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Abstract. The production process of the charged Higgs boson associated with a W boson at electron–
positron colliders is discussed in the two-Higgs-doublet model (2HDM) and in the minimal supersymmetric
standard model (MSSM). The process is induced at one-loop level in these models. We examine how much
the cross section can be enhanced by quark- and Higgs-loop effects. In the non-SUSY 2HDM, in addition to
large top–bottom (t–b) loop effects for small tanβ (� (mt/mb)1/2), the Higgs-loop diagrams can contribute
to the cross section to some extent for moderate tanβ values. For larger tanβ (� (mt/mb)1/2), such
an enhancement by the Higgs non-decoupling effects is bounded by the requirement of the validity of
perturbation theory. In the MSSM with heavy superpartner particles, only the t–b loops enhance the cross
section while Higgs-loop effects are very small.

1 Introduction

The Higgs sector has not yet been confirmed experimen-
tally. In the near future a neutral Higgs boson may be
discovered at Tevatron II or LHC, by which the standard
picture of particle physics may be completed. The explo-
ration of additional Higgs bosons will then be very impor-
tant in order to confirm the extended Higgs sectors from
the minimal Higgs sector in the standard model (SM).
Actually various theoretical insights suggest such exten-
sions: supersymmetry (SUSY), extra CP -violating phases,
a source of neutrino masses, a remedy for the strong CP
problem and so on. Most of the extended Higgs models
include charged and CP -odd Higgs bosons. Therefore the
discovery of a charged Higgs boson, H±, or a CP -odd
Higgs boson, A0, will confirm the extended versions of
the Higgs sector directly. At LHC, the search of these ex-
tra Higgs bosons is also one of the most important tasks.
In addition, measurements with considerable precision of
high-energy phenomena may be possible at future linear
colliders (LCs) such as JLC, NLC and TESLA [1].

In this paper, we discuss the charged-Higgs boson pro-
duction process associated with a W boson at LCs, e+e−
→ H±W∓, in the two-Higgs-doublet model (2HDM) in-
cluding the minimal supersymmetric standard model
(MSSM) with superheavy superpartner particles. By ne-
glecting the electron mass the process disappears at tree
level because there are no tree H±W∓V couplings (V = γ
and Z0) in these models. Since these couplings occur at
the one-loop level [2–4], the process e+e− → H±W∓ is
induced at this level. At LCs, one of the main processes
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for the charged-Higgs search is the H±-pair production
[5], whose cross section may be large enough to be de-
tected if H± is much lighter than the threshold, s1/2/2.
The process rapidly decreases for heavier H± even if the
mass is below the threshold. In this case e+e− → H±W∓
becomes important as a complementary process if its cross
section can be large enough to be detected. Our question
here is how much this loop-induced process can grow in
the non-SUSY 2HDM as well as in the MSSM.

The magnitude of the cross section for e+e− → H±
W∓ directly shows the dynamics of particles in the loop
because there is no tree-level contribution. We here con-
sider one-loop contributions of quarks, gauge bosons and
Higgs bosons.

In particular, the top–bottom (t–b) loop effects are ex-
pected to be sizable, because the Yukawa-coupling con-
stants are proportional to the quark masses so that the
decoupling theorem by Appelquist and Carazzone [6] is
not applicable to this case. The naive power-counting ar-
gument shows that quadratic quark-mass terms appear in
the amplitude with a longitudinally polarized W boson.
Therefore the t–b loops can greatly contribute to the cross
section depending on tanβ.

In the non-SUSY 2HDM, the Higgs-loop contributions
can also be large when the Higgs self-coupling constants
are proportional to the Higgs boson masses. The effects of
the heavy Higgs bosons in the loop then do not decouple
in the large mass limit. Instead, the quadratic mass terms
of these Higgs bosons can appear in the amplitude [4,7,8],
so that larger Higgs-loop effects are expected for heavier
Higgs bosons in the loop. By contrast, if the masses of the
extra Higgs bosons are determined mainly by the indepen-
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dent scale of the vacuum expectation value (∼ 246 GeV),
the Higgs-loop contributions tend to decouple for large
extra-Higgs boson masses. The MSSM Higgs sector cor-
responds to this case, so its loop effects cannot be very
large.

The main purpose of this paper is to confirm the above
discussion analytically and numerically and to see the
possible enhancement of the cross section by these non-
decoupling effects under the requirement of the validity of
perturbation theory [9–11,7]. The information from avail-
able experimental data such as the ρ parameter constraint
[12] and the b → sγ results [13,14] are also taken into ac-
count.

We find that the cross section can be quite large for
small tanβ (� (mt/mb)1/2) because of the t–b loop ef-
fects. In addition, in the non-SUSY 2HDM, the cross sec-
tion can grow to some extent by the Higgs non-decoupling
effects for moderate values of tanβ. For larger tanβ (�
(mt/mb)1/2) such an enhancement by the Higgs-loop ef-
fects is strongly bounded by the condition for the pertur-
bation, and the cross section becomes smaller.

In Sect. 2, the 2HDM is reviewed briefly to fix our no-
tation. The calculation of the cross section is explained in
Sect. 3. After some analytic discussion of the amplitude in
Sect. 4, we present our numerical results in Sect. 5. The
conclusions are given in Sect. 6. Details of the analytic re-
sults of the calculation are shown in the Appendix.

2 The 2HDM

The 2HDM with a softly broken discrete symmetry under
the transformation Φ1 → Φ1, Φ2 → −Φ2 is assumed. The
Higgs sector is given by

Lint
THDM = µ2

1 |Φ1|2 + µ2
2 |Φ2|2 +

{
µ2

3

(
Φ†

1Φ2

)
+ h.c.

}
− λ1 |Φ1|4 − λ2 |Φ2|4 − λ3 |Φ1|2 |Φ2|2

− λ4

(
ReΦ†

1Φ2

)2
− λ5

(
ImΦ†

1Φ2

)2
. (1)

This potential includes the MSSM Higgs sector as a spe-
cial case. We here neglect all the CP -violating phases
just for simplicity, and all the coupling constants and
masses are then real in (1). From the doublets Φ1 and
Φ2 (〈Φi〉 ≡ vi/21/2 and (v2

1 + v2
2)1/2 ∼ 246 GeV), five mas-

sive eigenstates as well as three Nambu–Goldstone modes
(w± and z0) are obtained; that is, two CP -even neutral
bosons h0 and H0 diagonalized by the mixing angle α,
one pair of charged Higgs bosons H±, and one CP -odd
neutral Higgs boson A0, where h0 is lighter than H0. In
addition to the four mass parameters mh0 , mH0 , mH± and
mA0 , we have two mixing angles α and β (tanβ = v2/v1)
and one free dimension-full parameter M corresponding
to the soft-breaking mass (M2 ≡ µ2

3/(sinβ cosβ)).
Tree-level relations among the coupling constants and

the masses are then given by [4]

λ1 =
1

2v2 cos2 β
(cos2 αm2

H0 + sin2 αm2
h0 − sin2 βM2), (2)

λ2 =
1

2v2 sin2 β
(sin2 αm2

H0 + cos2 αm2
h0 − cos2 βM2), (3)

λ3 =
sin 2α
v2 sin 2β

(m2
H0 −m2

h0) +
2m2

H±

v2 − 1
v2M

2, (4)

λ4 = −2m2
H±

v2 +
2
v2M

2, (5)

λ5 =
2
v2 (m2

A0 −m2
H±). (6)

As for the Yukawa interaction, two kinds of couplings are
possible in our model: we call them Model I and Model
II in accordance with [15]. The Yukawa interaction with
respect to the charged-Higgs boson is expressed by

LHtb = b
{yb

2
tanβ(1 − γ5) +

yt

2
cotβ(1 + γ5)

}
tH−

+ h.c., (7)

where

yb =
√

2mb

v
cotβ,

yt =
√

2mt

v
cotβ (ModelI), (8)

or

yb =
√

2mb

v
tanβ,

yt =
√

2mt

v
cotβ (ModelII). (9)

Here Model II corresponds to the MSSM Yukawa interac-
tion.

