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Abstract. We discuss the production of photon pairs in hadronic collisions, from fixed target to LHC
energies. The study which follows is based on a QCD calculation at full next-to-leading order accuracy,
including single and double fragmentation contributions, and implemented in the form of a general purpose
computer program of “partonic event generator” type. To illustrate the possibilities of this code, we present
a comparison with observables measured by the WA70 and D0 collaborations, and some predictions for
the irreducible background to the search of Higgs bosons at LHC in the channel h → γγ. We also discuss
theoretical scale uncertainties for these predictions, and examine several infrared sensitive situations which
deserve further study.

1 Introduction

The production of pairs of direct photons1 with large in-
variant masses is the so-called irreducible background for
the search of the Higgs boson in the two photon decay
channel in the intermediate mass range 80GeV ≤ mh ≤
140GeV at the forthcoming LHC. This background is
huge and requires to be understood and quantitatively
evaluated.

Besides this important motivation, this process is of
interest by its own. The production of such pairs of pho-
tons has been experimentally studied in a large domain
of energies, from fixed targets [1–3] to colliders [4–6]. A
wide variety of observables has been measured, such as
distributions of invariant mass, azimuthal angle and trans-
verse momentum of the pairs of photons, and the inclusive
transverse momentum distribution of each photon, which
offer the opportunity to test our understanding of this
process.

The aim of this article is to present a study of dipho-
ton hadroproduction based on a computer code of partonic
event generator type. In this code, we account for all con-
tributing processes consistently at next-to-leading order
(NLO) accuracy, together with the so-called box contribu-
tion gg → γγ. This code is flexible enough to accommo-
date various kinematic or calorimetric cuts. Especially, it

a UMR 5108 du CNRS, associée à l’Université de Savoie
1 The word “direct” means here that these photons do not

result from the decay of π0, η, or ω at large transverse mo-
mentum. Direct photons may be produced according to two
possible mechanisms: either they take part directly in the hard
subprocess, or they result from the fragmentation of partons
themselves produced at high transverse momentum in the sub-
process; see Sect. 2

allows one to compute cross sections for both inclusive and
isolated direct photon pairs, for any infrared and collinear
safe isolation criterion which can be implemented at the
partonic level. This article is organized according to the
following outline. In Sect. 2, we recall the basic theoreti-
cal ingredients, and present the method used to build the
computer code developed for this study. Section 3 is ded-
icated to the phenomenology of photon pair production.
We start with a comparison with fixed target and col-
lider experiments. We then provide some predictions for
LHC, together with a discussion of theoretical scale uncer-
tainties. The theoretical discussion about the present day
limitations of our code is continued in Sect. 4. There we
mention various infrared sensitive situations, which would
deserve some more care, and for which the resummation of
multiple soft gluon effects would be required, in order to
improve the ability of our code to account for such observ-
ables. Section 5 contains our conclusions and perspectives.

2 Theoretical content and presentation
of the method

Let us first recall briefly the theoretical level of accuracy
and limitations of works prior to the present one, in order
to assess the improvements which we introduce. Then we
present the method which we used to build our computer
code DIPHOX.

2.1 Theoretical content

The theoretical understanding of this process relies on
NLO calculations, initiated in [7]. The leading order con-
tribution to diphoton reactions is given by the Born level
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process qq̄ → γγ, see for instance Diagram a. The com-
putation of NLO contributions yields O(αs) corrections
coming from the subprocesses qq̄ → γγg, gq (or q̄) → γγq
(or q̄) and corresponding virtual corrections; see for ex-
ample Diagrams b and c.

Yet it also yields the leading order contribution of sin-
gle fragmentation type (sometimes called a “Bremsstrahl-
ung contribution”), in which one of the photons comes
from the collinear fragmentation of a hard parton pro-
duced in the short distance subprocess; see for example
Diagram d. From a physical point of view such a photon
is most probably accompanied by hadrons. From a tech-
nical point of view, a final state quark–photon collinear
singularity appears in the calculation of the contribution
from the subprocess gq → γγq. At higher orders, final
state multiple collinear singularities appear in any subpro-
cess where a high pT parton (quark or gluon) undergoes a
cascade of successive collinear splittings ending up with a
quark–photon splitting. These singularities are factorized
to all orders in αs according to the factorization prop-
erty, and absorbed into quark and gluon fragmentation
functions to a photon Dγ/q or g(z,M2

f ) defined in some
arbitrary fragmentation scheme, at some arbitrary frag-
mentation scale Mf . When the fragmentation scale Mf ,
chosen to be of the order of the hard scale of the sub-
process, is large compared to any typical hadronic scale
∼ 1GeV, these functions behave roughly as α/αs(M2

f ).
Then a power counting argument tells that these con-
tributions are asymptotically of the same order in αs as
the Born term qq̄ → γγ. What is more, given the high
gluon luminosity at LHC, the gq (or q̄) initiated contribu-
tion involving one photon from fragmentation even dom-
inates the inclusive production rate in the invariant mass
range 80GeV ≤ mγγ ≤ 140GeV. A consistent treatment
of diphoton production at NLO thus requires that O(αs)
corrections to these contributions be calculated also; see
for example Diagrams e and f. They have not been in-

corporated in [7–9], and we compute them in the present
work.

The calculation of these corrections in turn yields the
leading order contribution of yet another mechanism, of
double fragmentation type; see for example Diagram g. In
this case, both photons result from the collinear fragmen-
tation of a hard parton. In order to present a study of
consistent NLO accuracy, NLO corrections to this double
fragmentation contribution, see for example Diagrams h
and i, have to be calculated accordingly. This is also done
in the present article.

We call “two direct” the contribution given by the
Born term plus the fraction of the higher order corrections
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from which final state collinear singularities have been
subtracted according to the MS factorization scheme. We
call “one fragmentation” (“two fragmentation”) the con-
tribution involving one single fragmentation function (two
fragmentation functions) of a parton into a photon. Let us
add one more comment about the splitting into these three
mechanisms. One must keep in mind that this distinction
is schematic and ambiguous. We recall that it comes tech-
nically from the appearance of final state collinear singu-
larities, which are factorized and absorbed into fragmen-
tation functions at some arbitrary fragmentation scale2

Mf . Each of the contributions associated with these three
mechanisms thus depends on this arbitrary scale. This de-
pendence on Mf cancels only in the sum of the three, so
that this sum only is a physical observable. More precisely,
a calculation of these contributions beyond leading order
is required to obtain a (partial) cancellation of the de-
pendence on Mf . Indeed this cancellation starts to occur
between the higher order of the “two direct” contribution
and the leading order of the “one fragmentation” term,
and similarly between the “one” and “two fragmentation”
components respectively. This is actually one of the first
motivations of the present work. Thus, even though it may
be suggestive to compare the respective sizes and shapes
of the separate contributions for a given choice of scale, as
will be done in Sect. 3.2.1, we emphasize that only their
sum is meaningful.

Beyond this, the O(α2
s ) so-called box contribution gg

→ γγ through a quark loop is also included; see for exam-
ple Diagram j. Strictly speaking it is a NNLO contribution
from the point of view of power counting. However, in the
range of interest at LHC for the search of the Higgs boson,
the gluon luminosity is so large compared with the quark
and antiquark one, that it nearly compensates the extra
powers of αs, so as to yield a contribution comparable
with the Born term. For this reason, it has been included
in previous works, and is included in the present one as
well. We define the “direct” contribution as the sum “two
direct” + box.

Actually one should notice, firstly, that other NNLO
gluon–gluon initiated processes, such as the collinear fi-
nite part of gg → q̄qγγ have been ignored3, although they

2 More generally, the definition of the fragmentation func-
tions relies on the choice of a given factorization scheme, e.g.
the MS scheme in this work. The fragmentation functions
which we use are presented in [10]

3 The collinear divergent parts of these 2 → 4 processes have
been already taken into account in the NLO corrections to

could also be large. Secondly, one should also even worry
about the next correction to the box, because the latter
may be quite sizeable. Such a possibility is suggested by
the situation occurring in the first correction to the effec-
tive vertex gg → h, computed in [11], and shown to reach
generically about 50% of the one-loop result. Moreover,
this box contribution is the leading order of a new mecha-
nism, whose spurious (factorization and renormalization)
scale dependences are monotonic, and only higher order
corrections would partly cure this problem and provide
a quantitative estimate. This tremendous effort has not
been carried out yet, although progress towards this goal
has been achieved recently [12–14].

2.2 Presentation of the method

In [7], a dedicated calculation was required for each ob-
servable. Since then more versatile approaches have been
developed, which combine analytical and Monte Carlo in-
tegration techniques [8,15]. They thus allow the computa-
tion of several observables within the same calculation, at
NLO accuracy, together with the incorporation of selec-
tion/isolation cuts at the partonic level in order to match
the various cuts used by the experimental collaborations
as faithfully as possible. The studies of [8] and of [9] rely
on such an approach. Let us briefly describe the one which
we use here.

2.2.1 Phase space slicing and subtraction
of long distance singularities

Within the combined analytical and Monte Carlo
approach, two generic well-known methods can be used
to deal with infrared and collinear singularities which are
met in the calculation of inclusive cross sections: the phase
space slicing method [16] and the subtraction method [17].
The approach followed in the present work uses a modified
version of the one presented in [15], which combines these
two techniques.

