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Hamiltonian structure of thermodynamics with gauge
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Abstract. Denoting by qi (i = 1, ..., n) the set of extensive variables which characterize the state of a
thermodynamic system, we write the associated intensive variables γi, the partial derivatives of the entropy
S = S

�
q1, ..., qn

�
≡ q0, in the form γi = −pi/p0 where p0 behaves as a gauge factor. When regarded as

independent, the variables qi, pi (i = 0, ..., n) define a space T having a canonical symplectic structure
where they appear as conjugate. A thermodynamic system is represented by a n + 1-dimensional gauge-
invariant Lagrangian submanifold M of T. Any thermodynamic process, even dissipative, taking place on
M is represented by a Hamiltonian trajectory in T, governed by a Hamiltonian function which is zero on
M . A mapping between the equations of state of different systems is likewise represented by a canonical
transformation in T. Moreover a Riemannian metric arises naturally from statistical mechanics for any
thermodynamic system, with the differentials dqi as contravariant components of an infinitesimal shift and
the dpi’s as covariant ones. Illustrative examples are given.

PACS. 05.70.Ce Thermodynamic functions and equations of state – 05.70.Ln Nonequilibrium and
irreversible thermodynamics – 64.10.+h General theory of equations of state and phase equilibria

1 Introduction and outline

In Callen’s formulation of thermodynamics [1], the state
of a system is characterized at each time by the values of
n independent quantities, usually extensive and conserva-
tive, that we shall denote as qi (i = 1, ..., n) . For a single
fluid, these variables are the internal energy q1 ≡ U, the
volume q2 ≡ V and the numbers qk ≡ Nk (k = 3, ..., n) of
molecules of each type k; for a pure fluid, we have n = 3.
For a composite system in local equilibrium, the index i is
a compound index which refers both to each such physi-
cal quantity and to each subsystem; for continuous media,
these subsystems are volume elements with sizes larger
than the mean free path. All the equilibrium properties
of a given system are embedded in the expression of its
entropy S = S

(
q1, ..., qn

)
, an additive, extensive and con-

cave function of the state variables qi. In particular, the n
intensive variables γi are defined as the partial derivatives

γi =
∂

∂qi
S
(
q1, ..., qn

)
. (1.1)

For a single fluid, they are expressed in terms of the tem-
perature T, the pressure P and the chemical potentials
per particle µk as

γ1 =
1
T
, γ2 =

P

T
, γk = −µk

T
(k = 3, ..., n) .

(1.2)
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The relations (1.1) between the conjugate, extensive and
intensive, variables constitute the full set of equations of
state.

In non-equilibrium situations, the variables γi are the
local intensive variables. The fluxes which govern the dy-
namics in sufficiently slow regimes are expressed in terms
of differences of variables γi for neighbouring subsystems.
The simplest example is heat transfer across a barrier sep-
arating two uniform thermal baths. In this case it is suf-
ficient to introduce n = 2 variables, the energies q1 ≡ U1

and q2 ≡ U2 of the two baths, together with the associated
temperatures γ1 = 1/T1 and γ2 = 1/T2. The dynamics is
governed by the conservation laws

−dU1

dt
= Φ =

dU2

dt
, (1.3)

and by the expression of the heat flux Φ across the bar-
rier in terms of the response coefficient L (γ1, γ2) which
characterizes the heat transport through this barrier:

Φ = L (γ1, γ2) (γ2 − γ1) . (1.4)

This formulation of thermodynamics is the one which
arises naturally from statistical mechanics [1,2], where the
entropy S is identified with the missing information, or the
disorder at microscopic scale. Equilibrium is then char-
acterized by looking for the largest disorder, subject to
constraints on the quantities qi. The variables γi are the
Lagrangian multipliers involved in this search. For non-
equilibrium thermodynamics microscopic foundations are
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also provided by the maximum entropy method which
yields the projection method in the limit of negligible re-
tardation effects (see, for instance, the review articles [3]
and [4]).

Although each state is characterized by the n variables
qi only, it is convenient for practical purposes and for ap-
plications to make use of additional variables. One is thus
led to introduce the 2n-dimensional space T̄ with coordi-
nates q1, ..., qn, γ1, ..., γn. A thermodynamic system is rep-
resented in this space by a n-dimensional manifold M̄ char-
acterized by the set of n equations of state (1.1); a state of
this system is represented by a point in M̄. For a thermo-
dynamic process, the dynamical equations such as (1.1,
1.3, 1.4) couple the 2n time-dependent variables qi and
γi. It is here again natural to formulate non-equilibrium
thermodynamics in the space T̄, where a dynamical pro-
cess is represented by a trajectory which is constrained by
the equations of state (1.1) to lie in the manifold M̄.

Moreover, these equations of state are often written
in an alternative form where the entropy and the en-
ergy are interchanged. For a single fluid, the function
S = S(U, V,Nk) is thus inverted into U = U(S, V,Nk).
The quantity S can therefore be regarded as an additional
extensive variable, that we shall denote as q0 so as to set
all the variables q0, q1, ..., qn on the same footing. For a
given physical system these n+ 1 variables are related to
one another by

q0 = S
(
q1, ..., qn

)
. (1.5)

The dissipation rate is the time-derivative
dq0/dt. Altogether, the thermodynamic variables
q0, q1, ..., qn, γ1, ..., γn, now appear as the coordinates of
a point in a 2n + 1-dimensional space T̃. In this space,
which has a natural contact structure [5–8], the dynamical
equations involve the n + 1 constraints (1.1, 1.5). We
have singled out the entropy rather than the energy
among the extensive variables because our results have
a simpler theoretical interpretation if we work in the
entropy representation (1.5). For practical purposes
and for applications, it would be easy to transpose the
formalism into the energy representation, where q0 and
q1 are interchanged and where the associated intensive
variables are T,−P, µk instead of (1.2).

The consideration of the space T̃ instead of the initial
n-dimensional configuration space q1, ..., qn has the follow-
ing interest in equilibrium thermodynamics. A physical
system is represented in this space T̃ by a n-dimensional
manifold M̃, characterized by the n+1 relations (1.1, 1.5)
or by any other equivalent set of n+ 1 equations of state.
(Strictly speaking M̃ should be called a submanifold since
it is not defined intrinsically, but as a subset of T̃.) How-
ever experiments usually give only indirect indications on
the fundamental function S

(
q1, ..., qn

)
, and are not suffi-

cient to fully determine the thermodynamic manifold M̃.
Since less than the n + 1 required equations of state are
known, the remaining ones should be determined by some
phenomenological procedure. To this aim, it has been ad-
vocated [8,9] to proceed by comparing the physical system

under study with some known system having the same
degrees of freedom but characterized by a different en-
tropy function, or equivalently, by a different thermody-
namic potential. In the 2n+1-dimensional thermodynamic
space T̃ this system of reference is described by a known
manifold M̃0. The incompletely known manifold M̃ to be
determined is then deduced from M̃0 by setting up a corre-
spondence between the two systems, represented by some
mapping ϕ in T̃. The missing equations of state for M̃
follow from the corresponding ones for M̃0. This mapping
can be constructed by means of a continuous deformation
scheme. It is then generated through infinitesimal trans-
formations in T̃. We shall regard the resulting motion as
mock dynamics, and shall interpret the deformation pa-
rameter as a fictitious time τ. The method can be used
to extrapolate, for instance, thermal properties from the
knowledge of the P , V , T equation of state. In such prob-
lems we are interested in the structure of a an imaginary
dynamical flow which would lead from M̃0 to M̃, while the
physical flow of non-equilibrium thermodynamics consid-
ered above maps M̃ onto itself.