3 The calculation for e+e− → H−W +

We consider the process e−(τ, k) + e+(−τ, k) → H−(p) +
W+(p, λ), where τ = ±1 and λ = 0,±1 are the helicities of
the electron and the W+ boson; k and k are the incoming
momenta of the electron and the positron, while p and p
are the outgoing momenta of H− and W+, respectively.
The helicity amplitude may be written

M(k, k, τ ; p, p, λ) =
3∑

i=1

Fi,τ (s, t)Ki,τ (k, k, τ ; p, p, λ), (10)

where the form factors Fi,τ (s, t) include all the dynamics
that depends on the model. The kinematical factors are
expressed by

Ki,τ (k, k, τ ; p, p, λ) = jµ(k, k, τ)Tµβ
i εβ(p, λ)∗, (11)

where jµ(k, k, τ) is the electron current and εβ(p, λ)∗ is
the polarization vector of the W boson. The basis tensors
Tµβ

i are defined by

Tµβ
1 = gµβ , (12)

Tµβ
2 =

1
m2

W

PµP β , (13)

Tµβ
3 =

i
m2

W

εµβρσPρqσ, (14)
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Table 1. The list of the kinematical factors Ki,τ (k, k, λ)

K1,τ (k, k, λ) K2,τ (k, k, λ) K3,τ (k, k, λ)

λ = 0 −1/(2mW )(s − m2
H± + m2

W ) sinΘ 1/2 s2

m3
W

β2
HW sinΘ 0

λ = ± (s/2)1/2(∓ cosΘ + τ) 0 −s/m2
W ( s

2 )
1/2βHW (cosΘ ∓ τ)

where Pµ ≡ pµ − pµ, qµ ≡ pµ + pµ = kµ + k
µ

and ε0123 =
−1. In Table 1, the explicit expressions for each Ki,τ in
the center-of-mass frame are listed by using βHW and the
scattering angle Θ:

βHW =

√
1 − 2(m2

W +m2
H±)

s
+

(m2
W −m2

H±)2

s2
, (15)

cosΘ =
2t+ s−m2

H± −m2
W

sβHW
, (16)

where s and t are the Mandelstam variables (s = (k +
k)2 = (p + p)2, t = (k − p)2 = (k − p)2). The total cross
section is calculated according to the formula

σ(s) =
1

16π
1
s2

×
∫ tmax

tmin

1
2

∑
τ

∑
λ

∣∣M(k, k, τ ; p, p, λ)
∣∣2 dt, (17)

where tmax and tmin are defined by

tmax =
1
2

(m2
H± +m2

W − s+ sβHW ), (18)

tmin =
1
2

(m2
H± +m2

W − s− sβHW ). (19)

Our formalism here is consistent with that for e−e+ →
χ−W+ (χ− is for the charged Goldstone boson) in [16] in
the limit m2

H± → m2
χ and also with that for e−e+ → H0γ

in [17].
In the calculation, the form factors Fi,τ (s, t) may be

decomposed according to each type of Feynman diagram
(Fig. 1) as

Fi,τ (s, t) = F γ
i,τ (s) + FZ

i,τ (s) + F t
i,τ (t)

+ F box
i,τ (s, t) + δFi,τ (s, t), (20)

where FV
i,τ (V = γ and Z) are the contributions from the

one-loop-induced HWV vertices (Fig. 1a). These HWV
vertices are defined as igmWV HWV

µν (Fig. 2), in which Vµν

may be expressed by [2,4]

V HWV
µν (m2

H± , p2
W , p2

V )

= FHWV (m2
H± , p2

W , p2
V )gµν

+GHWV (m2
H± , p2

W , p2
V )
pV µpW ν

m2
W

+iHHWV (m2
H± , p2

W , p2
V )
pρ

V p
σ
W

m2
W

εµνρσ, (21)
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Fig. 1a–c.The diagrams for e+e− → H−W+. The circles in
a and b represent all one-loop diagrams relevant to the HWV
vertices (V = γ, Z0) and the HW mixing. The arrows on the
H± bosons and the W boson lines indicate the flow of negative
electric charge

pW

pZ

p

H+

W+
�

V 0
�

= igmWV
HWV
��

Fig. 2. The HWV vertices (V = γ, Z0). The arrows on the
H± boson and the W boson lines indicate the flow of negative
electric charge

where pH is the incoming momentum of H−, and pV (V =
Z or γ) and pW are the outgoing momenta of the V and
W bosons, respectively. The form factors FV

i,τ (s) are then
expressed by

FV
1,τ (s) = gmWCV

1
s−m2

V

FHWV (m2
W , s,m2

H±), (22)
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FV
2,τ (s) = gmWCV

1
s−m2

V

1
2
GHWV (m2

W , s,m2
H±), (23)

FV
3,τ (s) = gmWCV

1
s−m2

V

−1
2
HHWV (m2

W , s,m2
H±), (24)

where mV is mass of the neutral gauge bosons (mZ and
mγ(= 0)), and CV are defined by Cγ = eQe and CZ =
gZ(T 3

e − s2WQe) (e = gsW = gZsW cW ), where Qe = −1,
and T 3

e = −1/2 (0) for the electron with helicity τ = −1
(+1). The explicit formulas of FHWV , GHWV , HHWV

are given in Appendix A.1. F t
i,τ (s, t) is the contribution

of the t channel diagram with the one-loop H−W+ mix-
ing diagrams (Fig. 1b) and the box-diagram contributions
are expressed by F box

i,τ (Fig. 1c). We also show the explicit
results for F t

i,τ and F box
i,τ in Appendix A.3 and A.4, re-

spectively. Each one-loop-diagram contribution to F1(s, t)
except for F box

1,τ includes an ultraviolet divergence. After
summing up the contributions FV

i,t, F
t
i,τ , and F box

i,τ , the
divergence is canceled out because there is no tree-level
contribution.