For a generic reaction 1 + 2 → 3 + 4 + 5 two particles
of the final state, say 3 and 4, have a high pT and are well
separated in phase space, while the last one, say 5, can be
soft, or collinear to either of the four others. The phase
space is sliced using two arbitrary, unphysical parameters
pTm and Rth in the following way:

– Part I. The norm pT5 of the transverse momentum
of particle 5 is required to be less than some arbi-
trary value pTm taken to be small compared to the
other transverse momenta. This cylinder supplies the
infrared, and initial state collinear singularities. It also
yields a small fraction of the final state collinear sin-
gularities.

– Part II a. The transverse momentum vector of parti-
cle 5 is required to have a norm larger than pTm, and

the “one fragmentation” contribution and leading order “two
fragmentation” components, respectively
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to belong to the cone C3 about the direction of parti-
cle 3, defined by (y5 − y3)2 + (φ5 − φ3)2 ≤ R2

th, with
Rth some small arbitrary number. C3 contains the fi-
nal state collinear singularities appearing when 5 is
collinear to 3.

– Part II b. The transverse momentum vector of particle
5 is required to have a norm larger than pTm, and to
belong to the cone C4 about the direction of particle
4, defined by (y5 −y4)2+(φ5 −φ4)2 ≤ R2

th. C4 contains
the final state collinear singularities appearing when 5
is collinear to 4.

– Part II c. The transverse momentum vector of particle
5 is required to have a norm larger than pTm, and to
belong to neither of the two cones C3, C4. This slice
yields no divergence, and can thus be treated directly
in 4 dimensions.

Collinear and soft singularities appear when integra-
tion over the kinematic variables (transverse momentum,
rapidity and azimuthal angles) of particle 5 is performed
on parts I, II a and II b. They are first regularized by di-
mensional continuation from 4 to d = 4 − 2ε, ε < 0. The
d-dimensional integration over particle 5 on these phase
space slices yields these singularities as 1/ε poles together
with non-singular terms as ε→ 0. After combination with
the corresponding virtual contributions, the infrared sin-
gularities cancel, and the remaining collinear singularities
which do not cancel are factorized and absorbed in par-
ton distribution or fragmentation functions. The resulting
quantities correspond to pseudo cross sections where the
hard partons are unresolved from the soft or collinear par-
ton 5, which has been “integrated out” inclusively on the
parts I, II a, II b. The word “pseudo” means that these
are not genuine cross sections, as they are not positive in
general. They are split into two kinds. We call a “pseudo
cross section” for some 2 → 2 process the sum of the lowest
order term plus the fraction of the corresponding virtual
corrections, where the infrared and collinear singularities
have been subtracted, and which have the kinematics of
a genuine 2 → 2 process. The contributions where the
uncanceled collinear singularities are absorbed into par-
ton distribution (on part I) or fragmentation (on parts II
a and II b) functions involve an extra convolution over a
variable of collinear splitting, as compared to the kinemat-
ics of a genuine 2 → 2 process: we call these “pseudo cross
sections” for quasi 2 → 2 processes. The detailed content
of these terms is given in Appendix 5. For an extended
presentation of the details and corresponding explicit for-
mulas, we refer to [15].

As a matter of principle, observables do not depend on
the unphysical parameters pTm and Rth. Yet, the pseudo
cross sections on parts I, II a, II b and II c separately do.
Let us briefly discuss the cancellation of the pTm and Rth
dependences in observables computed according to this
method. In the cylindrical part I, the finite terms pro-
duced are approximated in order to collect all the terms
depending logarithmically on pTm, whereas terms propor-
tional to powers of pTm are neglected. This differs from
the subtraction method implemented in the cylinder in
[15], which kept the exact pTm dependence. On the other

hand, in the conical parts II a and II b, the same sub-
traction method as in [15] is used, so that the exact Rth
dependence is kept. This ensures the exact cancellation of
the dependence on the unphysical parameter Rth between
part II c and parts II a, II b whereas only an approximated
cancellation of the unphysical parameter pTm dependence
between parts II c, II a and II b and part I occurs. The
parameter pTm must be chosen small enough with respect
to pT3 and pT4 in order that the neglected terms can be
safely dropped out. In practice, it has been verified that
pTm values of the order of half a percent of the minimum
of pT3 and pT4 fulfill these requirements. A more detailed
discussion on this issue is provided in Appendix B.

The pseudo cross sections on parts I, II a, II b, as well
as the transition matrix elements on part II c, are then
used to sample unweighted kinematic configurations, in
the framework of a partonic event generator, described in
Sect. 2.2.2 below.

2.2.2 Partonic event generator

For practical purposes, a partonic event generator has
been built for diphoton production including all the mech-
anisms: the “direct”, “one” and “two fragmentation”.
Each mechanism is treated separately. Firstly, the con-
tribution of a given mechanism to the integrated cross
section is calculated with the integration package BASES
[18]. At this stage, some kinematic cuts (e.g. on the ra-
pidity of the two photons, on their transverse momenta,
etc.) may be already taken into account. Then, for the
2 → 2 contributions and the quasi 2 → 2 contributions on
parts I, II a and II b, and the inelastic contributions on
part II c of the phase space, partonic events are generated
with SPRING [18] with a weight ±1 depending on the
sign of the integrand at this point of the phase space4. All
the events are subsequently stored into a NTUPLE [19].
Finally these NTUPLES can be histogrammed at will, in-
corporating any further cuts, such as those imposed by
some isolation criterion as discussed in the next subsec-
tion. It is suitable to use values for Rth and pTm which
are fairly small and disconnected from any physical pa-
rameter. The phase space generation is then as exclusive
as possible. Moreover it allows to investigate the depen-
dence of various observables with respect to the physi-
cal isolation parameters, as well as to investigate different
types of isolation criteria, using an event sample conve-
niently generated once and for all. In practice, however,
one cannot use too small values in order to keep statistical
fluctuations under control, unless the computer time and
the sizes of the NTUPLES become intractably large.

Let us state more clearly what we mean by a partonic
event generator. Since the events associated to the 2 → 2
and quasi 2 → 2 contributions have a negative weight, this
code, properly speaking, is not a genuine event generator

4 This trick circumvents the fact that SPRING works only
with positive integrands, while the pseudo cross sections are
not positive. The generated events are thus unweighted up to
a sign
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on an event-by-event basis. By events, we mean final state
partonic configurations. For a given event, the information
stored into the NTUPLE is the 4-momenta of the outgo-
ing particles, their flavors: parton (i.e. quark or gluon) or
photon, in the fragmentation cases, the longitudinal frag-
mentation variable(s) associated with the photon(s) from
fragmentation, and, for practical purpose, a label which
identifies the type of the pseudo cross section (2 → 2,
quasi 2 → 2, inelastic) which produced the event stored.
Notice also that in the fragmentation cases, all but the
longitudinal information on the kinematics of the residue
of the collinear fragmentation is lost. Hence this type of
program does not provide a realistic, exclusive portrait of
final states as given by genuine, full event generators like
PYTHIA [20] or HERWIG [21]. On the other hand, the
latter are only of some improved leading logarithmic ac-
curacy. Thus, our code is more precisely a general purpose
computer program of Monte Carlo type, whose virtue is
the computation of various inclusive enough observables
within the same calculation, at NLO accuracy.

2.3 The implementation of isolation cuts

Collider experiments at Spp̄S, the Tevatron, and the forth-
coming LHC do not measure inclusive photons. Indeed,
the inclusive production rates of high pT π

0, η, ω, or of
pairs π0π0 or γπ0, etc, with large invariant mass, are or-
ders of magnitudes larger than for direct photons. In or-
der to reject the huge background of secondary photons
produced in the decays of these mesons, the experimental
event selection of direct photons (single photons, as well
as diphotons) requires the use of isolation cuts. Such a re-
quirement will be absolutely crucial at LHC for the search
of Higgs bosons in the two photon channel and the mass
range 90–140GeV, since the expected background from
π0, etc. is about eight orders of magnitudes larger than
the signal before any isolation cut is applied.

A widely used criterion to isolate photons is schemati-
cally the following5. A photon is said to be isolated if, in-
side a cone centered about the photon direction in the ra-
pidity and azimuthal angle plane, the amount of hadronic
transverse energy Ehad

T deposited is smaller than some
value ET max fixed by the experiment:

(y − yγ)2 + (φ− φγ)
2 ≤ R2,

Ehad
T ≤ ET max.

}
. (1)

The topic of the isolation of photons based on the above
cone criterion (1) has been rather extensively discussed in
the theoretical literature, especially in the case of produc-
tion of single isolated photons in hadronic6 collisions [23–

5 An alternative to the criterion (1) has been recently pro-
posed in [22], in which the veto on accompanying hadronic
transverse energy is the more severe, the closer the correspond-
ing hadron to the photon direction. It has been designed to
make the “fragmentation” contribution vanish in an infrared
safe way

6 The related topic of isolated prompt photons produced in
e+e− annihilation into hadrons has also been abundantly dis-

27]. Beside the rejection of the background of secondary
photons, the isolation requirement also reduces the pho-
tons from fragmentation. The account of isolation effects
on the “fragmentation” contribution was accurate to LO
accuracy in [23,24]. A treatment to NLO accuracy has
been subsequently given in [26], following the subtraction
framework presented in [25]. Isolation implies, however,
that one is not dealing with inclusive quantities any more.
This raised questions concerning the validity of the factor-
ization property in this case, and whether the fragmenta-
tion functions may depend on the isolation parameters,
as assumed in [25]. This raised also issues regarding soft
gluon divergences in isolated photons cross sections, as in
[29]. These questions have been clarified in [27,30]. The
factorization property of collinear singularities still holds
for cross sections based on the criterion7, and the frag-
mentation functions involved there are the same as in the
inclusive case, whereas the effects of isolation are con-
sistently taken into account in the short distance part.
Yet cross sections defined with this criterion may have
infrared divergences – or, at least, instabilities, depend-
ing on the inclusiveness of the observable considered –
located at some isolated critical points inside the physical
spectrum of some observables calculated at fixed order,
namely NLO, accuracy. This means that the vicinities of
these critical points are sensitive to multiple soft gluon
effects, which have to be properly taken into account in
order to provide correct predictions.