The theoretical study of these mappings has already
been achieved [8–10]. It is based on the remark that the
physical manifolds M̃ are not arbitrary. Although the rela-
tion (1.5) changes from one manifold to another, there ex-
ists for each one some generating function S which relates
the conjugate variables qi and γi (i = 1, ..., n) according
to (1.1). This is expressed in the 2n+1-dimensional space
T̃ by introducing the 1-form

ω̃ ≡ dq0 −
n∑
i=1

γi dqi, (1.6)

which is non-degenerate at any point of T̃. Thus T̃ is
endowed with a contact structure T̃, ω̃) [5–8]. The ex-
istence of some function S

(
q1, ..., qn

)
such that all the

equations (1.1, 1.5) are satisfied is then equivalent to the
vanishing of (1.6). Among all the n-dimensional manifolds
embedded in T̃, the physical ones M̃ must fulfil the con-
dition

ω̃ = 0 (1.7)

for any infinitesimal variation of a state over M̃, an exte-
rior differential equation which defines Legendre subman-
ifolds. We shall call them thermodynamic manifolds to
recall that the vanishing of ω̃ ensures the fulfilment of the
thermodynamic identities (1.1, 1.5). Further conditions on
M̃ are imposed by the extensivity and the concavity of
entropy.

The above transformations M̃′= ϕ
(
M̃
)

in T̃, which
map a physical manifold either onto itself or onto an-
other, should preserve the condition (1.7) on the con-
sidered manifolds. More generally, the transformations ϕ
are required to map any thermodynamic manifold onto
another thermodynamic manifold, that is, to preserve
the condition (1.7) everywhere. This implies that they
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are contact transformations in T̃, which multiply the
1-form (1.6) by some non-vanishing function λ of the co-
ordinates q0, qi, γi. More precisely the push-forward map-
ping ϕ∗ = ϕ−1∗ which acts on the forms should satisfy

ϕ∗ (ω̃) = λω̃. (1.8)

Applications of such contact transformations to thermo-
dynamics have been worked out [8–11]. In particular, by
means of a continuous set of contact transformations de-
pending on a single deformation parameter τ interpreted
as a fictitious time, one can explore the equilibrium ther-
modynamic properties of a set of physically different sys-
tems labelled by τ.

The structure of the resulting equations of motion
is somewhat similar with that of Hamiltonian dynamics,
though more complicated. However, it differs from a sym-
plectic Poisson structure, so that the extension of the stan-
dard techniques of canonical Hamiltonian dynamics to the
present problem is not straightforward. The power of such
techniques, which for instance readily provide variational
approaches, makes it desirable to modify the formulation
of thermodynamics so as to cast the equations of motion
into a usual Hamiltonian form. We would then benefit
both from the flexibility brought in by the idea of regard-
ing the 2n+1 variables q0, qi, γi as independent, and from
the whole machinery of analytical mechanics.

We show below that this is feasible at little cost. We
first introduce (Sect. 2) a non-vanishing gauge variable
p0, without physical relevance, which multiplies all the
intensive variables. A new set of variables pi is thus de-
fined as pi = −p0γi for i = 1, ..., n. The 2n+1-dimensional
space T̃ is thereby extended into a 2n+2-dimensional ther-
modynamic space T spanned by the variables qi, pi with
i = 0, 1, ..., n. We associate with a physical system a n+1-
dimensional manifold M in T, parametrized for instance
by the coordinates q1, ..., qn and p0. A gauge transforma-
tion which changes the extra variable p0 while keeping
the ratios pi/p0 = −γi invariant is not observable, so that
a state of the system is represented by any point of a
one-dimensional ray lying in M, along which the physical
variables q0, q1, ..., qn, γ1, ..., γn are fixed.

We wish to study the transformations in the extended
thermodynamic space T which map the thermodynamic
manifolds M either onto themselves (in non-equilibrium
thermodynamics) or onto one another (in the problem of
generating equations of state). We show (Sect. 3) that,
within a suitable but irrelevant choice of gauge, these
transformations are nothing but canonical transforma-
tions of mechanics having some specific features. While the
variables qi, γi (i = 1, ..., n) are conjugate with respect to
the entropy in the Legendre sense (1.1) of thermodynam-
ics, the variables qi, pi (i = 0, 1, ..., n) moreover appear as
canonically conjugate in the sense of Hamiltonian dynam-
ics. A symplectic structure is thus induced in the space
T. An infinitesimal mapping among the manifolds M that
preserves the thermodynamic identities is represented by
a (possibility time-dependent) Hamiltonian, which gener-
ates a flow in T in terms of either the real or the fictitious
time, depending on the problem. The contact transfor-

mations in T̃ which relate the physical thermodynamic
manifolds M̃ to one another are recovered by elimination
of the gauge variable p0.

This relation between contact and canonical transfor-
mations is found here as a direct outcome of the gauge in-
variance that we introduced in thermodynamics. Actually
mathematicians have recognized long ago [12] that a con-
tact structure of the type (1.6) in 2n+1 dimensions can be
embedded into a symplectic structure in 2n+2 dimensions
by means of the adjunction of an extra variable. This pro-
cedure, clearly presented by Caratheodory [5], and later
on termed as symplectization [13], has a geometric inter-
pretation in the theory of fibre bundles.

On the other hand, exterior calculus, a standard tech-
nique in thermodynamics [2], has suggested to introduce
in the 2n-dimensional space of extensive and intensive
variables a symplectic structure which establishes a du-
ality between these variables. For instance, in the en-
ergy representation [14], one currently considers for a fluid
the symplectic 2-form dT ∧ dS − dP ∧ dV in the corre-
sponding 4-dimensional space. Likewise, in the entropy
representation [15], the fundamental symplectic 2-form is
d (1/T ) ∧ dU + d (P/T ) ∧ dV. More generally, the
2n-dimensional thermodynamics space T can be en-
dowed with a symplectic structure generated by the
2-form

∑n
i=1 dγi ∧ dqi. The vanishing of this form is

known to characterize the surface M̄ of T̄ which de-
scribes the equations of state (1.1) of any given ther-
modynamic system, so that M̄ is a Lagrangian sub-
manifold of T̄. Deformations which map thermodynamic
systems onto one another in the 2n-dimensional space
T̄ have also be considered [16]. They will be recov-
ered below (see Sect. 4) from canonical transforma-
tions in our 2n + 2-dimensional space T endowed with
the symplectic form

∑n
i=0 dpi ∧ dqi, as special cases

when the entropy variable q0 may be left aside and when
the gauge may be fixed as p0 = −1. Our Hamiltonian dy-
namics in T thus generalizes and encompasses both exist-
ing formulations in the 2n- and 2n+ 1-dimensional spaces
T̄ and T̃.

The present formalism applies in particular to the
dynamical equations in non-equilibrium thermodynamics
(Sect. 4), which can thus be cast into a Hamiltonian form.
Given a set of equations of motion, it is usually not obvi-
ous to recognize whether they have a Hamiltonian nature.
This was done for the hydrodynamics of ideal fluids [17].
Here we find another type of Hamiltonian structure, for
any dissipative system in the thermodynamic regime. The
existence of this structure is based on the idea that any
dynamical system can be embedded into a Hamiltonian
system with a double dimension (see Ref. [15], Chapt. 10).
The remarkable fact in non-equilibrium thermodynamics
is the existence of a direct physical interpretation for the
additional variables. In case the entropy is left aside, the
evolution of the n independent variables q1, ..., qn which
characterize the state of the system at each time has
the same structure as in analytical mechanics in spite of
the existence of dissipation. If we regard the set q1, ..., qn

as position variables, their associated intensive variables
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γ1, ..., γn appear as their conjugate momenta, and the dy-
namics is governed by an effective Hamiltonian f in the
2n-dimensional space T̄. In case the entropy in included
among the dynamical variables, a similar canonical struc-
ture is found provided we pay the price of introducing the
gauge variable p0 upon which the effective Hamiltonian
h should depend. Whereas the conjugate momentum of
each qi is now pi for i = 1, ..., n, the conjugate momen-
tum of the entropy q0 is p0, and the dissipation dS/dt is
expressed as ∂h/∂p0. The constraints (1.1, 1.5) satisfied
at the initial time are conserved by the Hamiltonian flow,
which moreover implies that f = 0 or h = 0 along the
physical trajectories. The fact that only the part of the
Hamiltonian flow located in the manifold (1.1, 1.5) is rel-
evant for physics solves the paradox of the existence of a
Hamiltonian for dissipative dynamics. As an illustration
we work out in Section 4 Hamiltonian formulations for the
equations of motion (1.3, 1.4) describing heat transport.
We show moreover that these results are readily extended
to any dissipative process in the thermodynamic regime,
whether mechanical, thermal, electrical or chemical.