Although the amplitude is finite already, by making
the renormalization for the WH and wH two-point func-
tions a finite counterterm, δFi,τ , is introduced to this pro-
cess [18,19]1. By rewriting the fields w± and H± on shift-
ing β → β − δβ as(

w±

H±

)
→
(
Z

1/2
w± Z

1/2
wH

Z
1/2
Hw Z

1/2
H±

)(
1 −δβ
δβ 1

)(
w±

H±

)

≡
(

1 + 1
2Z

(1)
w± a

(1)
wH

a
(1)
Hw 1 + 1

2Z
(1)
H±

)(
w±

H±

)
; (25)

the relevant counterterms are extracted from the kine-
matic terms of the Higgs sector as follows:

Lcount. = ia(1)
wH

gv

2
W−

µ ∂
µH+ − a

(1)
wH

g2v

2
s2W
cW

WµZ
µH+

+ a
(1)
wH

g2v

2
sWWµγ

µH+ + h.c. (26)

For the WH mixing we take the renormalization condition

Re
(
Πreno.

WH (m2
H±)

)
= Re

(
ΠWH(m2

H±)
)

+Πcount.
WH = 0, (27)

where ΠWH(p2) is given in (61) in the Appendix. We then
obtain

a
(1)
wH =

1
mW

Re
(
ΠWH(m2

H±)
)
, (28)

so that the counterterms not only for WH mixing but also
for the HWV vertices are obtained by using (26). Next,
(25) also produces the wH mixing (w is for the charged
Goldstone boson). We fix the counterterm so as to satisfy
the renormalization condition [19]

Re
(
Πreno.

Hw (m2
H±)

)
= Re

(
ΠHw(m2

H±)
)

+Πcount.
Hw = 0. (29)

1 See also Note added in proof

The finite counterterms for the form factors, δFi,τ in (20),
are then obtained as we show in Appendix A.5.

4 Non-decoupling mass effects

Here we present an analytic discussion of the amplitudes
to find the cases in which the cross section becomes large
for a given s1/2 in the non-SUSY 2HDM.

Let us consider the quark-loop contributions to the
amplitudes first. They do not decouple in the heavy-quark
limit because the decoupling theorem [6] does not work for
the Yukawa interactions in which the couplings are pro-
portional to the squared masses. Hence larger one-loop
effects take place for heavier quark masses2. In the he-
licity amplitude with a longitudinally polarized W bo-
son, powerlike top- or bottom-quark mass contributions
appear via the factor of m2

t cotβ or m2
b tanβ in Model

II. The linear appearance of cotβ or tanβ in each fac-
tor comes from the fact that one tbH± Yukawa coupling
is included in each t–b loop diagram3. Each factor be-
comes large for small tanβ (� (mt/mb)1/2) or for large
tanβ (� (mt/mb)1/2), respectively. In our analysis, we
take into account theoretical lower and upper bounds of
tanβ taking as a criterion for the upper limit of the top-
Yukawa coupling yt (∝ mt/ sinβ) and the bottom-Yukawa
coupling yb (∝ mb/ cosβ) the requirement of the validity
of perturbation theory. Under the same criterion for both
the top- and bottom-Yukawa coupling constants, the fac-
tor m2

t cotβ at the lowest tanβ value is by mt/mb greater
than the factor m2

b tanβ at the highest tanβ value. There-
fore, the helicity amplitude becomes large especially for
small tanβ (� (mt/mb)1/2) by the t–b loop contribu-
tions4. In Model I, tanβ is just replaced by cotβ in the
coefficient above, hence this change does not affect the
above discussion. Therefore in both Model I and II, we
expect to have sizable cross sections for small tanβ val-
ues.

Next we discuss the Higgs-loop contributions. The non-
decoupling effects of the heavy Higgs bosons appear only
when the Higgs sector has a special property: the Higgs
masses squared are expressed like ∼ λiv

2, where λi is
a combination of the Higgs self-coupling constants. This
corresponds to M � v in our notation [4,7], where M
is the scale of the soft breaking of the discrete symme-
try. In this case, similarly to the Yukawa interaction, the
terms of O(m2

H0
i
/v2) appear in the helicity amplitude with

a longitudinally polarized W boson, where H0
i represent

heavy neutral Higgs bosons in the loop. Therefore, in the
non-SUSY 2HDM with small soft-breaking mass M , these
mass effects of the heavy Higgs bosons may enhance the

2 We here call them the non-decoupling effects
3 The tbH− coupling gives mt cotβ and mb tanβ, and the

other mt and mb comes from the tbW+
L coupling (WL repre-

sents the longitudinal W boson). By the chirality argument
other combinations such as mtmb cotβ and mtmb cotβ disap-
pear

4 Similar top–bottom-quark effects are observed in the cross
section of e+e− → A0V (V = γ, Z0) [20]
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amplitude in addition to the t–b loop effects. Clearly, this
situation is quite different from the MSSM-like Higgs sec-
tor, where large masses of the extra Higgs bosons are pos-
sible only by taking a large M (� λiv

2 = O(g2v2))5.
In order to see the leading non-decoupling effects (the

quadratic-mass terms in the large mass limit for particles
in the loop) analytically, let us consider the amplitude
with a longitudinally polarized W boson in a limiting case.
They are extracted from the full expression of the ampli-
tude by taking the masses of h0, H0 and A0 much larger
than mW and mH± setting M = 06;

M(k, k, τ ; p, p, λ = 0)

= sinΘ
g2

c2W

T 3
e

16π2v2

[
3
2

{
m2

H0m2
A0

m2
H0 −m2

A0

ln
m2

H0

m2
A0

− m2
h0m2

A0

m2
h0 −m2

A0

ln
m2

h0

m2
A0

}
J(α, β) −

{
c2W

2
m2

H0 +
3
4

× m2
H0m2

A0

m2
H0 −m2

A0

ln
m2

H0

m2
A0

}
K(α, β) −

{
c2W

2
m2

h0 +
3
4

× m2
h0m2

A0

m2
h0 −m2

A0

ln
m2

h0

m2
A0

}
L(α, β) − Nc

2
m2

t cotβ
]

+ sinΘ
g2s2WQe

16π2v2

[
3
2

{
m2

H0m2
A0

m2
H0 −m2

A0

ln
m2

H0

m2
A0

− m2
h0m2

A0

m2
h0 −m2

A0

× ln
m2

h0

m2
A0

}
J(α, β) −

{
1

2c2W
m2

H0 − 3
4

m2
H0m2

A0

m2
H0 −m2

A0

ln
m2

H0

m2
A0

}
K(α, β) −

{
1

2c2W
m2

h0 − 3
4

m2
h0m2

A0

m2
h0 −m2

A0

× ln
m2

h0

m2
A0

}
L(α, β) +

Nc

2c2W
m2

t cotβ
]

+ O
(

s

m2
H0

i

)
, (30)

where H0
i represents h0, H0 and A0, and

J(α, β) = sin(α− β) cos(α− β), (31)
K(α, β) = sin2 α cotβ − cos2 α tanβ, (32)
L(α, β) = cos2 α cotβ − sin2 α tanβ. (33)

From the expression (30), we expect that the amplitude
can become large by the non-decoupling effects of the
heavy Higgs bosons as well as those of the top quark. The
Higgs effects grow for large or small tanβ: see (31)–(33).