In the present calculation, as in [26,27] for the case
of single photon production, the transverse energy de-
posited in the cone may come from the residue of the
fragmentation, from the parton 5 (which never fragments
into photons) or from both. During the projection of the
NTUPLES onto any desired observable, the isolation cri-
terion (1) about the two photons is applied to each stored
partonic configuration. The effects of isolation are com-
mented in 3.2.2. In addition, at the NLO accuracy at
which our calculation is performed, potentially large log-
arithmic contributions of infrared origin may be induced
by the extra isolation constraint on the phase space. The
issue of infrared sensitivity induced by isolation will be
discussed further in Sect. 4.2. Let us mention that no sum-
mation of such logarithms is performed in our treatment.

3 Phenomenology

In this section, we adopt a LHC oriented presentation.
We start with a brief comparison of our NLO calculations
with WA70 and D0 data for illustrative purposes. We then
show some predictions for LHC in the invariant mass range
80GeV ≤ mγγ ≤ 140GeV corresponding to the Higgs bo-
son search through h → γγ. We discuss the ambiguities

cussed. A variant of the definition (1) suitable for e+e− has
been studied in [28], and recently revised in [29,30]. An alter-
native criterion has been proposed in [31], and applied to the
measurement of isolated photons in LEP experiments

7 The fact that transverse energies are involved in (1) in
hadronic collisions is crucial in this respect. Factorization
would be broken if energies were used instead
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Fig. 1. Diphoton differential cross section dσ/dpT versus pT,
the transverse energy of each photon, in π−–proton collisions
at S1/2 = 22.9GeV. Data points from the WA70 collaboration
[1]. The solid line is the full contribution with scales M = µ =
Mf = 0.275(pT(γ1) + pT(γ2))

plaguing these predictions due to the arbitrariness in the
choices of the renormalization scale µ, of the initial state
factorization scale M (which enters in the parton distri-
bution functions), and of the fragmentation scale Mf .

3.1 Comparison with experimental data

3.1.1 Fixed target data

A comparison between the diphoton differential cross sec-
tion versus each photon’s transverse momentum measured
by the WA70 collaboration [1] and our NLO postdiction
is shown on Fig. 1, together with the respective magni-
tude of the various contributions. The NLO calculation
has been made with the ABFOW parton distribution func-
tions [32] for the proton and the corresponding ones for
the pion [33]8, for the scale choice9 M = Mf = µ =

8 The choice of the parton distributions is mandated by the
fact that the initial state of the reaction is π± proton. Therefore
a consistent set of parton densities inside the proton and the
pion must be taken. Indeed, to extract the parton distribution
functions in the pion, reactions such as π±p → γ∗X (Drell–
Yan) and π±p → γX (direct photon) are used. Consequently
some correlations between the proton and the pion partonic
densities exist, and it is preferable to use consistent sets in the
calculations. Only three groups provided such a work: ABFW
[33], MRS [34] and GRV [35]. All these works are rather old
and the partonic densities are rather similar in the WA70 x
range

9 One shall not attach importance to the somewhat unusual
value λ = 0.275 of the scale choice. Relatively low scales such

λ(pT(γ1) + pT(γ2)), with λ = 0.275. The “one fragmen-
tation” contribution is one order of magnitude below the
“two direct” contribution. The “two fragmentation” con-
tribution is even smaller and negligible here. The small-
ness of these contributions is the reason why previous
works [7,8] described this observable reasonably well too,
despite the absence of higher order corrections to the frag-
mentation contributions there.

Various correlations between the two photons: the dis-
tribution of the pT imbalance variable z = −pT(γ1).
pT(γ2)/p2

T(γ1), the distribution of the azimuthal angle
between the two photons (φγγ), the distribution of pout

10,
and the distribution of transverse momentum of diphotons
(qT), have been measured also by the WA70 collaboration
[2]. These distributions are infrared sensitive near the elas-
tic boundary of the spectrum (e.g. qT → 0 or φγγ → π) or
near a critical point (e.g. z = 1) and, moreover, are quite
sensitive to non-perturbative effects appearing in the re-
summed part of calculations summing soft gluon effects.
This sensitivity extends over a wide part of the spectrum
covered by the measurements. Consequently we do not
present any comparison of these data points with the ap-
proximation of fixed order accuracy of this work; nor will
we discuss the scale ambiguities at fixed target energies.

3.1.2 Tevatron collider data

A preliminary study of diphotons events in the central
region (|y(γ1,2)| < 1.0) has recently been performed by
the D0 collaboration [6].

The experimental cuts in the D0 data used for the com-
parisons are not corrected for the electromagnetic calori-
meter absolute energy scale. The electromagnetic energy
scale correction is given by [6]

E(measured) = αE(true) + δ,

where

α = 0.9514 ± 0.0018+0.0061
−0.0017,

δ = −0.158 ± 0.015+0.03
−0.21 GeV.

as this one, or λ = 0.25 equally well turn out to match the
data better than higher scale choices. Yet this particular value
was not chosen as the one which matches the data best, but
for a minor though cumbersome computational reason. The
WA70 collaboration requires the transverse momenta of the
photons to be larger than 3GeV and 2.75GeV respectively.
However, for computational convenience we first implemented
a symmetric cut on pT of each photon: pT ≥ 2.75GeV at the
level of the Monte Carlo generation of photon pairs. In the
ABFOW parametrizations, the factorization scale M2 has to
be larger than 2GeV2. Given the above symmetric cut on both
photons in the Monte Carlo generation, taking λ = 1/4 does
not ensure that M2 is always above 2GeV2, while the choice
λ ≥ 0.275 does
10 The beam axis together with the direction of one of the two
photons define a plane. The component of the transverse mo-
mentum of the other photon along the direction perpendicular
to this plane is the pout of this photon
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Fig. 2. Diphoton differential cross section dσ/dpT versus pT,
the transverse energy of each photon, at Tevatron, S1/2 =
1.8TeV. Preliminary data points (statistical errors and sys-
tematics in quadrature) from the D0 collaboration [6] are com-
pared to the theoretical predictions: the full NLO prediction
is shown as the solid line. The ratio data/(full NLO theory) is
shown below

Thus, the experimental cuts at measured values of 14 (re-
spectively 13) GeV correspond to cuts at roughly 14.90
(respectively 13.85) GeV in the theoretical calculation.
Smearing effects accounting for electromagnetic calorime-
ter resolution have not been implemented, but given the
experimental fractional energy resolution of the electro-
magnetic calorimeter [36], they are expected to be of the
level of a few percent only.

The actual isolation cuts used experimentally (such as
vetoes on charged tracks in some conical vicinity about
each photon, etc.) are quite more complicated than the
schematic criterion (1), and cannot be faithfully imple-
mented at the partonic level. We instead simulated them
in our NLO calculation by requiring that the accompa-
nying transverse partonic energy be less than ET max =
2GeV in a cone R = 0.4 about each photon. Varying
ET max from 1 to 3GeV in the calculated cross section, as
a rough estimate of the effects of smearing due to hadronic
calorimeter resolution and unfolding of underlying events
contribution turns out to have a less than 4% effect.

The MRST2 set of parton distributions functions11

[37] is used12, with the scales arbitrarily chosen to be

11 The MRST sets 1,2,3 are associated with the value ΛMS =
300MeV for nf = 4 flavors. This corresponds to αs(mZ) =
0.1175 in the MS scheme. For more details, see [37]
12 The MRST1 set is presented by the authors of [37] as the
default set. However, in order to take into account mutually in-
consistent data sets on single direct photon production at fixed
targets, a kT smearing procedure is involved in the determina-
tion of this set. This procedure is strongly model dependent

Fig. 3. Diphoton differential cross section dσ/dmγγ versus
mγγ , the mass of the photon pair, at Tevatron, S1/2 = 1.8TeV.
Preliminary data points (statistical errors and systematics in
quadrature) from the D0 collaboration [6] are compared to the
theoretical predictions: the full NLO prediction is shown as the
solid line

M = Mf = µ = mγγ/2. The prediction for the above
scale choice is shown for the diphoton differential cross
sections versus the transverse momentum of each photon
(Fig. 2), the diphoton mass (Fig. 3), and for the transverse
momentum of photon pairs (Fig. 4) and the azimuthal an-
gle between the photons (Fig. 5). With the scale choice
used, the “one fragmentation” contribution is roughly one
tenth of the “direct” one whereas the “two fragmenta-
tion” yields a tiny contribution. To illustrate this, the dif-
ferent contributions: “direct”, “one” and “two fragmenta-
tion” are shown separately on Fig. 5. The distributions of
the transverse momentum of photon pairs and of the az-
imuthal angle between the photons are well known to be
controlled by multiple soft gluon emission near the elastic
boundary of the spectrum, qT → 0 and φγγ → π, respec-
tively. Consequently, the accuracy of any fixed order cal-
culation, including the present one, is not suited to study
such observables in these respective ranges. More on this
issue in the next section. On the other hand a NLO cal-
culation is expected to be predictive for the tails of these
distributions away from the infrared sensitive region.