The equations of state for different physical systems
are also generated from one another by means of Hamil-
tonian transformations in the space T. We illustrate this
by writing in Section 5 Hamiltonian mappings between
different van der Waals fluids.

Finally we recall in Section 6 how quantum statisti-
cal mechanics generates [3] a natural metric structure in
thermodynamics [18,19]. The thermodynamic Lagrangian
manifolds M̄, M or Legendrian manifolds M̃ thus also ac-
quire a structure of Riemannian manifolds. The metric is
obtained as

ds2 = −
n∑
i=1

dγi dqi =
1
p0

n∑
i=0

dpi dqi, (1.9)

and the thermodynamically conjugate variables now ap-
pear as contravariant and covariant coordinates on the
manifold. The concavity of the entropy function associ-
ated with M is equivalent to the positivity of ds2 over M.
This property may be used to select the physically admis-
sible manifolds, which should not only satisfy the algebraic
condition (1.7) but should also have a positive ds2 so as
to describe thermodynamically stable systems.

2 Thermodynamics as a gauge theory

We start with a remark, drawn from statistical mechanics,
about the definition of the intensive variables. Consider,
for instance, a fluid in grand canonical equilibrium. In
terms of the intensive variables γi defined by (1.2), its
density operator D̂ (in quantum statistical mechanics) is
expressed by

D̂ ∝ exp

[
− 1
kB

(
γ1Ĥ +

n∑
k=3

γk N̂
k

)]
, (2.1)

where Ĥ and N̂k are the Hamiltonian and particle num-
ber operators. The occurrence of Boltzmann’s constant kB

arises from the choice of the kelvin as the unit of temper-
ature and the joule per kelvin as the unit of entropy. We
note from (1.2) that all the γi’s are inversely proportional
to the temperature. Thus, multiplying both kB and the
γi
′s by a constant does not affect the physics, since it

amounts to changing the unit of temperature, or equiva-
lently the irrelevant coefficient in the definition of the von
Neumann entropy in quantum statistical mechanics, which
is identified at equilibrium with the absolute entropy of
thermodynamics within a multiplicative constant.

This suggests us, for an arbitrary thermodynamic sys-
tem, to introduce an additional variable p0 and to replace
the set γi by the new, intensive, scaled variables

pi = −p0γi (i = 1, ..., n) . (2.2)

In the resulting 2n+ 2-dimensional space T, a dilation of
the variables qi, keeping the variables pi unchanged, is a
physical operation which leaves the equations of state (1.1,
1.5) unchanged in case the system is extensive. Symmetri-
cally we introduce a mathematical operation, the dilation
of the intensive variables, keeping the extensive ones un-
changed,

pi 7→ λpi, qi 7→ qi (i = 0, 1, ..., n) , (2.3)

where λ is a non-zero constant. This operation, which does
not affect the physical variables q0, ..., qn, γ1 , ..., γn, can be
regarded as a gauge transformation of the first kind. In the
trivial gauge p0 = −1, we have pi = γi. A change of gauge
which leads to p0 = −1/kB suppresses Boltzmann’s con-
stant from the density operator (2.1) while changing the
γi’s into pi’s. (The macroscopic entropy remains, however,
unchanged as its expression in terms of D̂ still contains a
factor kB.)

We regard below, more generally, the dummy factor p0

in (2.2) not as a constant but as an independent variable.
We thus allow gauge transformations (2.3) of the second
kind, where λ is some function of the 2n+ 2 coordinates
qi, pi. An illustration will be given by equation (2.10),
which is obtained from the trivial gauge p0 = −1 by taking
λ = p0/p1.

In this formulation of thermodynamics as a gauge the-
ory, the variables p0, p1, ..., pn are not completely mean-
ingful physically, whereas their ratios γi given by (2.2)
remain invariant in a gauge transformation. The situation
looks like classical electromagnetism, where the e.m. po-
tential is modified in a gauge transformation and is thus
physically unobservable (as the variables pi), whereas the
e.m. field is well-defined (as the physical intensive vari-
ables γi). We shall work in the 2n+2-dimensional extended
thermodynamic space T with coordinates qi, pi, including
the gauge factor p0. This is mathematically convenient,
though physical interpretation will require to return to
the 2n + 1 physical coordinates, namely the entropy q0,
the n extensive variables qi and the n intensive variables
γi of Callen.

In the extended thermodynamic space T, a state for
a system is not represented by a single point, but by
any point of a one-dimensional ray characterized by fixed
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values of the coordinates q0, q1..., qn and of the ratios
γi = −pi/p0. The points along this line, equivalent for
physics, result from one another by a gauge transfor-
mation (2.3). A given system is described by a n + 1-
dimensional submanifold M, which may be parametrized
by the n extensive variables q1, ..., qn and by the gauge fix-
ing variable p0. The entropy function S(q1, ..., qn) of the
system generates the remaining n+ 1 variables as

q0 = S(q1, ..., qn), pi = −p0

∂S
(
q1, ..., qn

)
∂qi

· (2.4)

We recalled in the introduction that the existence of such
a generating function S characterizes the thermodynamic
submanifolds M̃ in the 2n + 1-dimensional space T̃. It is
then expressed by the vanishing (1.7) of the 1-form (1.6).
Accordingly, in the extended 2n+ 2-dimensional space T,
we introduce the 1-form

ω ≡
n∑
i=0

pidqi, (2.5)

and the n + 1-dimensional thermodynamic manifolds M
are characterized by the vanishing of this form:

ω = 0 over M. (2.6)

The 1-form ω induces a symplectic structure

dω =
n∑
i=0

dpi ∧ dqi (2.7)

on T that we denote as (T,dω) . Any thermodynamic man-
ifoldM belongs to the set of the so-called Lagrangian man-
ifolds in T, which are the integral submanifolds of dω with
maximum dimension (n+ 1) . MoreoverM is gauge invari-
ant, which is implied by (2.6) but not by dω = 0.

When the set qi contains all possible extensive vari-
ables, the extensivity of the entropy function S(q1, ..., qn)
is expressed by the Gibbs–Duhem relation

S =
n∑
i=1

qi
∂S

∂qi
· (2.8)

Translating it into the space T by means of equation (2.4),
we find

n∑
i=0

pi q
i = 0. (2.9)

This condition defines the 2n+ 1-dimensional extensivity
sheet E in the space T, and the thermodynamic manifolds
M should lie in this case within this surface E. However,
if the systems are restricted to contain a fixed quantity
of matter or to have a fixed volume, the corresponding
manifolds M are free from the above constraint.

Statistical mechanics exhibits the different nature of
the entropy q0 and of the other extensive variables
q1, ..., qn. However it is traditional in thermodynamics to

introduce a symmetry between all qi’s for i = 0, 1, ..., n.
In particular the energy as function of the entropy, rather
than the converse, is often used as a thermodynamic po-
tential. This symmetry is conveniently reflected in the
present formalism by the use of the gauged intensive vari-
ables p0, p1, ..., pn, as shown in (2.5, 2.6) and (2.9). For
instance, for a fluid, with the choice of gauge p0 = −1, the
intensive variables p1, ..., pn reduce to the intensive vari-
ables γi arising from the entropy representation, given by
equation (1.2). However, with the choice of gauge p1 = −1,
the other intensive variables pi, namely

p0 =
1
γ1

= T, p2 = −p0γ2 = −P,

pk = −p0γk = µk (k = 3, ..., n) , (2.10)

are those which arise from the energy representation of
thermodynamics, where the relation q1 = U

(
q0, q2, ..., qn

)
replaces (1.5). Thus, the gauge transformation (2.3) with
λ = p0/p1 = −1/γ1 amounts to a switch from the entropy
to the energy representation.

3 Canonical transformations in the extended
configuration space

We proceed to study the transformations which, in the ex-
tended thermodynamic space T, map the thermodynamic
manifolds M onto one another. Such a mapping may de-
scribe a non-equilibrium thermodynamic process, in which
case the initial and the final manifolds are the same, or it
may describe a mapping between the equations of state of
different physical systems.