The non-SUSY 2HDM receives rather strong theoret-
ical constraints. First from the requirement of the valid-
ity of perturbation theory, all the Higgs self-coupling and
Yukawa coupling constants should not be very large [9–11].
We here set a rather conservative criterion corresponding
to [7]; that is, for the Yukawa couplings

y2
b , y

2
t < 4π, (34)

and for the Higgs self-coupling constants

|λ1|, |λ2|, |λ3|, 1
4
|λ4 ± λ5| < 4π. (35)

5 In the MSSM, mA corresponds to M
6 This expression is for the δFi,τ = 0 case

These conditions give constraints on the relations among
the masses, mixing angles and the soft-breaking mass. For
example, from the condition for λ1, we obtain by using (2)

(m2
H0 −M2) tan2 β<∼8πv2, (36)

for the case of α = β − π/2 and m2
H0 � m2

h0 . This means
that it is difficult to take a large mH0 and a large tanβ
simultaneously with M2 ∼ 0. We include all these con-
straints in our numerical analysis.

Finally, the 2HDM is constrained from the experimen-
tal precision data [12], especially those for the ρ parame-
ter: the additional contribution of the 2HDM Higgs sector
should be small. We here employ the same condition as in
[7]; ∆ρ2HDM = −0.0020−0.00049(mt −175 GeV)/(5 GeV)
±0.0027. In order to satisfy this there are mainly two kinds
of possibilities for the parameter choice.
(A) The Higgs sector is custodial SU(2)V symmetric
(m2

H± ∼ m2
A0).

(B) The Higgs sector is not custodial SU(2)V symmetric,
but there are some relations among the parameters to keep
a small ∆ρ2HDM: m2

H± ∼ m2
H0 or m2

H± ∼ m2
h0 with α ∼

β−π/2 or α ∼ β, respectively [15]. Also, a recent study for
the b → sγ results [13] gives a constraint on the charged
Higgs boson mass (mH±>∼160 GeV) [14].

By taking into account all the theoretical and experi-
mental constraints above, the best choice for the maximal
Higgs contributions to the cross section is to take the case
(B) and then to choose mA0 and tanβ as large as possible
under the conditions (34) and (35).

5 Numerical evaluation

We here show our numerical results. According to the
above analytic discussion, the seven free parameters of the
Higgs sector in the non-SUSY 2HDM (m2

h0 , m2
H0 , m2

H± ,
m2

A0 , α, β and M) are chosen in the following way.
To obtain larger Higgs contributions, we take the

choice (B) of the previous section. Since mh0 < mH0 , it is
better to set α = β−π/2 (or α = 0) for a larger cross sec-
tion for tanβ > 1 (K(α, β) > 1) (see (32)). If we choose
α = β (or α = π/2), then such an enhancement takes
place for small tanβ (L(α, β) ∼ 1). Any other choice of α
leads to smaller cross sections. As for the quark loops, al-
though we here adopt Model II for the Yukawa couplings
in the actual calculation in the 2HDM, it is clear that
there is no difference between Model I and II for the cross
section except for the large tanβ regime. If we assume
the MSSM Higgs sector, there are two free parameters:
mH± and tanβ, and all the other parameters are related
to these two parameters [15]. As for the quark masses we
here fix these as mt = 175 GeV and mb = 5 GeV.

To begin with, we show the total cross section for
mH± = 200 GeV at s1/2 = 500 GeV as a function of tanβ
(Fig. 3). The region of tanβ is 0.28 < tanβ < 123 tak-
ing into account the condition (34)7, while we switch off

7 As for the constraint for tanβ in the MSSM, see [21–23]
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Fig. 3. The total cross section of e+e− → H−W+ for mH± =
200GeV at s1/2 = 500GeV as a function of tanβ in the 2HDM
(solid lines) and in the MSSM (dashed line). For the 2HDM,
three solid curves correspond to mA0 = 300, 600 and 1200GeV.
The other parameters are chosen as α = β − π/2, mh0 =
120GeV, mH0 = 210GeV and M = 0GeV

the condition (35) in Fig. 3 (and in Fig. 4) just to con-
centrate on showing the behavior of the non-decoupling
effects more clearly. The results in which both the con-
ditions (34) and (35) are included will be shown soon in
Figs. 5 and 6. In Fig. 3, the real curves represent the total
cross sections in the non-SUSY 2HDM for each value of
mA0 . The other parameters are taken as mh0 = 120 GeV,
mH0 = 210 GeV, α = β − π/2 and M = 0. The dotted
curve represents the cross section in the MSSM with su-
perheavy superpartner particles. For small tanβ
(� (mt/mb)1/2), as we discussed in the previous section,
the cross section is enhanced by the t–b loop contribu-
tions both in the MSSM and in the non-SUSY 2HDM.
On the other hand, for large tanβ (� (mt/mb)1/2), the
MSSM cross section is reduced rapidly, while the Higgs
non-decoupling effects enlarge the non-SUSY 2HDM cross
section. For larger mA, larger cross sections are observed.
Our result in the MSSM here is consistent with that in
[24].

Figure 4 shows the s1/2 dependence of the total cross
section in the non-SUSY 2HDM at mH± = 200 GeV for
various tanβ; the other parameters are chosen as mh0 =
120 GeV, mH0 = 210 GeV, mA0 = 1200 GeV and α =
β − π/2 and M = 0. The condition (35) is switched off in
this figure too.

The enhancement of the cross section essentially de-
pends on the size of theH±tb andH±H∓H0 coupling con-
stants. By taking these couplings as large as possible under
the conditions (34) and (35) and also under the experimen-
tal constraints mentioned before, we obtain upper bounds
of the cross section in the non-SUSY 2HDM for each value
of mH± and tanβ. The situation is described in Fig. 5. The
dotted curve represents the cross section with M = 0 at
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Fig. 4. The s1/2 dependence of the total cross section of
e+e− → H−W+ for mH± = 200GeV for various tanβ in the
non-SUSY 2HDM. Solid curves are tanβ = 0.3, 0.5, 1, 2, 4 and
dotted curves are tanβ = 8, 16, 32. The other parameters are
chosen as α = β − π/2, mh0 = 80GeV, mH0 = 210GeV,
mA0 = 1200GeV and M = 0GeV
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Fig. 5. The upper bound of the cross section of e+e− →
H−W+ for mH± = 200GeV at s1/2 = 500GeV as a function
of tanβ under the conditions (34) and (35) in the non-SUSY
2HDM (solid curve). The dotted curve represent the cross sec-
tion where the condition (35) is switched off. The dashed curve
represent the cross section where only t–b loop contributions
are included

s1/2 = 500 GeV for mH± = 200 GeV at α = β − π/2, and
all the other free parameters in the Higgs sector are chosen
in order to obtain maximum Higgs non-decoupling effects
under all the conditions8. For tanβ>∼5.9, the condition

8 The other choice of α leads to less Higgs effects for tanβ >
1 in this case
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Fig. 6. The possible enhancement of the total cross section
of e+e− → H−W+ for various mH± at s1/2 = 500GeV as a
function of tanβ in the non-SUSY 2HDM under the conditions
(34) and (35)

(36) obtained from (35) cannot be satisfied any more if we
keep M = 0: a larger value of tanβ is allowed only by in-
troducing a non-zero soft-breaking mass M . This leads to
a smaller cross section because the non-decoupling prop-
erty of the Higgs sector is weakened by a non-zero M :
see the discussion in Sect. 4. Therefore the upper bounds
are obtained as the solid curve. The cross section rapidly
reduces for tanβ>∼5.9. Although the quark-loop contribu-
tions (the bottom-mass effects) enhance the cross section
for tanβ>∼40, the magnitude is still much less than that
for small tanβ.