The data are reasonably described, taking into account
a correlated systematic error for events in which the pT of
both photons is above 20GeV. This correlated systematic
error due to the background evaluation obviously affects
the three highest pT points of the transverse energy spec-

and questionable as long as no unambiguous way is found to
lodge it in the QCD improved parton model. The set MRST2
does not involve this procedure, so we prefer to base any pre-
diction and comparison on this set
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Fig. 4. Diphoton differential cross section dσ/dqT versus qT,
the transverse momentum of the photon pair, at Tevatron,
S1/2 = 1.8TeV. Preliminary data points (statistical errors and
systematics in quadrature) from the D0 collaboration [6] are
compared to the theoretical predictions: the full NLO predic-
tion is shown as the solid line

Fig. 5. Diphoton differential cross section dσ/dφγγ versus φγγ ,
the azimuthal angle between the two photons, at Tevatron,
S1/2 = 1.8TeV. Preliminary data points (statistical errors and
systematics in quadrature) from the D0 collaboration [6] are
compared to the theoretical predictions: the full NLO predic-
tion is shown as the solid line while open squares (open circles)
represent the single (double) fragmentation contribution

Fig. 6. Splitting of the diphoton differential cross section
dσ/dmγγ at LHC, S1/2 = 14TeV without isolation, into the
“direct”,“one fragmentation” and “two fragmentation” com-
ponents, shown for two different choices of scales. The follow-
ing kinematic cuts are applied: pT(γ1) ≥ 40GeV, pT(γ2) ≥
25GeV, |y(γ1,2)| ≤ 2.5

trum, as well as the three highest points of the diphoton
mass spectrum.

We do not present any analysis of the various scale
dependences for Tevatron. Such a discussion is proposed
for LHC in the next section. Yet let us mention that, at
Tevatron, the energy scale is lower and the relevant values
of x are somewhat higher than at LHC. Consequently,
the renormalization scale dependence is slightly sharper;
on the other hand the factorization scale dependence is
somewhat flatter than at LHC. Nevertheless, the situation
at Tevatron is expected to be qualitatively similar to the
one at LHC.

3.2 Predictions for LHC

We now discuss some results computed with the kinematic
cuts from the CMS and ATLAS proposals [40], namely
pT(γ1) > 40GeV, pT(γ2) > 25GeV, |y(γ1,2)| < 2.5, with
80GeV ≤ mγγ ≤ 140GeV, and using the MRST2 set of
parton distribution functions [37] and the fragmentation
functions of [10].

3.2.1 Scale ambiguities

We first consider the invariant mass distribution of the
diphotons, in the absence of isolation cuts, cf. Fig. 6, in or-
der to illustrate the strong dependence of the splitting into
the three contributions, “direct”, “one” and “two fragmen-
tation”, on the scale chosen, as we warned in
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Fig. 7. Diphoton differential cross section dσ/dmγγ versus
mγγ , the invariant mass of photon pairs, at LHC, S1/2 =
14TeV without isolation. The following kinematic cuts are ap-
plied: pT(γ1) ≥ 40GeV, pT(γ2) ≥ 25GeV, |y(γ1,2)| ≤ 2.5. The
scale dependence is shown on the bottom plot. M = Mf is
understood

Sect. 2.1. In both choices of scales displayed the “one frag-
mentation” contribution dominates, but the hierarchy be-
tween “direct” and “two fragmentation” contributions is
reversed from one choice to the other. With the choice of
scales M = Mf = µ = mγγ/2, the “one fragmentation”
is more than twice larger than the “direct” one, and the
“two fragmentation” is the smallest. On the other hand,
with the other choice M = Mf = µ = 2mγγ , the “one
fragmentation” contribution is three to five times larger
than the “two fragmentation” component, and more than
one order of magnitude above the “direct” one. On the
other hand the total contribution seems rather stable.

Yet the arbitrariness in the choices of the various scales
still induces theoretical uncertainties in NLO calculations.
In the following we actually do not perform a complete
investigation of all three scale ambiguities independently
on searching an optimal region of minimal sensitivity. At
the present stage, we limit the study to an estimation of
the pattern and magnitude of the effect on our results.
We show how the scale ambiguities affect our prediction
for the invariant mass distribution. We consider both the
case without isolation (Fig. 7) and the isolated case with
ET max = 5GeV inside R ≤ 0.4 (Fig. 8). For the present
purpose, the virtue of the actual values of the isolation
parameters used here is to strongly suppress the fragmen-
tation contributions, hence the associatedMf dependence.
We compare four different choices of scales: two choices
along the first diagonal µ = M = Mf = mγγ/2 and
µ = M = Mf = 2mγγ ; and two anti-diagonal choices,
µ = mγγ/2;M = Mf = 2mγγ and µ = 2mγγ ;M = Mf =
mγγ/2. We do not perform a separate study of the frag-

Fig. 8. Diphoton differential cross section dσ/dmγγ versus
mγγ at LHC, S1/2 = 14TeV, with isolation criterion ET max =
5GeV in R = 0.4. Same kinematic cuts as in Fig. 7. The scale
dependence is shown on the bottom plot. M = Mf is under-
stood

mentation scale dependence. Yet the latter can be indi-
rectly estimated by comparing the results of the isolated
case, where the fragmentation components, thereby the
corresponding fragmentation scale dependence, are
strongly suppressed, with the situation in the non-isolated
case, where especially the “one fragmentation” contribu-
tion is quite large, and the “two fragmentation” not neg-
ligible, so that the issue of the fragmentation scale depen-
dence matters.

When scales are varied betweenmγγ/2 and 2mγγ along
the first diagonal µ = M = Mf , the NLO results for the
invariant mass distribution appear to be surprisingly sta-
ble, since they change by about 5% only. Alternatively,
anti-diagonal variations of µ and M = Mf in the same
interval about the central value mγγ lead to a variation
still rather large (up to 20%; cf. Fig. 7 and Fig. 8). This
is because variations with respect to µ and M are sepa-
rately monotonical but act in opposite ways. When µ is
increased, αs(µ2) hence the NLO corrections decrease13.

13 In processes for which the lowest order is proportional to
some power αn

s , n ≥ 1, an explicit µ dependence appears in
the next-to-leading order coefficient function, which partially
compensates the (large) µ dependence in αs(µ2) weighting the
lowest order. Unlike this, in the “two direct” component which
dominates the cross section when a drastic isolation is required,
the lowest order involves no αs. This leads to a rather small µ
dependence, since the latter starts only at NLO. On the other
hand, the µ dependence occurs only through the monotonical
decrease of the αs(µ2) weighting the first higher order correc-
tion: there is no partial cancellation of µ dependence. Such
cancellation would start only at O(α2

s ), i.e. at NNLO. The
mechanism is more complicated in the presence of fragmenta-
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Fig. 9. M dependence of the “direct+box” contribution to
dσ/dmγγ in several mγγ bins at LHC, S1/2 = 14TeV, with
isolation criterion ET max = 5GeV in R = 0.4. Same kinematic
cuts as in Fig. 7. µ is chosen to be mγγ/2, while M is varied
between mγγ/2 and 2mγγ

On the other hand the relevant values of the momentum
fraction of incoming partons are small, ∼ O(10−3 to 10−2)
so that the gluon and sea quark distribution functions in-
crease whenM is increased. In the isolated case, this leads
to a monotonical increase of the “direct” component, over
a large band of the invariant mass range considered, as
M is increased, cf. Fig. 9, which is induced in particular
by the monotonical increase of the box contribution. Scale
changes with respect to µ and M turn out to nearly can-
cel against each other along the first diagonal but add up
in the other case. Actually, the stability along the first
diagonal is accidental.

In conclusion, the µ,M dependences are thus not com-
pletely under control yet at NLO in the kinematic range
considered. On the other hand, the account for the NLO
corrections to the fragmentation components provides
some stability with respect to Mf variations about ortho-
dox choices of the fragmentation scale.