The thermodynamic submanifolds M satisfy the con-
dition (2.6). We impose that this condition should be
preserved by the considered mappings M′ = ϕ(M)
for any M. We recalled in equation (1.8) that, in the
2n + 1-dimensional space T̃ the corresponding mappings
M̃′ = ϕ(M̃) should satisfy ω̃′ = ϕ∗(ω̃) = λω where λ is
some non-vanishing function of the coordinates. Likewise
the mappings M′ = ϕ(M) in the 2n+ 2-dimensional space
T that preserve the thermodynamic identities should sat-
isfy

ω′ = ϕ∗(ω) = λω, (3.1)

a property which ensures that ω = 0 implies ω′ = 0. How-
ever, the factor λ in (3.1) can be absorbed by a gauge
transformation, since the multiplication of ω by a func-
tion λ of the coordinates qi, pi can be achieved by the
gauge transformation (2.3) involving the same factor λ.
Hence, within an irrelevant change of gauge in M′, any
mapping M′ = ϕ(M) which satisfies (3.1) is equivalent to
a transformation in T which conserves the 1-form ω. We
can therefore take advantage of the gauge invariance and
restrict ourselves to the mappings M′ = ϕ(M) such that

ω′ = ϕ∗(ω) = ω. (3.2)
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The condition (3.2) implies that the 2-form (2.7) ob-
tained by taking the exterior derivative of (2.5) is also
conserved by the mapping ϕ, that is,

ϕ∗(dω) = dω. (3.3)

This means that, if we endow the space T with a symplec-
tic structure with Poisson brackets{

qi, pj
}

= δij , (3.4)

the considered mappings are canonical transformations of
the same type as in analytical mechanics [5,13,20].

Not every canonical transformation is admissible, how-
ever, since the conservation (3.2) of the 1-form ω is
a stronger condition that the conservation (3.3) of the
2-form dω. Consider an infinitesimal canonical trans-
formation, generated by the (possibly time-dependent)
Hamiltonian h(q0, q1, ..., qn, p0, p1, ..., pn):

q̇i =
∂h

∂pi
, ṗi = − ∂h

∂qi
· (3.5)

The evolution takes place either as function of the physical
time t in non-equilibrium thermodynamics, or as function
of a fictitious time τ for continuous deformations relating
different systems to one another. The conservation of ω
reads

0 =
n∑
i=0

(
pi dq̇i + ṗi dqi

)
=

n∑
i=0

(
pi d

∂h

∂pi
− ∂h

∂qi
dqi
)

= d

(
n∑
i=0

pi
∂h

∂pi
− h
)
, (3.6)

for any variation of the coordinates qi, pi (i = 0, 1, ..., n).
As h is defined within an additive constant, we can impose
that it satisfies the identity

h ≡
n∑
i=0

pi
∂h

∂pi
, (3.7)

or equivalently

h
(
q0, q1, ..., qn, λp0, λp1, ..., λpn

)
=

λh
(
q0, q1, ..., qn, p0, p1, ..., pn

)
, (3.8)

where λ is a constant or more generally a non-vanishing
function. The condition (3.8) also ensures that, if two
points are deduced from each other by a gauge transfor-
mation (2.3), their images in the evolution remain related
by the same transformation. The rays which represent the
states in the space T are thus deduced from one another
in the Hamiltonian motion, which therefore preserves the
gauge invariance of the manifolds M in the dilation (2.3).
Actually we have noted that the thermodynamic man-
ifolds M (for which ω = 0) are n + 1-dimensional La-
grangian submanifolds of T (for which dω = 0) which are
moreover gauge invariant.

Altogether the mappings in the extended thermody-
namic space T which preserve these two properties that
characterize the thermodynamic structure of the mani-
folds M are canonical transformations of analytical me-
chanics, generated by a Hamiltonian h which is a homo-
geneous function with degree 1 in the variables pi.

If the set q0, q1, ..., qn includes all the extensive vari-
ables, the mappings should leave the extensivity sheet E
defined by (2.9) invariant. Expressing the time-derivative
of (2.9) by means of (3.5) and using (3.7), we obtain in
this case

h ≡
n∑
i=0

qi
∂h

∂qi
· (3.9)

Hence, h should also be a homogeneous function with de-
gree 1 of the variables qi. Note that, in spite of their for-
mal analogy, the identities (3.7) and (3.9) have different
status, since dilation of the pi’s is physically irrelevant
while dilation of the qi’s is associated with extensivity,
and since (3.7) should always be satisfied.

A finite canonical transformation may be characterized
by its generating function H(q0, ..., qn, p′0, ..., p

′
n), which

produces the mapping qi, pi 7−→ q′i, p′i as

pi =
∂H
∂qi

, q′i =
∂H
∂p′i

(i = 0, 1, ..., n). (3.10)

(If the Jacobian of this mapping vanishes, one should use
other generating functions, where some initial variables qi
are replaced by pi’s, and conversely for the final variables;
see Ref. [13]; an example will be given by Eq. (5.8) below.)
The conservation of the 1-form ω is expressed, through the
same calculation as in (3.6), by

H ≡
n∑
i=0

p′i
∂H
∂p′i

, (3.11)

so that H is a homogeneous function of the variables p′i
with degree 1. Infinitesimal transformations (3.5) are re-
covered from

H ≈
n∑
i=0

p′i q
i + εh(q0, ..., qn, p′0, ..., p

′
n) (3.12)

for ε small. Note that the condition (3.11) results in the
vanishing of a Legendre transform of H with respect to
the whole set of variables p′i. Hence no generating func-
tion depending on the variables qi, q′i can produce here
the Hamiltonian mapping. Extensivity implies, as in (3.9),
that H is a homogeneous function of the variables qi with
degree 1. In this case, the identity (3.11) implies that H
vanishes when the points (qi, pi) and (q′i, p′i) which are in
correspondence through (3.10) lie on the extensivity sheet.

We recover contact transformations in the space T̃ by
the projection π which eliminates the gauge factor p0 from
Hamilton’s equations, a procedure inverse from symplec-
tization [5,13]. Indeed, the time-dependence of any func-
tion g

(
q0, ..., qn, γ1, ..., γn

)
, where the γi’s are expressed
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in terms of the canonical variables by (2.2), is given,
according to Hamilton’s equations (3.5), by the usual
Poisson bracket

ġ = {g, h} =
n∑
i=0

∂g

∂qi
∂h

∂pi
− ∂h

∂qi
∂g

∂pi
, (3.13)

generated by (3.4) in the space T. We can calculate it by
using the fact that

f(q0, ..., qn, γ1, ..., γn) ≡ − 1
p0
h
(
q0, ..., qn, p0, ..., pn

)
(3.14)

is a function of the variables γi ≡ −pi/p0 only, as a con-
sequence of the homogeneity condition (3.8). The result,

ġ =
∂g

∂q0

(
−f +

n∑
i=1

γi
∂f

∂γi

)
+

n∑
i=1

∂g

∂qi
∂f

∂γi

−
n∑
i=1

∂g

∂γi

(
∂f

∂qi
+ γi

∂f

∂q0

)
, (3.15)

generates the known contact flow [8] in the thermody-
namic space T̃. The greater simplicity of the canonical flow
in the extended space T arises from the mock dynamics

ṗ0 = − ∂h

∂q0
(3.16)

that we have introduced for the gauge variable, which al-
lowed us to get rid of the factor λ in (3.1), whereas contact
transformations should manage with this factor in (1.8).
We can thus regard a contact transformation in T̃ as a
Hamiltonian transformation in T followed by the gauge
transformation which brings p0 to its initial value −1.
However, the latter gauge transformation (2.3) cannot in
general be generated by a Poisson structure, so that this
structure is lost in the elimination of p0. As it often occurs
in gauge theories, the equations become more complicated
when the gauge is fixed without care.

Note that the antisymmetry of the Poisson
bracket (3.13), which generates the motion in the
2n + 2-dimensional space T, is lost when this motion
is projected as (3.15) on the 2n + 1-dimensional space
T̃. Indeed the first term − (∂g/∂q0) f of (3.15) has no
counterpart. We can trace back this lack of symmetry
to a hidden difference which already existed between g
and h in the Poisson bracket (3.13). Being a physical
quantity, g is a homogeneous function of the variables pi
with degree 0. However, h, the generator of the motion
in the space T, is not a function of the physical variables
qi, γi only, but it includes p0 and is homogeneous in
the pi’s with degree 1. The first term of (3.15) arises
from this difference of behaviour of g and h in a gauge
transformation.