In Fig. 6 we show such general bounds of the cross sec-
tion as a function of tanβ at s1/2 = 500 GeV for mH± =
160, 200, 240, 280, 320 and 360 GeV. All the other free pa-
rameters are chosen in the same way as in Fig. 5. Each
peak of the cross section in the moderate tanβ value is
the point where the largest Higgs non-decoupling effects
with M = 0 appear.

6 Discussion and conclusion

We have discussed the H± production process via e+e− →
H±W∓ in the non-SUSY 2HDM as well as in the MSSM.

In the non-SUSY 2HDM, a large cross section is possi-
ble for small tanβ by the t–b loop contributions (quadratic
top-mass effects). At tanβ = 0.3, for mH± = 200 GeV, the
cross section can be as large as 8 fb at s1/2 = 500 GeV and
maximally it reaches to over 40 fb at s1/2 ∼ 390 GeV. For
larger tanβ, these top-mass effects decrease until tanβ ∼
mt/mb = 35. In Model II, the quadratic bottom-mass ef-
fects enhance the cross section for tanβ>∼mt/mb, but the
magnitude is not so large: at s1/2 = 500 GeV it is at most
a few times 10−2 fb even for tanβ ∼ 100. If Model I is

assumed, this small enhancement for tanβ > mt/mb dis-
appears, but all the results for smaller tanβ are almost
the same as those in Model II.

In addition to the quark-loop effects, the Higgs non-
decoupling effects contribute to the cross section by a few
times 0.1 fb for moderate values of tanβ. Such Higgs ef-
fects are strongly bounded for larger tanβ (>∼(mt/mb)1/2)
by the requirement of the validity of perturbation theory.

In the MSSM with heavy superpartner particles, the
Higgs-loop effects are very small and only the t–b loops
contribute to the cross section. For mH± = 200 GeV, the
cross section at tanβ = 2 amounts to a few times 0.1 fb
at s1/2 = 500 GeV, and maximally it reaches to over 1 fb
at s1/2 ∼ 390 GeV. The cross section rapidly decreases
for larger tanβ. We here have not discussed the one-loop
contributions of the superpartner particles in the MSSM
explicitly, which will be discussed in a future paper.

We give some comments on our analysis. First, our re-
sults have been tested in the high-energy limit by using
the equivalence theorem [25] at the one-loop level [26]. We
evaluated e−e+ → H−w+ (w+ is for the charged Gold-
stone boson) and confirmed that the cross section was co-
incident with our prediction for the H−W+

L production in
the high-energy limit. Second, although the process is one-
loop induced so the ultraviolet divergences have canceled
among the diagrams, we have include the finite renormal-
ization effects of the WH mixing and the wH mixing by
putting the renormalization conditions on the mass shell
of H±. The effects have turned out to give a few% (at
most about 5%) of corrections to the one-loop-induced
cross sections in which the finite renormalization effects
(δFi,τ ) are not included.

Finally, we comment on the detectability of the sig-
nal events for the case of mH± > mt + mb. The H±
decays into a tb-pair and the signal process is e+e− →
H±W∓ → tb̄W− + t̄bW+. The main background process
may be e+e− → tt̄ → tb̄W− + t̄bW+. The cross section of
e+e− → tt̄ amounts to about 0.57 pb for s1/2 = 500 GeV:
the signal/background ratio is at most around 1%. It may
however be expected that the signal can be comfortably
seen if the signal cross section is 10 fb, by attaining a back-
ground reduction in [27] by the following method:
(1) a cut around the reconstructed bW masses which can
come from the bW decay at 175 GeV,
(2) find a peak in the reconstructed mH± and
(3) confirm the presence of H± according to the method
in [28]. For smaller signal cross sections of the order of
0.1 fb, details of the background analysis are needed to
see the detectability.

Note added in proof

After this work was finished, another paper (see [29]) ap-
peared in which the same subject was studied.
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A Analytic results

In the formulas below, we use the integral functions in-
troduced by Passarino and Veltman [30]. The notation for
the tensor coefficients here is based on [16]. We here write
A(mf ) as A[f ], Bij(p2

H ;mf1 ,mf2) as Bij [f1, f2], Cij(p2
H ,

p2
W , p2

V ;mf1 ,mf2 ,mf3) as Cij [f1, f2, f3], where fi are the
fields with mass mfi . For the quark diagrams, we define
the abbreviation Cij(tbb) = Cij(p2

H , p
2
W , p2

V ;mt,mb,mb)
and Cij(ttb) = Cij(p2

H , p
2
V , p

2
W ;mt,mt,mb). The expres-

sion is in the ’t Hooft–Feynman gauge. Also J(α, β),
K(α, β) and L(α, β) in (31)–(33) are written as Jαβ , Kαβ

and Lαβ , and we also write

K̃αβ =
{
Kαβ(m2

H0 −M2) − Jαβ(2m2
H± −m2

H0)
}
, (37)

L̃αβ =
{
Lαβ(m2

H0 −M2) + Jαβ(2m2
H± −m2

h0)
}
, (38)

respectively, for brevity. The momentum squared of the
H+ is set on mass shell, p2

H = m2
H± .

A.1 Form factors
of the H+W −V 0 (V 0 = Z0, γ) vertices

We write each contribution to the unrenormalized
H±W∓V 0 form factors XHWV (X = F,G and H) as
XHWV = XHWV (a) +XHWV (b) +XHWV (c) correspond-
ing to Figs. 7a,b,c. XHWV (a) is the contribution of the
triangle-type diagrams (Fig. 7a),XHWV (b) represents that
from the two-point function correction shown in Fig. 7b,
and XHWV (c) is the tadpole contribution as well as some
two-point function corrections written only by the A func-
tion (Fig. 7c).

A.1.1 The H+W−Z0 vertex

The contribution of triangle-type diagrams to FHWZ is
calculated as

FHWZ(a)(m2
H± , p2

W , p2
Z) =

2
16π2v2cW

×
[
−K̃αβ

{
C24[H±A0H0] − c2WC24[H0H±H±]

}
−L̃αβ

{
C24[H±A0h0] − c2WC24[h0H±H±]

}
+Jαβ

{
(m2

H± −m2
H0)C24

(
[w±z0H0]

−c2W [H0w±w±]
)− (m2

H± −m2
A0)C24[w±H0A0]

−m2
WC24[W±H0A0] − c2W

cW
m2

WC24[H±H0Z0]

−m2
W

(
4(p2

W + pW · pZ)C0 + 2(2pW + pZ)
·(pWC11 + pZC12) + pW · pZC23

+(D − 1)C24) [W±Z0H0] + c2Wm2
W

(
(p2

Z − p2
W )C0

−2pZ · (pWC11 + pZC12) + pW · pZC23

+(D − 1)C24) [H0W±W±]
−m2

Z(m2
H± −m2

H0)s2WC0[w±Z0H0]