The issue of the µ dependence of less inclusive observ-
ables, such as the tails of the qT or φγγ distributions are
the same for the invariant mass distribution. This is be-
cause the tails of these distributions is purely given by the
NLO corrections and dominated by the O(αs) corrections
of the “two direct” component. On the other hand, the
M dependence is a bit larger; so is the combined uncer-
tainty on the theoretical results for these distributions; cf.
Figs. 10 and 11.

tion components, and the situation becomes mixed up between
all components when the severity of the isolation is reduced

Fig. 10. Diphoton differential cross section dσ/dqT at LHC,
S1/2 = 14TeV, with isolation criterion ET max = 5GeV in
R = 0.4. The following kinematic cuts are applied: pT(γ1) ≥
40GeV, pT(γ2) ≥ 25GeV, |y(γ1,2)| ≤ 2.5, and 80GeV ≤
mγγ ≤ 140GeV. The scale dependence is shown on the bottom
plot. M = Mf is understood

Fig. 11. Diphoton differential cross section dσ/dφγγ versus
φγγ , the azimuthal angle between the two photons, at LHC,
S1/2 = 14TeV, with isolation criterion ET max = 15GeV in
R = 0.4. Same kinematic cuts as in Fig. 10. The scale depen-
dence is shown on the bottom plot. M = Mf is understood
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Fig. 12. Diphoton differential cross section dσ/dmγγ versus
mγγ at LHC, S1/2 = 14TeV, without and with isolation cri-
terion ET max = 5GeV in R = 0.4. Same kinematic cuts as in
Fig. 7. The scale choice is M = Mf = µ = mγγ/2

3.2.2 Effect of isolation

We now consider the effect of isolation on the various
contributions. As expected, isolation reduces the dipho-
ton production rate, with respect to the inclusive case; cf.
Fig. 12. More precisely, severe isolation requirements like
ET max = 5GeV inside a cone R = 0.4 suppress the “one
fragmentation” component, which dominates the inclusive
rate, by a factor 20 to 50, and kill the “two fragmentation”
contribution completely.

However this net result hides a rather intricate mech-
anism, cf. Fig. 13 versus Fig. 6, by which the “two direct”
contribution turns out to be increased! Surprising as it
may seem at first sight, this effect has the following origin.
Higher order corrections to the “two direct” component
involve in particular the two subprocesses q̄q → γγg and
gq → γγq (where q is a quark or an antiquark). The first
one yields a positive contribution. On the other hand, the
collinear safe part of the second one yields a contribution
which is negative, and larger in absolute value than the
previous one in the inclusive case, as was already seen in
[7]. Isolation turns out to suppress more the higher order
corrections from the second mechanism than from the first
one, so that the NLO isolated “two direct” contribution
is larger than the inclusive one. Yet, the “fragmentation”
contributions are suppressed more than the “two direct”
one is increased, so that the sum of all contributions is
indeed decreased, with respect to the inclusive case. Once
again, one has to remember that the splitting into the
three mechanisms depends not only on the factorization
scale, but more generally on the factorization scheme. This
arbitrariness generates such counterintuitive offsprings; in
a final state factorization scheme different than the MS

Fig. 13. Splitting of the diphoton differential cross section
dσ/dmγγ at LHC, S1/2 = 14TeV with isolation criterion
ET max = 5GeV in R = 0.4, into the “direct”,“one fragmen-
tation” and “two fragmentation” components, shown for the
scale choice µ = M = Mf = mγγ/2. The following kine-
matic cuts are applied: pT(γ1) ≥ 40GeV, pT(γ2) ≥ 25GeV,
|y(γ1,2)| ≤ 2.5

scheme, the various components, especially the “two di-
rect” one, may be separately affected by isolation cuts in
a different way. This once more illustrates the danger of
playing with these unphysical quantities separately.

A more detailed analysis of the dependence of NLO
estimations of various observables on the isolation cut pa-
rameters, especially on ET max will be given in a forth-
coming publication. We will also come back to this issue,
regarding infrared sensitivity, in Sect. 4.3.

4 Infrared sensitive observables
of photon pairs and soft gluon divergences

Being based on a fixed, finite order calculation, our com-
puter code is not suited for the study of observables con-
trolled by multiple soft gluon emission, and has to be im-
proved in this direction. Among these infrared sensitive
observables, one may distinguish the following examples,
most of which would require an improved account of soft
gluon effects.

4.1 Infrared sensitivity near the elastic boundary

4.1.1 The transverse momentum distribution dσ/dqT
of photon pairs near qT = 0

Both in the inclusive and isolated cases, this distribution is
an infrared sensitive observable, controlled by the multiple
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emission of soft and collinear gluons. This well-known phe-
nomenon has been extensively studied for the correspond-
ing observable in the Drell–Yan process [41]. A loss of bal-
ance between the contribution of real emission, strongly
suppressed near this exclusive phase space boundary, and
the corresponding virtual contribution, results in large Su-
dakov type logarithms of m2/q2T (m being the invariant
mass and qT the transverse momentum of the photon pair
– the heavy vector boson in the Drell–Yan case) at every
order in perturbation. In order to make sensible predic-
tions in this regime, these Sudakov type logarithms have
to be resummed to all orders.

The treatment of the “two direct” and box contribu-
tions is similar to the well-known Drell–Yan process, and
has been carried out recently by [42] at next-to-leading
logarithmic accuracy in the framework tailored by Collins,
Soper and Sterman [43]. On the other hand, the fragmen-
tation contributions do not diverge order by order when
qT → 0. Indeed, in the “one fragmentation” case,

parton1 + parton2 → γ1 + parton3, (2)
parton3 → γ2 +X, (3)

the NLO contribution to the hard subprocess (2) yields a
double logarithm of the form

∼ αs ln2 ‖pT(γ1) + pT(parton3)‖, (4)

when ‖pT(γ1) + pT(parton3)‖ → 0. However the extra
convolution associated with the fragmentation (3) involves
an integration over the fragmentation variable pT(γ2)/
pT(parton3) which smears out this integrable singularity.
The “two fragmentation” contribution involves two such
convolutions, hence one more smearing.

4.1.2 The distribution
of photon–photon azimuthal angle dσ/dφγγ near φγγ = π

This distribution is another interesting infrared sensitive
observable, measured by several experiments both at fixed
target and collider energies [2,5,6], though less discussed
in the literature from the theoretical side. The regime
φγγ → π includes back-to-back photons, a set of config-
urations which lie at the elastic boundary of the phase
space. This case differs from the previous one for two
reasons. Firstly, not only the “two direct” contribution
diverges order by order when φγγ → π, but also both
“one” and “two fragmentation” contributions diverge as
well, as can be inferred from Fig. 5. Indeed, consider the
example of the “one fragmentation case”; cf. Sects. 2 and
3. Selecting φγγ → π emphasizes the configurations with
φ(parton3) − φ(γ1) → π, so that all the emitted partons
besides parton 3 have to be collinear to either of the in-
coming or outgoing particles, and/or soft, which yields
double logarithms

∼ αs ln2 [π − (φ(parton3) − φ(γ1))] , (5)

associated with each of the hard partons 1, 2, 3 – plus sin-
gle logarithms as well. For the observable dσ/dφγγ near

Fig. 14. Diphoton differential cross section dσ/dqT at LHC,
S1/2 = 14TeV, with isolation criterion ET max = 15GeV in
R = 0.4. Same kinematic cuts as in Fig. 7

φγγ = π, the integral involved in the convolution of the
hard subprocess with the fragmentation functions does not
smear these logarithmic divergences, since the fragmenta-
tion variable pT(γ2)/pT(parton3) is decoupled from the
azimuthal variable φ(parton3) which is equal to φ(γ2),
γ2 and parton 3 being collinear. A similar observation
holds for the “two fragmentation” component. Moreover,
in both fragmentation cases, soft gluons may couple to
both initial and final state hard emitters. The resulting
color structure of the emitters is more involved than in
the “two direct” case, and especially more complicated
in the “two fragmentation” case as shown in some recent
works [44]. This would make any resummation quite intri-
cate beyond leading logarithms.

Let us notice that both fragmentation components
make dσ/dφγγ diverge also when φγγ → 0. The increase
of the fragmentation contributions in the lower φγγ range
is the trace of this divergence; cf. Fig. 5.

4.2 An infrared divergence inside the physical region

In the case of photons isolated with the standard fixed
cone size criterion of (1), a new problem appears in the
qT distribution. This problem does not concern the region
qT → 0; still it has to do with infrared and collinear di-
vergences. This can be seen on Fig. 14, which shows the
observable dσ/dqT versus qT for isolated photon pairs,
computed at NLO accuracy. The computed qT distribu-
tion turns out to diverge when qT → ET max from below.
Notice that the critical point ET max is located inside the
physical region. The phenomenon is similar to the one
discovered in [25] in the production of isolated photons
in e+e− annihilation, and whose physical explanation has
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been given in [30] following the general framework of [45].
It is a straightforward exercise to see that the lowest order
“one fragmentation” contribution has a stepwise behavior,
as noticed in [9]. Indeed, at this order, the two photons are
back-to-back. ET had being the transverse hadronic energy
deposited in the cone about the photon from fragmenta-
tion, the conservation of transverse momentum implies at
this order that ET had = qT. The corresponding contribu-
tion to the differential cross section dσ/dqT thus takes the
schematic form(

dσ
dqT

)(1fragm,LO)

= f (qT)Θ (ET max − qT) . (6)

According to the general analysis of [45], the NLO correc-
tion to dσ/dqT has a double logarithmic divergence at the
critical point qT = ET max

14 . The details of this infrared
structure are very sensitive to the kinematic constraints
and the observable considered. In the case at hand, at
NLO, dσ/dqT gets a double logarithm below the critical
point, which is produced by the convolution of the lowest
order stepwise term above, with the probability distribu-
tion for emitting a soft and collinear gluon:

(
dσ
dqT

)(1fragm,HO)

	 −f (qT)Θ (ET max − qT)

× αs

2π
C ln2

(
1 − q2T

E2
T max

)
+ · · · , (7)

where C is a color factor, CF or Nc according to whether
the soft collinear gluon emitter is a quark (antiquark) or a
gluon. More generally, at each order in αs, up to two pow-
ers of such logarithms will appear, making any fixed order
calculation diverge at qT = ET max, so that the spectrum
computed by any fixed order calculation is unreliable in
the vicinity of this critical value. An all order resummation
has to be carried out if possible in order to restore any pre-
dictability. A correlated step appears also in the “two di-
rect” contribution at NLO, in the bin about qT = ET max.
A detailed study of these infrared divergences will be pre-
sented in a future article.