We can represent the relations between the contact
space T̃, ω̃) and the symplectic space (T,dω) by the fol-

lowing diagram:

(T,dω) symplectic transf., h−−−−−−−−−−−−−−−−−→ (T,dω)

Symplectization

x π

yProjection

(T̃, ω̃) −−−−−−−−−−−−−−−−−→contact transf., f (T̃, ω̃)

The symplectization, usually performed [13] by construct-
ing T as a fibre bundle associated with the configura-
tion space q0, ..., qn, amounts here to the introduction
of a gauge structure in the space of intensive variables
γi = −pi/p0, whereas the projection π amounts to the
fixation of the gauge through p0 = −1. The Hamiltoni-
ans h which are equivalent to contact transformations f
are constrained by the homogeneity condition (3.8), which
ensures that the gauge invariance of the Lagrangian man-
ifolds M is preserved.

4 Hamiltonian equations for dissipative
dynamics and quasi-static processes

The above formalism holds in particular for a continuous
mapping which leaves some physical manifold M0 invari-
ant. The equations of motion (3.5) can thus describe non-
equilibrium thermodynamic processes which take place in
a given system characterized by M0, and which are repre-
sented by the motion of a point in M0. In these dynamics,
the other thermodynamic manifoldsM are not kept invari-
ant but are transformed into one another, contrary to M0.
The effective Hamiltonian h will therefore depend on the
equations of state (2.4) which parametrize M0 (or equiva-
lently on the entropy function S of the system), as well as
on the transport coefficients. This effective Hamiltonian h
should not be confused with the microscopic Hamiltonian
Ĥ which governs the dynamics in statistical mechanics.

Apart from its general property (3.8), h should here
be such that the Hamiltonian flow that it generates
through (3.5) lies, for any point of M0, in M0 itself. In
particular, the relation q0 = S(q1, ..., qn) should be con-
served, which is expressed by writing its time-derivative as

∂h

∂p0
=

n∑
i=1

∂S

∂qi
∂h

∂pi
= − 1

p0

n∑
i=1

pi
∂h

∂pi
· (4.1)

Together with (3.7), this implies that

h = 0 overM0. (4.2)

Conversely, the general homogeneity property (3.8) of h
and the vanishing of h on the manifold M0 which repre-
sents the given system in the extended thermodynamic
space T are sufficient to ensure that the equations of
state (2.4) remain satisfied at all times provided they are
satisfied at the initial time. This is readily checked by re-
garding the set (2.4) as a parametrization of M in terms
of the independent variables q1, ..., qn, p0. This can also
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be seen as a consequence of (4.2) and of the conservation,
along the motion, of the 1-form ω which thus remains zero.
The vanishing of h over M0 is the counterpart of the van-
ishing of f for the corresponding contact transformation
in T̃ that keeps M̃0 invariant, a property rigorously proven
in reference [8].

One among the equations of motion,

q̇0 =
∂h

∂p0
, (4.3)

describes the rate of change of the entropy, which for an
isolated system is the dissipation. Thus, although the vari-
able p0 has in itself no physical meaning, its occurrence
in the effective Hamiltonian is essential to deal with dissi-
pative processes. It would clearly not have been possible
to assign to an irreversible process Hamiltonian equations
including the time-derivative q̇0 of entropy without intro-
ducing such an extra variable. Dynamical features which
apparently contradict usual properties of Hamiltonian mo-
tions, such as the fact that the dissipation (4.3) cannot be
negative, or the convergence at large times of the trajecto-
ries towards a fixed point which describes global equilib-
rium of the system, arise from a special choice of the initial
point, which should always lie on M0. In particular, the
Liouville theorem is compatible with the convergence of
physical trajectories towards a fixed point, because there
exist neighbouring unphysical trajectories, close toM0 but
outside it, which diverge away from this fixed point. We
shall illustrate this fact in equation (4.13) below.

Since the Hamiltonian equations (3.5) are here physi-
cally meaningful only for the flow in M0, the Hamiltonian
h is not defined in a unique fashion for a given physi-
cal process. Changes of h which do not modify its value
(h = 0) on M0 and its first-order derivatives on M0 are
irrelevant for physics.

As an illustrative example, let us consider heat trans-
fer between two thermal baths. We assume the thermal
conductivity of each bath to be much larger than that of
the barrier, so that their two energies U1 and U2 are suffi-
cient to characterize at each time the state of the system.
The entropy S is the sum of the entropies S1

(
U1
)

and
S2

(
U2
)

of the two baths. We recalled in the introduc-
tion the equations of motion (1.3, 1.4) for this model. In
the 6-dimensional extended thermodynamic space T, the
manifold M0, parametrized by q1 = U1, q2 = U2 and the
gauge variable p0, is characterized by the equations

q0 = S1(q1) + S2(q2), p1 = −p0β1(q1),

p2 = −p0β2(q2), (4.4)

where we denote as

β1 (U1) =
dS1 (U1)

dU1
, β2 (U2) =

dS2 (U2)
dU2

(4.5)

the inverse temperatures of the baths regarded as func-
tions of their energies. We readily check that on the
manifold (4.4) the equations of motion (1.3, 1.4), rewrit-
ten in terms of qi, pi (i = 0, 1, ..., n), can be generated

through (3.5) from the Hamiltonian

h = L(β1, β2)
[
− 1

2p0
(p1 − p2)2 +

p0

2
(β1 − β2)2

]
, (4.6)

which depends on q1 and q2 through β1(q1) and β2(q2).
As it should, h vanishes on the physical manifold (4.4),
and is of degree 1 in the variables pi. The latter property
ensures that the dissipation (4.3) is the one,

∑n
i=1 γi q̇

i,
associated with the flux (1.4). The conservation of energy
is reflected by the fact that h depends on p1 and p2 only
through their difference.

As noted above, we can alternatively use for h any
Hamiltonian equivalent to (4.6) to first-order in the vari-
ables p1 +p0 β1(q1), p2 +p0β2(q2) and q0−S(q1, q2) which
vanish on the manifold M0. For instance, we can take, in
terms of the flux Φ(γ1, γ2) = L(γ1, γ2) (γ2 − γ1) of energy
escaping from the bath 1, which is a function of the inten-
sive variables, the Hamiltonian

h = Φ(−p1

p0
,−p2

p0
) [(p1 + p0β1)− (p2 + p0β2)] . (4.7)

The Hamiltonians (4.6) or (4.7) do not depend on the
entropy variable q0, so that the time-derivative

ṗ0 = − ∂h

∂q0
(4.8)

of the gauge variable p0 vanishes. The elimination of the
gauge is trivial in such a situation. By fixing the gauge so
that p0 = −1 at all times, and by keeping aside the entropy
variable q0, we can then regard the 2n-dimensional space
T̄ spanned by q1, ..., qn, γ1, ..., γn as a mechanical phase
space in which the extensive and intensive variables qi
and γi (i = 1, ..., n) appear as canonically conjugate. Their
dynamics are generated by the Hamiltonian p0f = −f
defined by (3.14), as

q̇i =
∂f

∂γi
, γ̇i = − ∂f

∂qi
. (4.9)

Actually equation (3.14) defines in general a contact
Hamiltonian f in the 2n+ 1-dimensional space T̃, but the
absence of q0 allows us to regard f as an ordinary Hamil-
tonian in the 2n-dimensional symplectic space T̄, in the
special case when the effective Hamiltonian in the space T
does not depend on the entropy variable q0. For the heat
transfer problem, the Hamiltonian f which arises from
(3.14) and (4.6) is, in terms of the “position” variables
q1, q2 and their conjugate “momenta” γ1, γ2,

f = 1
2L (β1, β2)

[
(γ1 − γ2)2 − (β1 − β2)2

]
. (4.10)

Equivalently as regards the physical dynamics, we get
from (4.7)

f = Φ (γ1, γ2) [(γ1 − β1)− (γ2 − β2)] . (4.11)