−m2
W (m2

H± −m2
H0)s2WC0[H0W±w±]

+m2
W s2WC24[H0w±W±] − (H0 → h0)

}]
+

4Nc

16π2v2cW

[
m2

b tanβ
{

(−s2WQb) (pW · (pW + pZ)C11

+pZ · (pW + pZ)C12 + p2
WC21 + p2

ZC22

+ 2pW · pZC23 +DC24) (tbb) − (Tb − s2WQb)(
p2

WC11 + pZ · pZC12 + p2
WC21 + p2

ZC22 + 2pW · pZC23

+ (D − 2)C24) (tbb) − (Tt − s2WQt)(
p2

ZC11 + pZ · pZC12 + p2
ZC21 + p2

WC22

+2pW · pZC23 + (D − 2)C24) (ttb)
+(−s2WQt)m2

tC0(ttb)
}

+m2
t cotβ

{−(Tb − s2WQb)
(
(p2

W + pW · pZ)C0

+(2p2
W + pW · pZ)C11 + (p2

Z + 2pW · pZ)C12

+p2
WC21 + p2

ZC22 + 2pW · pZC23 + (D − 2)C24
)

(tbb)

+(−s2WQb)m2
bC0(tbb) + (−s2WQt) (pZ · (pW + pZ)C11

+pW · (pW + pZ)C12 + p2
ZC21 + p2

WC22

+ 2pW · pZC23 +DC24) (ttb) − (Tt − s2WQt)
× ((p2

Z + pW · pZ)C0 + (2p2
Z + pW · pZ)C11

+(p2
W + 2pW · pZ)C12 + p2

ZC21 + p2
WC22

+2pW · pZC23 + 2C24) (ttb)] . (39)

The contribution of the diagrams expressed in terms of
the Bi functions is given by

FHWZ(b)(m2
H± , p2

W , p2
Z) =

2
16π2v2cW

×
[

1
2
K̃αβ

{
s2WB0[H0H±]

+
p2

Z − p2
W

m2
H± −m2

W

c2W (B0 + 2B1)[H0H±]

+
m2

H0 −m2
H±

m2
H± −m2

W

s2WB0[H0H±]
}

+
1
2
L̃αβ

{
s2WB0[h0H±]

+
p2

Z − p2
W

m2
H± −m2

W

c2W (B0 + 2B1)[h0H±]

+
m2

h0 −m2
H±

m2
H± −m2

W

s2WB0[h0H±]
}

+
1
2
Jαβ

{−(m2
H± −m2

H0)s2WB0[H0w±]

+m2
W s2WB0(p2

W ;W±H0) +m2
Zs

2
WB0B0(p2

Z ;Z0H0)

−1
2

m2
W

m2
H± −m2

W

s2W

×{m2
H±(B0 − 2B1 +B21) +DB22

}
[H0W±]

+
1
2
m2

H0

m2
H0 −m2

H±

m2
H± −m2

W

s2WB0[H0w±]
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Fig. 7. a The first group of the Feynman diagrams (the ’t
Hooft–Feynman gauge) of the HWV vertices (V = γ, Z0),
which corresponds to XHWV (a) (X = F, G and H) in Ap-
pendixA.1. b The second group of the Feynman diagrams (the
’t Hooft–Feynman gauge) of the HWV vertices (V = γ, Z0),
which corresponds to XHWV (b) (X = F, G and H) in Ap-
pendixA.1. c The third group of the Feynman diagrams (the
’t Hooft–Feynman gauge) of the HWV vertices (V = γ, Z0),
which corresponds to XHWV (c) (X = F, G and H) in Ap-
pendixA.1

+m2
W

p2
Z − p2

W

m2
H± −m2

W

c2W (B0 −B1)[H0W±]

+
m2

H0 −m2
H±

m2
H± −m2

W

(p2
Z − p2

W )c2W (B0 + 2B1)[H0w±]

−(H0 → h0)
}]

+
4Nc

16π2v2cW

[
s2W

m2
H± −m2

W

{
(m2

b tanβ −m2
t cotβ)

× (m2
H±(B1 +B21) +DB22

)
[tb]

−m2
tm

2
b(tanβ − cotβ)B0[tb]

}
− c2W
m2

H± −m2
W

(p2
Z − p2

W )

× {m2
b tanβB1 +m2

t cotβ(B1 +B0)
}

[tb]
]
. (40)
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The diagrams relevant to the A function are expressed by

FHWZ(c)(m2
H± , p2

W , p2
Z) =

1
16π2v2cW

1
m2

H± −m2
W

×
[
s2W

(
Π̃B

Hw − T1

)
− {s2Wm2

W − c2W (p2
Z −m2

W )
}
T2

]
,

(41)

where Π̃B
Hw, T1 and T2 are given in (57), (58) and (55).

The contribution of the triangle-type diagrams to
GHWZ and HHWZ are given by

GHWZ(a)(m2
H± , p2

W , p2
Z) =

2m2
W

16π2v2cW

×
[

− K̃αβ(C12 + C23)
{

[H±A0H0] − c2W [H0H±H±]
}

−L̃αβ(C12 + C23)
{

[H±A0h0] − c2W [h0H±H±]
}

+Jαβ

{
(m2

H± −m2
H0)(C12 + C23)[w±z0H0]

−(m2
H± −m2

H0)c2W (C12 + C23)[H0w±w±]

−(m2
H± −m2

A0)(C12 + C23)[w±H0A0]

−m2
W (2C0 + 2C11 + C12 + C23) [W±H0A0]

−c2W

cW
m2

W (−C12 + C23)[H±H0Z0]

+m2
W (2C0 − 2C11 + 5C12 + C23) [W±Z0H0]

+c2Wm2
W (4C11 − 3C12 − C23) [H0W±W±]

+m2
W s2W (C23 − C12) [H0w±W±] − (H0 → h0)

}]

+
4Ncm

2
W

16π2v2cW

[
m2

b tanβ
{

(−s2WQb)(C12 − C11)(tbb)

+(Tb − s2WQb)(2C23 + C12)(tbb)
+(Tt − s2WQt)(C12 + 2C23)(tbb)

}
+m2

t cotβ
{

(Tb − s2WQb)(C0 + C11 + 2C12 + 2C23)(tbb)

−(−s2WQt)(C11 − C12)(ttb)

+(Tt − s2WQt)(C0 + C11 + 2C12 + 2C23)(ttb)
}]

, (42)

HHWZ(a)(m2
H± , p2

W , p2
Z) =

4Ncm
2
W

16π2v2cW

×
[
m2

b tanβ(−s2WQb) {(C12 − C11)(tbb)

−(Tb − s2WQb)C12(tbb) − (Tt − s2WQt)C12(ttb)
}

+m2
t cotβ

{−(Tb − s2WQb)(C0 + C11)(tbb)

×(−s2WQt)(C11 − C12)(ttb)

− (Tt − s2WQt)(C0 + C11)(ttb)
} ]
. (43)

There is no contribution from the other diagrams to
GHWZ and HHWZ :

GHWZ(b) = GHWZ(c) = HHWZ(b,c) = 0. (44)

A.1.2 The H+W−γ vertex

By making the similar decomposition to the HWZ vertex,
we obtain contributions of the H+W−γ vertex to each
form factor.