No such divergence appears in the qT distribution of
photon pairs presented in [9]. The non-appearance of the
double logarithmic divergence there comes from the fact
that the latter pops out only at NLO, while the authors of
[9] compute the “one fragmentation” component at lowest
order. Furthermore, the stepwise lowest order “one frag-
mentation” contribution to the qT distribution is replaced
in [9] by the result of the Monte Carlo simulation of this
component using PYTHIA [20]. A quantitative compari-
son is thus difficult to perform15.

It can be noticed that the divergence at qT = ET max
is not visible on Fig. 4. This is because in this case, the
14 In practice, the qT spectrum is sampled into bins of finite
size, and the distribution represented on Fig. 14 is averaged
on each bin. Since the logarithmic singularity is integrable, no
divergence is actually produced. However, when the bin size is
shrunk, the double logarithmic branch appears again
15 Such a comparison involves two issues.

critical point ET max in the qT spectrum where the the-
oretical calculation divergence is too close to the other
singular point qT = 0, given the binning used. The two
singularities contribute with opposite signs in these bins
and a numerical compensation occurs, resulting in no size-
able effect. Yet the problem is only camouflaged. A similar
smearing appears also at LHC energies for a stringent iso-
lation cut; cf. Fig. 10.

4.3 Reliability of NLO calculations
with stringent isolation cuts

Let us add one more comment concerning NLO partonic
predictions with very stringent isolation cuts. In such cal-
culations, the isolation cuts act on the products of the
hard subprocess only. On the other hand, in an actual
LHC event, a cut as severe as ET max = 2.5GeV inside a
cone R = 0.3 or 0.4 will be nearly saturated by underlying
events and pile up.

This means that such an isolation cut actually allows
almost no transverse energy deposition from the actual
hadronic products of the hard process itself. This may be
most suitable experimentally, and one may think about
simulating such an effect safely in an NLO partonic cal-
culation by using an effective transverse energy cut much
more severe than the one experimentally used. However,
requiring that no transverse energy be deposited in a cone
of fixed size about a photon is not infrared safe, i.e. it
would yield a divergent result order by order in perturba-
tion theory. This implies that NLO partonic calculations
implemented with finite but very stringent isolation cuts
in a cone of fixed finite size would lead to unreliable re-
sults, plagued by infrared instabilities involving large log-
arithms of ET max. What is more, these infrared nasties
would not be located at some isolated point in the dipho-
ton spectrum (like some elastic boundary or some criti-
cal point, as in the previous subsection), but instead they

The first aspect concerns the infrared sensitivity below the crit-
ical point. When the scale of αs in the Sudakov factor of the
fragmenting quark is chosen to be the transverse momentum
of the emitted gluon with respect to the emitter, the parton
shower not only reproduces the fragmentation function of a
parton into a photon to the collinear leading logarithmic ap-
proximation, but it also provides an effective resummation of
soft gluons effects to infrared and collinear leading logarithmic
accuracy. (This would not be true if, instead, the scale of αs

in the Sudakov factor were the virtuality of the emitter). This
ensures that the distribution does not diverge from below at
the critical point, but rather tends to a finite limit.
The second issue concerns the shape of the tail of this contribu-
tion above the critical point. Indeed, energy-momentum con-
servation at each branching makes the parton shower generate
also contributions in the region qT > ET max, which is forbid-
den at lowest order. These contributions would be classified in
a beyond leading order calculation as higher order corrections.
Unlike in a fixed order calculation however, they provide only a
partial account of such corrections, but to arbitrary high order.
The accuracy of these terms thus is not easy to characterize,
and a quantitative comparison between PYTHIA and any fixed
order calculation is difficult to perform
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would extend over its totality, even for observables such as
the invariant mass distribution. The issue of an all order
summation of these logarithms of ET max would have to
be investigated in this case.

5 Conclusions and perspectives

We presented an analysis of photon pair production with
high invariant mass in hadronic collisions, based on a per-
turbative QCD calculation of full NLO accuracy. The lat-
ter is implemented in the form of a Monte Carlo com-
puter program of partonic event generator type, DIPHOX.
The postdictions of this study are in reasonable agreement
with both WA70 fixed target and preliminary D0 collider
data, in the kinematical range where the NLO approx-
imation is safe, namely away from the elastic boundary
of phase space. Yet more will be learned from the final
analysis of the Tevatron data, and even more so after the
Tevatron run II in the perspective of the LHC. It will then
be worthwhile to perform a more complete phenomenolog-
ical study.

This notwithstanding, there remains room for improve-
ments. A first improvement will be to take into account
multiple soft gluon effects in order to calculate infrared
sensitive observables correctly. Another improvement will
concern a more accurate account of contributions beyond
NLO, associated namely with the gluon–gluon initiated
subprocess. Among those are the NNLO corrections, and
even the two-loop, so-called double box correction to gg →
γγ, which may be quantitatively important at LHC for the
background to Higgs search.

A better understanding of the effects of isolation, and
their interplays with infrared problems is also required.
This concerns the qT distribution near the critical point
qT = ET max induced by isolation even when ET max is
not small; this concerns also the status of partonic predic-
tions when ET max is chosen very small. Alternatively it
would be interesting to explore the properties of different
isolation criteria, such as, for example, the one invented
recently by Frixione [22]. Concerning these last two items,
approaches relying on beyond leading order partonic level
calculations, and full event generators like PYTHIA or
HERWIG will be complementary.

Acknowledgements. We acknowledge discussions with J. Wom-
ersley and T.O. Mentes on the D0 data, J. Owens on theory
versus data comparisons, and C. Balazs about the theoretical
ingredients inside the RESBOS code. We thank F. Gianotti, P.
Petroff, E. Richter-Was and V. Tisserand for discussions con-
cerning the Atlas Proposal. This work was supported in part
by the EU Fourth Training Programme “Training and Mobil-
ity of Researchers”, Network “Quantum Chromodynamics and
the Deep Structure of Elementary Particles”, contract FMRX-
CT98-0194 (DG 12 – MIHT).

Appendix A
Technical details
on the two photon production

In this appendix, we give some details on the method used
to deal with infrared and soft divergences. For a com-
plete presentation, we refer to [15]. The most complicated
kinematics happens in the two fragmentation mechanism.
Only the two fragmentation contribution will be treated
in this appendix; the kinematics of the other cases can be
simply deduced replacing the fragmentation function by a
Dirac distribution:

Dγ/k(x,M2
f ) = δ(1 − x).

At the hadronic level, the reaction H1(K1) + H2(K2) →
γ(K3) + γ(K4) +X is considered with

K1 =
√
S

2
(1,0, 1),

K2 =
√
S

2
(1,0,−1),

K3 = KT3(cosh y3,n3, sinh y3),
K4 = KT4(cosh y4,n4, sinh y4),

where

n2
3 = n2

4 = 1.

The cross section of the preceding reaction is the sum of
the following parts.
– The part I (cf. Section 2.2.1) contains the infrared, the

initial state, and a part of the final state collinear
singularities. Once these divergences have been sub-
tracted, i.e. cancelled against virtual divergences or
absorbed into the bare parton distribution (for the ini-
tial state collinear singularities) or the bare fragmen-
tation functions (for the final state collinear singulari-
ties), this part generates three types of finite terms.
(i) The first type, of infrared origin, has the same

kinematics as the lowest order (LO) terms and is
given in A.4

(ii) The second type, of initial state collinear origin,
has an extra integration over the center of mass
energy of the hard scattering, as compared to LO
kinematics. For this reason, it is called quasi 2 →
2. It is given in A.2

(iii) There is also a third type, of final state collinear
origin, which involves also an extra integration as
compared to LO kinematics.

– The parts II a and II b contain the rest of the fi-
nal state collinear singularities. Once these divergences
have been absorbed into the bare fragmentation func-
tions, the remaining finite terms involve an extra in-
tegration over the relative momentum of the collinear
partons, as compared to LO kinematics. These terms
are combined with those of the so-called third type (iii)
above; cf. (A.10) and (A.11). The resulting contribu-
tions are called quasi 2 → 2 as well. They are given in
A.3

– The part II c has no divergences. It is given in A.1.
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A.1 Cross section for real emission

The cross section is parametrized in the following way:

σ = Cij

∫
dy3

∫
dy4

∫
dKT3

∫
dKT4

×

∫ 1

x3min

dx3

x3

∫ pT5max

pTm

dpT5pT5

∫∫
Ω35−C3

dφ35dy5

× pT3Dγ/k(x3,M
2
f )
Dγ/l(x4,M

2
f )

pT4

× Fi/H1(x1,M
2)

x1

Fj/H2(x2,M
2)

x2
|M |23

+
∫ 1

x4min

dx4

x4

∫ pT5max

pTm

dpT5pT5

∫∫
Ω45−C4

dφ45dy5

× pT4Dγ/l(x4,M
2
f )
Dγ/k(x3,M

2
f )

pT3

× Fi/H1(x1,M
2)

x1

Fj/H2(x2,M
2)

x2
|M |24

]
, (A.1)

where

x1 =
pT3√
S
e−y3 +

pT4√
S
e−y4 +

pT5√
S
e−y5 (A.2)

= x̂1 +
pT5√
S
e−y5 ,

x2 =
pT3√
S
ey3 +

pT4√
S
ey4 +

pT5√
S
ey5 (A.3)

= x̂2 +
pT5√
S
ey5 ,

x3min =
2KT3√
S

cosh y3, (A.4)

x4min =
2KT4√
S

cosh y4. (A.5)

The transverse momenta pT3 (respectively pT4) are the
transverse momenta of the fragmenting partons. They are
related to the photon variables by pT3 = KT3/x3 (respec-
tively pT4 = KT4/x4). The integration range for the pair
of variables φ35 (respectively φ45), y5 is the kinematically
allowed range minus a cone in rapidity azimuthal angle C3
(respectively C4) along the p3 (respectively p4) direction
whose size is Rth. The overall factor Cij reads

Cij =
α3

s (µ
2)

4S2πCiCj
,

and the Ci are given by

Ci =

{
N for quarks,
(N2 − 1)for gluons.

