 GeV) = 0.52, as in the
fits to e+e− data, but we omitted the term of order α2

s

because we are combining with only a first-order pertur-
bative calculation in this paper. When the higher-order
prediction becomes available, the O(α2

s) term in (4.12)
should be included when estimating the power correction
to it.

The resulting overall predictions are shown by the solid
curves. We see that the estimated power correction is sub-
stantial, 20-30% at Q = 50 GeV and dominating below 15
GeV. There is significant x-dependence in the perturba-
tive prediction, and large-x data (x > 0.01) are required to
cover the region where the power correction is under con-
trol. With sufficient data in the range Q = 15 − 50 GeV,
however, it should be possible to perform a two-parameter
fit to determine αs and ᾱ0 from the average current jet
thrust.

4.2 Current jet broadening

For the jet broadening BQ or BE we find a slightly differ-
ent behaviour at small ε, namely

F (B)
T (x, ε) ∼ F (B)

T (x, 0) + 8
√

ε (ln ε + c) q(x) , (4.19)

where c is a constant (probably x-independent) which we
cannot determine reliably. This implies a non-perturbative
correction of the form

δ 〈B〉 ∼ 4
A1

Q
(lnQ2 − c − 2) − 4

A′
1

Q
. (4.20)

Fig. 5. Predictions for the mean value of the current jet broad-
ening in deep inelastic scattering. Left- and right-hand plots
are for the two definitions (2.4) and (2.5), respectively. Curves
as in Fig. 4

Since we do not know the value of c, we may as well absorb
all the non-logarithmic terms into an unknown scale, Q0:

δ 〈B〉 = 8
A1

Q
ln(Q/Q0) . (4.21)

We find that, in contrast to the situation for the thrust,
the result (4.19) is only obtained when one includes the
gluon mass explicitly in the definition of the jet broad-
ening. This is because, unlike the thrust, the broadening
vanishes on the phase-space boundary z⊥ = 0. If we ne-
glect the gluon mass in the definition, this is not the case
and an expression analogous to (4.16) is obtained, which
gives

Ḟ (B)
T (x, ε) ∼ √

ε

∫ ξP

x

dξ

1 − ξ

ξ2 + 1
ξ

q

(
x

ξ

)

+2
√

ε

∫ 1/(1+ε)

ξP

dξ

1 − ξ

ξ2 + 1
ξ

q

(
x

ξ

)
. (4.22)

We then find

Ḟ (B)
T (ε) ∼ −3

√
ε (ln ε + c) , (4.23)

corresponding to a coefficient of 6 instead of 8 in (4.21).
Thus the correct form is obtained, but the full mass-depen-
dence must be retained to compute the coefficient.

The fact that the magnitude of the leading power cor-
rection to the jet broadening is sensitive to the gluon mass-
dependence in its definition suggests to us that the predic-
tion for this shape variable less reliable than that for the
thrust. As pointed out in [9], shape variables are not fully
inclusive with respect to the fragmentation of the gluon:
their values for the ‘decay products’ of a timelike virtual
gluon are not necessarily equal to those for a ‘real’ gluon
of equivalent mass. In the case of the thrust, model stud-
ies suggest that the numerical effect of this on the leading
power correction is small, but we expect it to be larger for
variables that depend explicitly on the gluon mass.
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Fig. 6. Predictions for the mean value of the current jet mass
in deep inelastic scattering. Left- and right-hand plots are for
the two definitions (2.6) and (2.9), respectively. Curves as in
Fig. 4

Numerical predictions for the current jet broadening
at HERA are shown in Fig. 5, using the same parame-
ter values as before to compute A1 and, for definiteness,
Q0 = µI = 2 GeV in (4.21). We see that the resulting
power corrections are large. As we have stressed above,
they are also more uncertain in this case, suggesting that
jet broadening in DIS is not a good shape variable for αs

determinations.

4.3 Current jet mass

Next we consider the power corrections to the jet mass
ρQ or ρE . We notice from Table 1 that there is no explicit
gluon mass dependence in the definition of these variables,
and there is no contribution outside the phase space region
A.1 Inside this region we have in fact ρQ = τQ. Thus the
jet mass receives a contribution from the second integral
only in (4.18). This gives exactly one half of the correction
to the thrust and so one finds that

F (ρ)
T (x, ε) ∼ F (ρ)

T (x, 0) − 4
√

ε q(x) (4.24)

at small ε, which implies a non-perturbative correction

δ 〈ρ〉 ∼ 2
A1

Q
. (4.25)

The numerical predictions for the current jet mass,
shown in Fig. 6, suggest that this is a good variable for αs

determinations. The power correction is somewhat larger
than that for the thrust, relative to the perturbative pre-
diction (cf. Fig. 4), but there is less x dependence in the
latter.

4.4 C-parameter

Finally we compute the power correction to CQ or CE .
Here again we see from Table 1 that that there is no con-

1 There is a contribution ε in region C, but since this is an-
alytic it does not contribute to the power correction

Fig. 7. Predictions for the mean value of the C-parameter in
deep inelastic scattering. Left- and right-hand plots are for the
two definitions (2.7) and (2.9), respectively. Curves as in Fig. 4

tribution outside the phase space region A. However in this
case the variable, unlike the jet mass, does depend explic-
itly on the gluon mass. From a full evaluation retaining
this mass dependence we find the small-ε behaviour

F (C)
T (x, ε) ∼ F (C)

T (x, 0) − 24π
√

ε q(x) , (4.26)

corresponding to a leading non-perturbative contribution

δ 〈C〉 ∼ 12π
A1

Q
. (4.27)

If one uses the massless gluon expression for C, one obtains

Ḟ (τ)
T (x, ε) ∼ 12ε

∫ 1/(1+ε)

1/(1+
√

ε)

ξ2 + 1
ξ2

(2ξ − 1)2(1 − ξ)
1 − ξ + ε(1 − 2ξ)

× dξ

(1 − ξ)2 + εξ(2ξ − 1)
∼ 6π

√
ε , (4.28)

which corresponds to one-half of the full result. We would
argue again that this sensitivity to the gluon mass-depen-
dence of the definition suggests that the prediction for the
C-parameter is less reliable than that for the thrust and
jet mass.

The numerical results, Fig. 7, show that the estimated
power correction is very large in this case, dominating over
the perturbative prediction even at Q = 50 GeV. The size
and uncertainty in the correction suggest that, like the jet
broadening, the C-parameter is not a good variable for
determining αs.

5 Summary

In this paper we have investigated several infrared-safe
variables which characterize the shapes of DIS final states
in the current hemisphere of the Breit frame, where one
avoids as far as possible complications associated with
the target remnant. We have presented numerical pre-
dictions to leading order in perturbation theory, together
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with estimates of leading non-perturbative power correc-
tions, which are predicted to be proportional to 1/Q, mod-
ulo logarithmic Q-dependence. The assumption of an ap-
proximately universal low-energy effective coupling allowed
us to relate the magnitudes of the corrections to those in
e+e− annihilation. We found that they are expected to be
largest, and most uncertain, for the current jet broadening
and C-parameter, and so these observables are probably
not suitable for determination of the perturbative strong
coupling αs. The current jet thrust and mass should have
power corrections that are smaller and under better con-
trol. When higher-order predictions for these quantities
are available, our predictions of the power corrections can
also be refined, and it should be possible to measure both
αs and the relevant non-perturbative parameter, ᾱ0(µI) in
(4.12), from these quantities.
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