FHWγ(a)(m2
H± , p2

W , p2
γ) =

4sW

16π2v2

[
K̃αβC24[H0H±H±]

+L̃αβC24[h0H±H±]

+Jαβ

{
m2

W

2
(
(p2

γ − p2
W )C0 − 2pγ · (pWC11 + pγC12)

+pW · pγC23 + (D − 1)C24) [H0W±W±]

+
m2

W

2
(m2

H± −m2
H0)C0[H0W±w±]

−m2
W

2
C24[H0w±W±] − (m2

H± −m2
H0)C24[H0w±w±]

−(H0 → h0)
}]

+
4sWNc

16π2v2

[
m2

b tanβ
{
Qb

(
pW · (pW + pγ)C11

+pγ · (pW + pγ)C12 + p2
WC21 + p2

γC22

+ 2pW · pγC23 + 4C24
)

(tbb)

−Qb

(
p2

WC11 + pW · pγC12 + p2
WC21 + p2

γC22

+2pW · pγC23 + 2C24
)

(tbb)

−m2
b tanβQt

(
p2

γC11 + pγ · pZC12 + p2
γC21 + p2

WC22

+2pW · pγC23 + 2C24
)

(ttb) +m2
tQtC0(ttb)

}
+m2

t cotβ
{−Qb

(
(p2

W + pW · pγ)C0

+(2p2
W + pW · pγ)C11 + (p2

γ + 2pW · pγ)C12

+p2
WC21 + p2

γC22

+ 2pW · pγC23 + 2C24
)

(tbb) +m2
bQbC0(tbb)

+Qt

(
pγ · (pW + pγ)C11 + pW · (pW + pγ)C12

+ p2
γC21 + p2

WC22 + 2pW · pγC23 + 4C24
)

(ttb)

−Qt

(
(p2

γ + pW · pγ)C0 + (2p2
γ + pW · pγ)C11

+(p2
W + 2pW · pγ)C12 + p2

γC21 + p2
WC22

+2pW · pγC23 + 2C24
)

(ttb)
]
, (45)

FHWγ(b)(m2
H± , p2

W , p2
γ) =

4sW

16π2v2

×
[
−1

4
K̃αβ

{
B0[H0H±] +

m2
H0 −m2

H±

m2
H± −m2

W

B0[H0H±]

− p2
γ − p2

W

m2
H± −m2

W

(B0 + 2B1)[H0H±]

}

−1
4
L̃αβ

{
B0[h0H±] +

m2
h0 −m2

H±

m2
H± −m2

W

B0[h0H±]

− p2
γ − p2

W

m2
H± −m2

W

(B0 + 2B1)[h0H±]

}
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+Jαβ

{
1
4

(m2
H± −m2

H0)B0[H0w±] − m2
W

2
B0(p2

W ;W±H0)

+
1
4

m2
W

m2
H± −m2

W

×{m2
H±(B0 − 2B1 +B21) +DB22

}
[H0W±]

−m2
H0

4
m2

H0 −m2
H±

m2
H± −m2

W

B0[H0w±]

+
1
2
m2

H0 −m2
H±

m2
H± −m2

W

(p2
γ − p2

W )(B0 + 2B1)[H0w±]

+
m2

W

2
p2

γ − p2
W

m2
H± −m2

W

(B0 −B1)[H0W±] − (H0 → h0)

}]

+
4sW

16π2v2

[
− p2

γ − p2
W

m2
H± −m2

W

×{m2
b tanβB1 +m2

t cotβ(B1 +B0)
}

[tb]

− 1
m2

H± −m2
W

×{(m2
b tanβ −m2

t cotβ)(m2
H±(B1 +B21) +DB22)

+m2
tm

2
b(tanβ − cotβ)B0

}
[tb]
]
, (46)

FHWγ(c)(m2
H± , p2

W , p2
γ) = − sW

16π2v2

1
m2

H± −m2
W

×
{
Π̃B

Hw − T1 + (p2
γ − p2

W +m2
W )T2

}
, (47)

where T1 and T2 and Π̃B
Hw are defined in (57), (58) and

(55).

GHWγ(a)(m2
H± , p2

W , p2
γ) =

4m2
W sW

16π2v2

×
[
K̃αβ(C12 + C23)[H0H±H±] + L̃αβ

×(C12 + C23)[h0H±H±]

+Jαβ

{
m2

W

2
(4C11 − 3C12 − C23) [H0W±W±]

+
m2

W

2
(C12 − C23)[H0w±W±]

−(m2
H± −m2

H0)(C12 + C23)[H0w±w±]

−(H0 → h0)
}]

+
4m2

W sWNc

16π2v2

[
m2

b tanβQb(C12 − C11)(tbb)

+m2
b tanβQb(2C23 + C12)(tbb)

+m2
t cotβQb(C0 + C11 + 2C12 + 2C13)(tbb)

+m2
t cotβQt

×(C12 − C11)(ttb) +m2
b tanβQt(2C23 + C12)(ttb)

+m2
t cotβQt(C0 + C11 + 2C12 + 2C23)(ttb)

]
, (48)

HHWγ(a)(m2
H± , p2

W , p2
γ) =

4m2
W sWNc

16π2v2

×
[
m2

b tanβQb(C12 − C11)(tbb) −m2
b tanβQbC12(tbb)

−m2
t cotβQb(C0 + C11)(tbb)

+m2
t cotβQt(C11 − C12)(ttb) −m2

b tanβQtC12(ttb)

−m2
t cotβQt(C0 + C11)(ttb)

]
(49)

and

GHWγ(b,c) = HHWγ(b,c) = 0. (50)

A.2 Tadpole diagrams
and the w–H two-point function

The tadpole graphs iTH and iTh are calculated to be

TH=
1

16π2v

[
m2

H0 cos(α− β)
(
A[w±] +

1
2
A[z0]

)

+
{(

cosα sin2 β

cosβ
− sinα cos2 β

sinβ

)
m2

H0

+2 cos(α− β)m2
H± +

sin(α+ β)
sinβ cosβ

M2
}
A[H±]

+
{(

cosα sin2 β

cosβ
− sinα cos2 β

sinβ

)
m2

H0

+2 cos(α− β)m2
A0 +

sin(α+ β)
sinβ cosβ

M2
}

1
2
A[A0]

+
3
2

{(
cos3 α
cosβ

+
sin3 α

sinβ

)
m2

H0

− cos 2β
cosβ sinβ

sin(α− β)M2
}
A[H0]

+
{

1
2

(m2
H0 + 2m2

h0)
sin 2α
sin 2β

− M2

4 cosβ sinβ
(−3 sin 2α+ sin 2β)

}
× cos(α− β)A[h0]

+8 cos(α− β)
(
m2

WA[W±] +
1
2
m2

ZA[Z0]
)

−4Nc

(
cosα
cosβ

A[b] +
sinα
sinβ

A[t]
)]

, (51)

Th=
1

16π2v

[
−m2

h0 sin(α− β)
(
A[w±] +

1
2
A[z0]

)