The matrix element squared16, taken from the first refer-
ence of [7] and from [46], has been split into two parts:

|M |2 = |M |23 + |M |24.
16 An overall factor of the matrix element squared containing
the average on spins and colors of the initial state and the
coupling constant has been put into the coefficient Cij

The first part |M |23 contains final state collinear singular-
ities arising when p3 ‖ p5 and the second part |M |24 con-
tains final state collinear singularities arising when p4 ‖
p5. More precisely, the matrix element squared can be
written as a weighted sum of eikonal factors Eab plus a
term free of infrared or collinear singularities:

|M |2ij→klm =
4∑

a=1

4∑
b=a+1

Hab(p5)Eab +G(p5), (A.6)

where

Eab =
pa.pb

pa.p5pb.p5
.

Using

1
p3.p5p4.p5

=
1

p1.p5 + p2.p5

(
1

p3.p5
+

1
p4.p5

)
, (A.7)

we get

|M |23 =
1
2
H12(p5)E12 +H13(p5)E13 +H23(p5)E23

+ H34(p5)E′
34 +

1
2
G(p5),

|M |24 =
1
2
H12(p5)E12 +H14(p5)E14 +H24(p5)E24

+ H34(p5)E′′
34 +

1
2
G(p5),

with

E′
34 =

p3.p4

p1.p5 + p2.p5

1
p3.p5

,

E′′
34 =

p3.p4

p1.p5 + p2.p5

1
p4.p5

.

In order that the infrared divergences cancel, and the
collinear singularities factorize out, the coefficients Hab

have to obey
Ci

Ci′
a

(d)
i′i (z1)|M |2B

i′j→kl =

z1[H12((1 − z1)p1) +H13((1 − z1)p1)
+H14((1 − z1)p1)],
Cj

Cj′
a

(d)
j′j (z2)|M |2B

ij′→kl =

z2[H12((1 − z2)p2) +H23((1 − z2)p2)
+H24((1 − z2)p2)],

a
(d)
kk′(z3)|M |2B

ij→k′l =

z3

[
H13

(
1 − z3
z3

p3

)
+H23

(
1 − z3
z3

p3

)

+H34

(
1 − z3
z3

p3

)]
,

a
(n)
ll′ (z4)|M |2B

ij→kl′ =

z4

[
H14

(
1 − z4
z4

p4

)
+H24

(
1 − z4
z4

p4

)

+ H34

(
1 − z4
z4

p4

)]
.
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In particular, the cancellation of infrared divergences is
insured by

H12(0) +H13(0) +H14(0) = a
(d)
ii (1)|M |2B

ij→kl,

H12(0) +H23(0) +H24(0) = a
(d)
jj (1)|M |2B

ij→kl,

H13(0) +H23(0) +H34(0) = a
(d)
kk (1)|M |2B

ij→kl,

H14(0) +H24(0) +H34(0) = a
(d)
ll (1)|M |2B

ij→kl.

The functions a(d)
ij (z) will be given in (A.13).

In (A.1), the integration domain for the rapidities and
the transverse momenta of the two photons is in general
limited by experiments. The integration over pT5 is con-
strained by

p2
T5 < S(1 − x̂1)(1 − x̂2).

A.2 Pseudo cross sections
for the initial state collinear parts

The finite part associated to the collinear divergence p1 ‖
p5 is given by

σ5‖1 =
∫

dy3

∫
dy4

∫
dKT3

∫
dKT4

∫ 1

x3min

dx3

x3

×
∫ 1

x4min

dx4

x4

αs(µ2)
2π

CB
ijpTδ(pT3 − pT4)

× Dγ/k(x3,M
2
f )Dγ/l(x4,M

2
f )
∫ 1

x0
1

dz1
z1

×
Fi/H1

(
x0
1

z1
,M2

)
x0

1

Fj/H2(x
0
2,M

2)
x0

2
|M |2B

i′j→kl

Ci

Ci′

×
[
a

(d−4)
i′i (z1)
(1 − z1)+ + ln

(
p2

Tm

M2

)
P

(4)
i′i (z1) − fi′i(z1)

]
,(A.8)

where the variables x0
1 (respectively x0

2) are defined by

x0
1 =

pT√
S

(
e−y3 + e−y4

)
,

x0
2 =

pT√
S
(ey3 + ey4),

and pT stands for pT3 or pT4.
The finite part associated to the collinear divergence

p2 ‖ p5 is given by

σ5‖2 =
∫

dy3

∫
dy4

∫
dKT3

∫
dKT4

∫ 1

x3min

dx3

x3

×
∫ 1

x4min

dx4

x4

αs(µ2)
2π

CB
ijpTδ(pT3 − pT4)Dγ/k(x3,M

2
f )

× Dγ/l(x4,M
2
f )
∫ 1

x0
2

dz0
2

z2

Fi/H1(x
0
1,M

2)
x0

1

×
Fj/H2

(
x0
2

z2
,M2

)
x0

2
|M |2B

ij′→kl

Cj

Cj′

×
[
a

(d−4)
j′j (z2)
(1 − z2)+ + ln

(
p2

Tm

M2

)
P

(4)
j′j (z2) − fj′j(z0

2)

]
,(A.9)

with

CB
ij =

2πα2
s (µ

2)
4S2CiCj

.

The functions a(d−4)
ij (z), P (4)

ij (z) and fij(z) will be defined
at the end of this appendix; cf. (A.18) to (A.21), (A.13)
and (A.24).

A.3 Pseudo cross section
for the final state collinear parts

These parts contain the collinear singularities which have
been absorbed into the bare fragmentation functions.

The finite part associated to the collinear divergence
p3 ‖ p5 is given by

σ5‖3 =
∫

dy3

∫
dy4

∫
dKT3

∫
dKT4

∫ 1

x3min

dx3

x3

×
∫ 1

z3min

dz3
z3

αs(µ2)
2π

CB
ijDγ/k(x3,M

2
f )Dγ/l(x′

4,M
2
f )

× Fi/H1(x
′
1,M

2)
x′

1

Fj/H2(x
′
2,M

2)
x′

2
|M |2B

ij→k′l

×
[
a

(d−4)
kk′ (z3)
(1 − z3)+ + ln

(
p2

T3

M2
f

)
P

(4)
kk′(z3) − dkk′(z3)

+ 2
(
ln(1 − z3)
(1 − z3)

)
+
a

(4)
kk′(z3)

+ ln(R2)
a

(4)
kk′(z3)
(1 − z3)Θ(z3m − z3)

]
, (A.10)

whereas the finite part associated to the collinear diver-
gence p4 ‖ p5 is given by

σ5‖4 =
∫

dy3

∫
dy4

∫
dKT3

∫
dKT4

∫ 1

x4min

dx4

x4

×
∫ 1

z4min

dz4
z4

αs(µ2)
2π

CB
ijDγ/k(x′′

3 ,M
2
f )Dγ/l(x4,M

2
f )

× Fi/H1(x
′′
1 ,M

2)
x′′

1

Fj/H2(x
′′
2 ,M

2)
x′′

2
|M |2B

ij→kl′

×
[
a

(d−4)
ll′ (z4)
(1 − z4)+ + ln

(
p2

T4

M2
f

)
P

(4)
ll′ (z4) − dll′(z4)

+ 2
(
ln(1 − z4)
(1 − z4)

)
+
a

(4)
ll′ (z4)

+ ln(R2)
a

(4)
ll′ (z4)

(1 − z4)Θ(z4m − z4)
]
. (A.11)

The functions a(4)
ij (z) and dij(z) will also be defined at the

end of the appendix; cf. (A.14) to (A.17) and (A.25). The
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variables z3m, z4m, x′
1, x

′
2, x

′
4, x

′′
1 , x

′′
2 and x′′

3 appearing in
(A.10) and (A.11) are given by

z3m =
pT3

pT3 + pTm
,

z4m =
pT4

pT4 + pTm
,

x′
1 =

pT3 + pT5√
S

(ey3 + ey4) ,

x′
2 =

pT3 + pT5√
S

(
e−y3 + e−y4

)
,

x4 =
KT4

KT3
x3 z3

x′′
1 =

pT4 + pT5√
S

(ey3 + ey4) ,

x′′
2 =

pT4 + pT5√
S

(
e−y3 + e−y4

)
x′′

3 =
KT3

KT4
x4 z4 .