The Hamiltonians (4.6) in T or (4.10) in T̄ involve two
terms, the first one of “kinetic” type, the second one of
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“potential” type. These two terms occur with opposite
signs, in contrast to what usually happens in mechanics.
For the motions in which we are interested, they exactly
cancel out at the initial time, and hence at all times. As
indicated above, the special choice of an initial point inM0

prevents the divergence of trajectories which is expected
from the wrong sign of the potential term. We illustrate
this point by fully solving the equations (4.9) in the whole
space T for a model where L is a constant and where the
entropies are quadratic functions of the energies:

Si
(
U i
)

= aiU
i − 1

2bi
(
U i
)2
, (i = 1, 2) . (4.12)

(The Gibbs–Duhem homogeneity condition (2.8) is not
satisfied here because only one extensive variable, qi =
U i, has been introduced for each subsystem; hence
b−1
i is an extensive quantity.) The Hamiltonian (4.10)

is that of a two-dimensional harmonic oscillator in
which the sign of the potential − 1

2L (β1 − β2)2 =
− 1

2L
(
a1 − b1q1 − a2 + b2q

2
)2 has been inverted. Its gen-

eral flow is

γ1 − γ2 = AeΓt +Be−Γt, β1 − β2 = −AeΓt +Be−Γt,
(4.13)

where Γ ≡ (b1 + b2)L, with the total energy q1 + q2 and
the quantity b2γ1 + b1γ2 as constants of the motion. The
concavity of the entropy functions (4.12) implies bi > 0,
and the positivity of the response coefficient L then im-
plies Γ > 0. The arbitrary constants A and B are de-
termined by the initial conditions, which for a physical
process entail γ1 − γ2 = β1 − β2 and hence A = 0. Thus
only the decaying terms Be−Γt occur in (4.13) for physical
processes, although the diverging terms AeΓt are present
for non-physical trajectories which lie outside the man-
ifold M0. Likewise the dissipation evaluated from (4.12)
and (4.13), Ṡ = L

(
B2e−2Γt −A2e2Γt

)
, remains positive

at all times only on M0, for A = 0. It is therefore impor-
tant, in order to use Hamilton’s equations (3.5) or (4.9) for
a numerical solution of dissipative motions, to enforce the
constraints (2.4) which characterize M0, although these
constraints are conserved along the motion, because small
errors may produce increasing spurious effects.

In spite of its simplicity, the heat transfer problem
considered above is a prototype for any process of non-
equilibrium thermodynamics, describing transfer of heat,
of momentum, of particles, or chemical reactions. In any
such case, the time-derivative of each extensive variable
qi, where the compound index i = k, α refers both to the
nature k of the quantity transferred and to the consid-
ered subsystem α, is expressed as a sum of outgoing fluxes
−Φiβ (γ1, ..., γn) , which depend on the intensive variables
γi and which involve the subsystems β that interact with
α. The conservation laws are expressed by Φkαβ = −Φkβα .

If we keep aside the entropy variable q0 and fix the
gauge as p0 = −1, we can generate the dynamics in the
2n-dimensional space T̄ from the effective Hamiltonian

f =
∑
i,β

Φiβ (γ1, ..., γn)

[
∂S
(
q1, ..., qn

)
∂qi

− γi

]
. (4.14)

This expression generalizes (4.11), which involved only two
opposite fluxes Φ1 = Φ = −Φ2. It also applies to non-
isolated systems, in which case some fluxes are imposed by
external sources. Since the trajectories of interest satisfy
the constraints γi = ∂S/∂qi, the Hamiltonian flow in the
whole space can be stabilized around those constraints by
adding to (4.14) terms proportional to[

∂S
(
q1, ..., qn

)
∂qi

− γi

]2

, (4.15)

which do not affect the dynamics on the physical mani-
fold M.

Effective Hamiltonians such as (4.14) are not arbitrary.
They should satisfy several properties imposed by the the-
ory of non-equilibrium thermodynamics [1,2]. The entropy
function S

(
q1, ..., qn

)
should be concave, expressing sta-

bility of matter. The fluxes should be two by two opposite,
so as to ensure the conservation laws. The matrix of re-
sponse coefficients L should be positive so as to ensure
that the dissipation is not negative. Finally the symmetry
and invariance laws should be reflected in the form of the
functions S and Φ.

In the special case of quasi-static processes, there is
no dissipation. Such processes are usually considered for
a non-isolated system which remains nearly in equilib-
rium at each time under the effect of external sources.
If it does not interact with a heat source, its entropy
remains constant, so that the effective Hamiltonian h
should not depend on p0. Consider, for instance, a fluid
in adiabatic expansion. Its instantaneous state is charac-
terized, for a fixed particle number, by the two variables
q1 ≡ U and q2 ≡ V, and its equilibrium properties by
the entropy q0 = S (U, V ) . The intensive variables are
γ1 = −p1/p0 = 1/T, γ2 = −p2/p0 = P/T. If the motion of
a piston changes the volume sufficiently slowly, according
to V̇ ≡ Φ, the flux of energy is U̇ = −PΦ and the result-
ing quasi-static dynamics of the fluid in the 6-dimensional
space T can be generated by the effective Hamiltonian

h = Φ

[
p1
∂S

∂V

/
∂S

∂U
− p2

]
(4.16)

(which possibly depends on time through Φ). The con-
stancy of entropy is obvious from ∂h/∂p0 = 0. In the
4-dimensional symplectic space T̄ = U , V , γ1, γ2, the re-
sulting effective Hamiltonian is

f = Φ

[
γ2 − γ1

∂S

∂V

/
∂S

∂U

]
, (4.17)

a simplified form of (4.14).
For continuous media, the index i in qi and γi for i 6= 0

not only refers to the nature of the variable but also la-
bels the volume elements. This index thus includes the
coordinates in ordinary space, so that the variables qi and
γi constitute fields (such as the energy density or the lo-
cal velocity). The expression (4.14) becomes the effective
Hamiltonian for a canonical field theory. Moreover, in hy-
drodynamics, the fluxes need not vanish with the gradients
of the intensive variables.
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We have noted that, under the condition (4.2), the
dynamics generated by the Hamiltonian h (or f) preserve
the constraints (2.4) which express the equations of state,
provided they are satisfied at the initial time. One could
take advantage of these constraints so as to reduce the
number of variables, or to obtain by standard techniques
non-canonical though Hamiltonian dynamics in terms of
reduced Poisson structures [21].

5 Generation of equations of state

We have written the equations of state which determine
a thermodynamic manifold M in the specific form (2.4).
In practice a thermodynamical system is characterized in
the 2n+2-dimensional space T by generalized equations of
state, which constitute a set of n+ 1 equations equivalent
to the set (2.4). As a consequence of gauge invariance,
each of them is homogeneous in the pi’s. These equa-
tions of state are not always well known, and the miss-
ing ones may be determined phenomenologically by com-
parison with known similar systems. To this aim, contact
transformations in the space T̃ have been used [8–11]. We
suggest here to rely on canonical mappings or Hamilto-
nian flows in the space T in order to transform the sets of
equations of state of different system into one another.

As an illustration, let us consider two systems char-
acterized by their entropy functions S

(
q1, ..., qn

)
and

S′
(
q1, ..., qn

)
, respectively. We wish to map their associ-

ated thermodynamic manifolds M and M′ onto each other
in T. For simplicity, we consider a mapping which does not
affect the coordinates q1, ..., qn. The generating function
H which achieves the canonical mapping through equa-
tions (3.10) is not defined in a unique fashion, since its
action on manifolds other than M and M′ is not specified.
We can readily check that the following choice is suitable:

H =
n∑
i=0

p′iq
i + p′0

[
S′
(
q1, ..., qn

)
− S

(
q1, ..., qn

)]
. (5.1)

Indeed, equations (3.10) yield

p0 = p′0, pi + p0
∂S

∂qi
= p′i + p′0

∂S′

∂qi
,

q′0 − S′ = q0 − S, q′i = qi (i = 1, ..., n) , (5.2)

which are obviously satisfied for a pair of points located on
M and M′ and having the same coordinates p0, q

1, ..., qn.
Equation (5.1) exhibits the occurrence of a thermody-
namic potential, here the entropy, in the expression of the
generating function H. Such an occurrence was already
recognized for contact transformations in T̃ [9–11].