+
{(

sinα sin2 β

cosβ
− cosα cos2 β

sinβ

)
m2

h0

−2 sin(α− β)m2
H± +

cos(α+ β)
sinβ cosβ

M2
}
A[H±]

+
{(

sinα sin2 β

cosβ
− cosα cos2 β

sinβ

)
m2

h0

−2 sin(α− β)m2
A0 +

cos(α+ β)
sinβ cosβ

M2
}

1
2
A[A0]
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−3
2

{(
sin3 α

cosβ
− cos3 α

sinβ

)
m2

h0

+
cos 2β

cosβ sinβ
cos(α− β)M2

}
A[h0]

+
1
2

{
(2m2

H0 +m2
h0)

sin 2α
sin 2β

− M2

4 cosβ sinβ
(3 sin 2α+ sin 2β)

}
×sin(α− β)A[H0]

−8 sin(α− β)
(
m2

WA[W±] +
1
2
m2

ZA[Z0]
)

−4Nc

(
sinα
cosβ

A[b] +
cosα
sinβ

A[t]
)]

. (52)

The w–H two-point function is given by

ΠwH(p2) = ΠA
wH(p2) +ΠB

wH +ΠC
wH , (53)

where ΠB
wH is the contribution of the diagrams which in-

clude a quartic Higgs self-coupling constants and ΠC
wH is

the tadpole contribution. The explicit formulas are

ΠA
Hw(m2

H±) =
1

16π2v2

[
(m2

H0 −m2
H±)K̃αβB0[H0H±]

+(m2
h0 −m2

H±)L̃αβB0[h0H±]

+Jαβ

{−m2
W

(
p2(B0 − 2B1 +B21) +DB22

)
[H0W±]

+m2
H0(m2

H0 −m2
H±)B0[H0w±] − (H0 → h0)

}
+

4Nc

16π2v2

[
(m2

b tanβ −m2
t cotβ)

× (m2
H±(B1 +B21) +DB22

)
[tb]

−m2
tm

2
b(tanβ − cotβ)B0[tb]

]
, (54)

ΠB
Hw =

1
16π2v2 Π̃

B
Hw =

1
16π2v2

[
2(m2

H0 −m2
h0)Jαβ

×
(
A[W±] +

1
4
A[Z0]

)
2
{

+(Kαβ − Jαβ)m2
H0 + (Lαβ + Jαβ)m2

h0

−2 cot 2βM2}(A[H±] +
1
4
A[A0]

)
+Jαβm

2
H±
(
A[h0] −A[H0]

)
+

1
4

sin 2β
(

sin4 α

sin2 β
− cos4 α

cos2 β
+

sin 2α cos 2α
sin 2β

)
m2

H0A[H0]

+
1
4

sin 2β
(

cos4 α
sin2 β

− sin4 α

cos2 β
+

sin 2α cos 2α
sin 2β

)
m2

h0A[h0]

+
1
4

sin 2β
(

sin2 α cos2 α
sin2 β

− sin2 α cos2 α
cos2 β

− sin 2α cos 2α
sin 2β

)

× (m2
h0A[H0] +m2

H0A[h0]
)− M2

2
cos 2β

cosβ sinβ

× (sin2(α− β)A[H0] + cos2(α− β)A[h0]
) ]
, (55)

ΠC
Hw =

1
v

(−T1 +m2
H±T2

)
, (56)

where

T1=16π2v2 {sin(α− β)TH + cos(α− β)Th} , (57)

T2=16π2v2
{

1
m2

H0

sin(α− β)TH

+
1

m2
h0

cos(α− β)Th

}
. (58)

A.3 The t channel contribution

The contribution of the t channel diagram (Fig. 1b) is only
from the W+H− mixing. When we write the WµH two-
point function as

iΠµ
WH(p) = ipµΠWH(p2), (59)

the contribution to the form factor is expressed by

F t
i,τ (t) = δi,1δτ,−1

g2

2
1

m2
H± −m2

W

ΠWH(m2
H±). (60)

where

ΠWH(p2)

=
mW

16π2v2

[
K̃αβ (2B1 +B0) [H0H±] + L̃αβ (2B1 +B0)

×[h0H±] + Jαβ

{
2m2

W (B0 −B1)[H0W±]

+(m2
H0 −m2

H±) (2B1 +B0) [H0w±] − (H0 → h0)
}

−4Nc

{
m2

b tanβB1 +m2
t cotβ(B1 +B0)

}
[tb] − T2

]
,

(61)

where the tadpole contribution T2 is given in (58).

A.4 The box diagram

The contribution from the box diagrams (Fig. 1c) is para-
metrized as

F box
i,τ (s, t)=− 1

16π2

g4

4
mWJαβ

{
fbox

i [ν,W,H0,W ]

−fbox
i [ν,W, h0,W ]

}
δτ,−1. (62)

The functions fbox
i are calculated as

fbox
1 [ν,W, S,W ]

=
{

2(t−m2
H±)D11 + 2m2

H±D12 + (s−m2
H± −m2

W )

×D13 +m2
H±D22 +m2

WD23 + (t−m2
H±)D24

+(−s− t+m2
H±)D25 + (s−m2

H± −m2
W )D26

+4D27

}
[ν,W, S,W ], (63)
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fbox
2 [ν,W, S,W ] = m2

WD13[ν,W, S,W ], (64)

fbox
3 [ν,W, S,W ]

= m2
W

(
1
2
D11 +D13

)
[ν,W, S,W ], (65)

where

Dij [ν,W, S,W ]

= Dij

(
k2, p2

H , p
2
W , k

2
; 0,mW ,mS ,mW

)
,

(S = h0, H0). (66)

A.5 Finite renormalization effects

The counterterm in (20) is obtained in terms of Re(
ΠHW (m2

H±)
)

and Re
(
ΠHw(m2

H±)
)
. We decompose δFi,τ

into three parts as similarly to the one-loop diagram part
in (20),

δFi,τ (s, t) = δFZ
i,τ (s) + δF γ

i,τ (s) + δF t
i,τ (t). (67)

where each part in RHS is written

δFV
i,τ (s)=δi,1gmWCV

1
s−m2

V

δFHWV

× (m2
W , s,m2

H±
)
, (68)

δF t
i,τ (t)=−δi,1δτ,−1

g2

2(m2
H± −m2

W )

×Re
(
ΠWH(m2

H±)
)
, (69)

where V represents Z or γ, and FHWV (m2
W ,m2

Z) and F t
i,τ

are expressed by

δFHWZ(p2
W , p2

Z ,m
2
H±)

=
1
cW

(
c2W

p2
W − p2

Z

m2
H± −m2

W

− s2W

)
1

mW

Re
(
ΠWH(m2

H±)
)

− 1
cW

s2Wm2
H±

m2
H± −m2

W

Re
(
ΠwH(m2

H±)
)
, (70)

δFHWγ(p2
W , p2

γ ,m
2
H±)

= sW

(
1 +

p2
W − p2

γ

m2
H± −m2

W

)
1

mW

Re
(
ΠWH(m2

H±)
)

+
sW

m2
H± −m2

W

Re
(
ΠwH(m2

H±)
)
, (71)

where ΠwH(p2) and ΠWH(p2) are given in (53) and (61).
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