A.4 Pseudo cross section
for the infrared and virtual parts

This pseudo cross section is given by

σir =
∫

dy3

∫
dy4

∫
dKT3

∫
dKT4

×αs(µ2)
2π

CB
ij

∫ 1

x3min

dx3

x3

∫ 1

x4min

dx4

x4
pTδ(pT3 − pT4)

×Dγ/k(x3,M
2
f )Dγ/l(x4,M

2
f )

×Fi/H1(x
0
1,M

2)
x0

1

Fj/H2(x
0
2,M

2)
x0

2

×
{

−
[
ln
(
p2

T

S

)
(bkk + bll)

+ ln
(
p2

Tm

S

)
(bii + bjj)

]
|M |2B

ij→kl

+ ln
(
p2

Tm

S

)∑
i<j

Hij(0) ln

(
2p0

i .p
0
j

S

)
−1
2
ln
(
p2

T

S

)
ln
(
p2

Tm

S

)
[H13(0) +H14(0) +H23(0)

+H24(0) + 2H34(0)]

+
1
4
ln2
(
p2

T

S

)
[H13(0) +H14(0) +H23(0)

+H24(0) + 2H34(0)]

−1
4
ln2
(
p2

Tm

S

)
[2H12(0) +H13(0) +H14(0)

+H23(0) +H24(0)]

+
H34(0)
π

[A34(y�) +A34(−y�)] + F (ŝ, t̂, û)
}
, (A.12)

with pT = pT3 = pT4. The terms bii are defined in (A.22)
and (A.23). In (A.12), y� = (y3 − y4)/2 and the function

A(x) is given by

A(x) = π ln(2) ln(4 cosh2(y�))

+ 2y� sinh(2y�)
∫ π

0
dφ

ln(sinφ)
cosh(2x) + cos(2φ)

+ 4
∫ π

0
dφ

sin(2φ)
cosh(2x) + cos(2φ)

× ln(sinφ) arctan
(

sinφ
1 − cosφ

)
.

The function F is the finite part of the virtual term and
the variables ŝ, t̂ and û are the Mandelstam variables of
the 2 → 2 processes:

ŝ = (p0
1 + p

0
2)

2,

t̂ = (p0
1 − p0

3)
2,

û = (p0
2 − p0

3)
2,

where the 4-vectors p0
i are the infrared limits of the 4-

vectors pi.

A.5 Altarelli–Parisi kernels

We will give in this appendix the expressions of the func-
tions aij(z) and bij . These functions are defined by

P
(d)
ij (z) =

a
(d)
ij (z)

(1 − z)+ + bijδ(1 − z)

=
a

(4)
ij (z) − εa(d−4)

ij (z)
(1 − z)+ + bijδ(1 − z)

= P (4)
ij (z) − εa

(d−4)
ij (z)
(1 − z)+ , (A.13)

where P (4)
ij (respectively P (d)

ij ) are the Altarelli–Parisi ker-
nels in four (respectively d) dimensions. So the expressions
for the functions a(4)

ij (z), a(d−4)
ij (z) and bij are given by

a(4)
gg (z) = 2N

(
z +

(1 − z)2
z

+ z(1 − z)2
)
, (A.14)

a(4)
qq (z) = CF (1 + z2), (A.15)

a(4)
gq (z) = CF

(
1 + (1 − z)2

z

)
(1 − z), (A.16)

a(4)
qg (z) = TF (z2 + (1 − z)2)(1 − z), (A.17)

where N is the number of colors, CF = (N2 − 1)/(2N)
and TF = 1/2. The extra part needed to get the functions
a in d dimensions (a(d)

ij (z) = a(4)
ij (z)− εa(d−4)

ij (z)) is given
by

a(d−4)
gg (z) = 0, (A.18)

a(d−4)
qq (z) = CF (1 − z)2, (A.19)

a(d−4)
gq (z) = CF z(1 − z), (A.20)

a(d−4)
qg (z) = 2TF z(1 − z)2. (A.21)
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The coefficients bij read

bgg =
(11N − 2NF )

6
, (A.22)

bqq =
3
2
CF . (A.23)

The functions fij(x) and dij(z) define the factorization
scheme for respectively initial state and final state
collinear singularities. In the MS scheme, we have

fij(z) = 0, (A.24)
dij(z) = 0. (A.25)

B Cancellation of the pTm

and Rth dependences

In this appendix, we give further details on the cancella-
tion of the pTm and Rth dependences in the observables
calculated according to the method used in this article.

In the conical parts II a and II b, the d-dimensional
integration over particle 5 in Ci, i = 3, 4, reads schemati-
cally

σi =
∫ pT5max

pTm

dpT5p
−1−2ε
T5

∫
Ci

dφi5dy5 sin−2ε φi5

× F (pT5, φi5, y5)
cosh(yi − y5) − cosφi5

. (B.1)

The term generating the final state collinear pole (p5 ‖ pi)
has been explicitly written, and the remaining quantity
F (pT5, φi5, y5) is a regular function. In the parts II a and
II b, the same subtraction method as in [15] is used, and
the following contribution is added and subtracted:

σsub
i =

∫ pT5max

pTm

dpT5p
−1−2ε
T5

×
∫

Ci

dφi5dy5φ
−2ε
i5

2F (pT5, 0, yi)
(yi − y5)2 + φ2

i5
. (B.2)

In the cylindrical part I, the finite terms produced by the
integration over particle 5 are approximated: all the terms
depending logarithmically on pTm are kept, whereas terms
proportional to powers of pTm are neglected. Notice that
this differs from the subtraction method implemented in
the cylinder in [15], which kept the exact pTm dependence.

In summary, the present method is an admixture of
the phase space slicing and subtraction methods, at vari-
ance with what has been done in [15]. It ensures the exact
cancellation of the unphysical parameter Rth dependence
between part II c and parts II a, II b whereas only an ap-
proximated cancellation of the unphysical parameter pTm

dependence between parts II c, II a and II b and part I
occurs.

We checked carefully that the dependences on the un-
physical parameters drop out. This point is illustrated by
the pTm dependence (at fixed Rth = 0.1) and the Rth de-
pendence (at fixed pTm = 0.1GeV), of the higher order

Fig. 15. Dependence of the ratio Rmγγ (see (B.3)) over the
phase space slicing parameters Rth and pTm for the “direct”
contribution

Fig. 16. Dependence of the ratio Rmγγ (see (B.3)) over the
phase space slicing parameters Rth and pTm for the “one” and
“two fragmentation” contributions

(HO) part of integrated cross section (the lowest order
(LO) part being independent of these parameters)

σHO =
∫ mmax

mmin

dmγγ
dσHO

dmγγ
,

shown on Figs. 15 and 16. We display separately the qq̄
and qg initiated contributions to the “direct” on Fig. 15,
and the “one” and “two fragmentation” mechanisms, on
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Fig. 16. To be definite, the integration bounds are taken
to be mmin = 80GeV, mmax = 1500GeV, the cuts pT3,
pT4 ≥ 25GeV, |y3,4| ≤ 2.5 are applied, and the MRST2 set
of parton distribution functions with the scale choiceM =
µ =Mf = mγγ/2 are used; let us emphasize however that
the pattern obtained does not depend on these details.

The quantity σHO does not depend on Rth and, in
principle, it becomes independent of pTm at small enough
pTm. To show these features more clearly, the observable
displayed is the ratio Rmγγ

defined as follows:

Rmγγ =
1
A

∫ mmax

mmin

dmγγ
dσHO

dmγγ
. (B.3)

The integrated cross section is normalized to be asymp-
totically 1 in order to show the size of the relative error
bars. However taking the denominator A equal to the cal-
culated σHO for the smallest value of pTm may be nu-
merically unsuitable. Indeed, when pTm becomes smaller
and smaller, numerical cancellations between larger and
larger contributions occur and the error bars coming from
the Monte Carlo integration become larger and larger.
These numerical fluctuations affect the behavior in the
limit pTm → 0. In order to bypass these technical compli-
cations, A is taken to be the averaged value of those of the
integrated cross sections dσHO/dmγγ which are consistent
with each other within the error bars. For instance, for the
pTm dependence of the “direct” contribution, the average
is taken over the values corresponding to the three small-
est pTm because the fourth one is not consistent with the
others in the error bars. In addition, in the case of the
direct contribution, the two partonic reactions qq̄ and qg
have been split because, for the above choices of scales,
the two integrated contributions are large and of opposite
signs. As expected, Rmγγ does not depend on Rth and ap-
proaches 1 as pTm → 0. Let us notice that one can wonder
whether large relative fluctuations do not appear again
when the two contributions of the “direct” are added. In-
deed, the relative fluctuations of the HO terms are larger
for the sum than for each parts, but these HO terms are
small compared to the LO part (σHO ∼ O(1%)σLO) hence
the “physical” cross section (LO+HO) is sufficiently sta-
ble. When the parameter pTm is chosen small enough with
respect to pT3 and pT4, the neglected terms behaving with
a power in pTm can be safely dropped out. In practice, we
observe that pTm values of the order of half a percent of
the minimum pT3 and pT4, i.e. pTm ≤ 0.1GeV, obey these
requirements. Before embarking on a long phenomenolog-
ical study, the user of the DIPHOX code is advised to
check whether the value of the parameter pTm to be used
is small enough to safely neglect the power corrections of
pTm.
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