For a continuous set of hypothetical systems la-
belled by a deformation parameter τ regarded as a mock
time, the representative manifolds M(τ) in T can be
parametrized according to (2.4) by means of the family
Sτ
(
q1, ..., qn

)
of entropy functions. The flow which trans-

forms them into one another without changing the coor-
dinates p0, q

1, ..., qn is generated, according to (3.12) and

(5.1), by the time-dependent Hamiltonian

h = p0
∂

∂τ
Sτ
(
q1, ..., qn

)
. (5.3)

More general flows transforming continuously the mani-
folds M (τ) into one another can be generated by Hamil-
tonians, obtained by adding to (5.3) some τ -dependent
function which vanishes onM (τ) and is homogeneous with
degree 1 in the pi’s. Indeed, as shown in Section 4, this
additional term lets the coordinates p0, q

1, ..., qn change in
time without modifying M (τ) .

In the above example, we have assumed the entropy
to be given as a thermodynamic potential. For application
purposes we can take advantage of the geometric nature of
the formalism, which allows us to parametrize the thermo-
dynamic manifolds with variables other than q1, ..., qn, p0

and accordingly to use different thermodynamic poten-
tials. As an example, let us reconsider transformations
which map a van der Waals fluid onto another one or onto
a perfect gas, a problem already studied in the frame-
work of contact transformations [9,11]. We keep here the
particle number fixed: we shall take for it the Avogadro
number NA. The space T has thus 6 dimensions. The prac-
tical variables, namely, the molar entropy, energy and vol-
ume, the temperature, the pressure and the single-particle
chemical potential µ obtained from (2.8) are identified as

S = q0, U = q1, V = q2, T = −p0

p1
, P =

p2

p1
,

µNA = U − TS + PV =
1
p1

(
p0q

0 + p1q
1 + p2q

2
)
. (5.4)

The occurrence of the gauge factor p1 in the denominators
of the intensive variables instead of p0 is related to the use
of the energy representation, more convenient here than
the entropy representation. In fact, if we take the free
energy F (T, V ) as a thermodynamic potential instead of
S (U, V ), we find the generalized equations of state for a
manifold M in the form

q0 ≡ S = −∂F
∂T

, q1 +
p0

p1
q0 ≡ U − TS = F,

p2

p1
≡ P = −∂F

∂V
, (5.5)

where the arguments in F and its derivatives are replaced
by −p0/p1 ≡ T and q2 ≡ V. Here, M is thus parametrized
in terms of q2, p0 and p1.

A van der Waals fluid is characterized by its molar free
energy

F (T, V ) = −RT ln (V − b)− a

V
+ Ψ (T ) , (5.6)

where R = NAkB and where the constants a, b and the
function Ψ (T ) depend on the fluid. An ideal gas of struc-
tureless particles with mass m corresponds to the special
case

a = b = 0, Ψ (T ) = RT ln

[
NA

e

(
2π}2

mkBT

)3/2
]
.

(5.7)
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We wish to map this van der Waals fluid onto another
one (or onto an ideal gas), characterized by its free en-
ergy F ′ (T, V ) of the form (5.6) where a, b, Ψ (T ) are re-
placed by a′, b′, Ψ ′ (T ) . We consider in T a mapping of M
onto M′ for which the coordinates q2, p0 and p1, that is, T
and V, remain unchanged. This is achieved by introduc-
ing a generating function K, the Legendre transform of H
with respect to p′1 and q1, due to the choice of variables
T and V in the thermodynamic potential. Transposing
equation (5.1) yields

K
(
q0, p1, q

2, p′0, q
′1, p′2

)
=

p′0q
0 − p1q

′1 + p′2q
2 + p1

[
F ′
(
−p
′
0

p1
, q2

)
− F

(
−p
′
0

p1
, q2

)]
,

(5.8)

where F and F ′ have the form (5.6) or (5.7). We readily
check that the mapping provided by the partial derivatives
of K in the full space T reads:

p0 = p′0, p′1 = p1,

p2 + p1
∂F

∂V
= p′2 + p′1

∂F ′

∂V
, q′2 = q2,

q0 +
∂F

∂T
= q′0 +

∂F ′

∂T
,

q1 − p0

p1

∂F

∂T
− F = q′1 − p′0

p′1

∂F ′

∂T
− F ′. (5.9)

Hence the equations of state (5.5) for M imply the corre-
sponding ones for M′, and K therefore maps as expected
these manifolds onto each other.

If a, b, Ψ (T ) depend continuously on a mock time τ,
the free energy (5.6) depends on τ, what we denote by
Fτ . The generating function K of (5.8) taken between the
times τ and dτ yields a time-dependent Hamiltonian, as
H does in (3.12). The family of manifolds M (τ) is then
obtained from the Hamiltonian flow produced by

h = p1
∂

∂τ
F

(
−p0

p1
, q2

)
. (5.10)

The explicit form of h follows from (5.6).
In the above mappings through (5.8) or (5.10) the vari-

ables q2, p0, p1 and accordingly V, T are taken as constants
of the motion. We can also build Hamiltonian mappings
which modify V or T. As a simple example, let us con-
struct a transformation among the set of van der Waals
equations which will make the law of corresponding states
obvious. The critical point is given by

Vc = 3b, Pc =
a

27b2
, Tc =

8a
27b

, (5.11)

and the P , V , T equation of state depends only on the re-
duced variables V/Vc, P/ Pc, T/Tc. We look for a mapping
which leaves these reduced variables invariant. If moreover
we wish T ≡ −p0/p1 and hence Tc to remain constant
in time, we should find that the variables V ≡ q2 and
P−1 ≡ p1/p2 as well as the parameters a and b in the

equation of state vary proportionally to one another. On
the other hand, the variations of V and b entail that the
contribution R ln (V − b) to the entropy S ≡ q0 depends
on the time τ. If we assume this dependence to be lin-
ear, in −Rτ, the common dependence of V = q2, b, and
P−1 = p1/p2 should be exponential, in e−τ . The simplest
Hamiltonian which achieves these goals is

h = −Rp0 − p2q
2, (5.12)

since it provides the equations of motion

dp0

dτ
=

dp1

dτ
= 0,

dp2

dτ
= p2,

dq0

dτ
= −R, dq1

dτ
= 0,

dq2

dτ
= −q2, (5.13)

implying V ∝ P−1 ∝ e−τ and constant T. The left-hand
side of the P , V , T equation of state, which is at the initial
time (

P +
a

V 2

)
(V − b)−RT = 0, (5.14)

retains as expected its form in this motion of P and V,
with a and b changed into ae−τ and be−τ . The remaining
two equations of state (5.5), which involve S ≡ q0 and
U ≡ q1, also retain their form, and the choice (5.12) for
the Hamiltonian entails that the function Ψ (T ) does not
depend on τ. Adding to the Hamiltonian (5.12) a homo-
geneous function of p0 and p1 with degree 1 would result
in a change of Ψ (T ) in the free energy (5.6).

The molar chemical potential µNA obtained from (5.4)
and (5.13) varies linearly as RTτ along the trajectories.
If we consider the two end points of the plateau in the
isotherms which describes liquid-vapour equilibrium, the
equality of the intensive variables T, P, µ at these points is
maintained along the trajectories, so that the flow maps
the saturation curve into that of the transformed fluid.
This is consistent with Maxwell’s construction and with
the conservation of areas in the P, V plane in a symplec-
tic flow with constant T. Note finally that the ideal gas
equation of state remains unchanged in the mock dynam-
ics generated by (5.12), and that a van der Waals fluid is
changed into an ideal gas by this dynamics in the large τ
limit.

6 Metric structure

We have not yet dealt with the concavity of the entropy
S
(
q1, ..., qn

)
as function of the extensive variables, which

expresses the stability of equilibrium states. This prop-
erty produces constraints on the physical manifolds M in
the 2n + 2-dimensional space, that we wish to express.
It entails the positivity of the matrix −∂2S/∂qi∂qj , or
equivalently the existence of a metric structure in the
n-dimensional space qi relying on the quadratic form

ds2 = −d2S = −
n∑

i,j=1

∂2S

∂qi∂qj
dqi dqj , (6.1)
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which defines a distance between two neighbouring ther-
modynamic states.

The possibility of endowing equilibrium thermody-
namics with some Riemannian structure is known since
a long time [18,19], but the metric (6.1) is not the only
possible one in the framework of macroscopic thermody-
namics. For instance, ds2 = d2U also appears acceptable,
although ds2 = −d2S is preferable in the framework of
thermodynamic fluctuation theory [19].

This arbitrariness can be lifted by resorting to statis-
tical mechanics. The problem there is to find a physically
meaningful distance [3] between two arbitrary neigbour-
ing density operators D̂ and D̂ + dD̂. To this aim one
should rely on the formal structure of quantum statisti-
cal mechanics. The essential fact is that the only quanti-
ties which behave as scalars in a change of representation
and which have physical relevance at a given time are (i)
the expectation values 〈A〉 = TrD̂Â of the Hermitian op-
erators Â in Hilbert space which represent any physical
variable, and (ii) the von Neumann entropy

SvN = −kBTrD̂ ln D̂. (6.2)

Hence the operators D̂ on the one hand and Â or ln D̂
on the other hand can be regarded as belonging to two
dual vector spaces. From the above considerations one can
show [3] that the only quadratic form in dD̂ which has
physical meaning is, within a multiplicative constant,

ds2 = −d2SvN = kBTr
[(

dD̂
)(

d ln D̂
)]
. (6.3)

It is positive owing to the concavity of the von Neumann
entropy and therefore defines a natural Riemannian met-
ric in the space of density operators D̂. The matrix ele-
ments of dD̂ and kBd ln D̂ appear as the contravariant and
the covariant coordinates of a shift. Returning to ther-
modynamics, we can restrict this metric to the subset
of the space D̂ constituted by the Gibbsian density op-
erators, which have a form of the type (2.1) and which
represent at the microscopic scale the local equilibrium
states of thermodynamics. These density operators are in
one-to-one correspondence with the points q1, ..., qn and
their von Neumann entropy (6.2) is identified with the
entropy S

(
q1, ..., qn

)
of thermodynamics. The reduction

of the metric (6.3) to this n-dimensional subset of the
space D̂ is identical with the metric (6.1), which thus
arises as the only natural metric inferred on equilibrium
or non-equilibrium thermodynamics by the unique metric
of quantum statistical physics.

In this microscopic approach the volume of the system
is regarded as fixed. It is not included in the variables qi
which characterize the state of the system. If the set qi
contains all the extensive variables, including the volume,
an eigenvalue 0 appears in the metric tensor (6.1), since
the extensivity of S then implies

n∑
j=1

∂2S

∂qi ∂qj
qj = 0. (6.4)

The distance (6.1) between two states also vanishes in
the thermodynamic limit in a phase equilibrium situation,
when these two states differ only through the proportion
of the phases. Distances are always positive between two
states having different intensive variables, and they thus
characterize their qualitative differences.

The condition ds2 ≥ 0 expresses one of the Laws of
thermodynamics, the concavity of the entropy function.
In order to complete the formulation or thermodynamics
in the spaces T̄, T̃ or T, we therefore have to rewrite (6.1)
in terms of points on a manifold M̄, M̃ or M. We first
note that, for a given manifold M̄, the definition (1.1) of
the intensive variables γi implies

dγi =
n∑
j=1

∂2S

∂qi ∂qj
dqj . (6.5)

Thus, if we parametrize the n-dimensional manifold M̄
associated with a given system in the 2n-dimensional con-
figuration space T̄ by means of the coordinates q1, ..., qn,
the metric (6.1) takes a simple form: An infinitesimal
shift of the state can be represented either by the set
of variations dq1, ...,dqn which can be regarded as its
contravariant components, or by the set −dγ1, ...,−dγn
which according to equation (6.5), appear as its covariant
ones. The distance between two states of any given
physical system takes, for infinitesimal variations on M̄,
the form

ds2 = −
n∑
i=1

dγi dqi, (6.6)

which does not depend explicitly on the entropy function
of the system. The specificity of this system is reflected by
the curvature of the manifold M̄, itself resulting from the
metric tensor given by (6.5).

Considered in the whole space T̄, the expression (6.6),
which equivalently reads

ds2 =
n∑
i=1

[
1
2
(
dqi − dγi

)]2

−
[

1
2
(
dqi + dγi

)]2

,

defines a pseudo-Euclidean metric with signature (n, n) . It
may have either sign between two neighbouring points of T̄
which correspond to different physical systems. However,
the restriction of (6.6) to a thermodynamic manifold M̄
defines the positive Riemannian metric (6.1). Conversely,
the submanifolds M̄ of T̄ which can be thermodynamically
admissible are the Lagrangian manifolds over which (6.6)
moreover induces a positive Riemannian metric. The first
condition ensures the existence of a function S which gen-
erates the equations of M̄ in the form (1.1), and the second
one ensures the concavity of this function.

The pseudo-Euclidean metric (6.6) also holds for the
2n+ 1-dimensional thermodynamic space T̃. The positiv-
ity of the metric that it induces on a n-dimensional Legen-
drian submanifold M̃ of T̃ now ensures that this manifold
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may represent a thermodynamically stable physical sys-
tem.

Similar features occur in the 2n+ 2-dimensional space
T. The pseudo-Euclidean metric (6.6) can be rewritten as

ds2 =
1
p0

n∑
i=0

dpi dqi. (6.7)

The factor 1/p0 ensures gauge invariance, and apart from
it ds2 is symmetric with respect to i = 0, 1, ..., n. The
restriction of (6.7) to a n+1-dimensional Lagrangian man-
ifold M where ω ≡

∑n
i=0 pi dqi = 0 (which ensures the

existence of S and the gauge invariance) again yields the
metric (6.1) on M. However, there are here n + 1 con-
travariant coordinates dq0,dq1, ...,dqn for a shift in M,
which are not independent since ω = 0. The independent
variables on M being taken, for instance, as q1, ..., qn, p0,
the covariant coordinates of a shift are dpi/p0 (i =
0, 1, ..., n). The distance between two points describing the
same state, which are deduced from each other through a
gauge transformation (2.3), vanishes. More generally two
different states with the same intensive variables γ1, ..., γn
lie at a vanishing distance, as obvious from (6.6) for M̄ or
M̃ and from (6.7) in a gauge with constant p0 for M; this
expresses that the metric characterizes the nature of the
independent phases of the system, not their sizes.

Altogether the physical manifolds M in T should not
only satisfy the condition ω = 0, which ensures that the
thermodynamic identities are satisfied, but should also be
such that the bilinear differential form (6.7) induces on
them a non-negative Riemannian metric ds2, which en-
sures thermodynamic stability.

Accordingly, canonical transformations H which map
M onto M′ in T preserve thermodynamic stability only if
they satisfy some inequalities. Using equations (3.8), we
can compare the metrics at corresponding points through

ds2 =
(
∂H
∂q0

)−1 n∑
i,j=0

(
∂2H
∂p′i ∂q

j
dp′i dqj+

∂2H
∂qi ∂qj

dqi dqj
)
,

ds′2 =
1
p′0

n∑
i,j=0

(
∂2H
∂p′i ∂q

j
dp′i dqj +

∂2H
∂p′i ∂p

′
j

dp′i dp′j
)
.

(6.8)

The mapping should be such that, if the points qi, pi and
q′i, p′i (i = 0, 1, ..., n) and their variations lie on the mani-
folds M and M′, respectively, both ds2 and ds′2 are pos-
itive. In a continuous transformation generated by h, the
metric evolves according to

d
dτ
(
ds2
)

=

1
p0

∂h

∂q0
ds2 +

1
p0

n∑
i,j=0

(
∂2h

∂qi ∂pj
dpi dpj −

∂2h

∂qi∂qj
dqidqj

)
.

(6.9)

A control of the sign of the metric through equations (6.8)
or (6.9) sets up conditions on H or h. The occurrence of a
zero eigenvalue in the metric tensor during the evolution
in terms of the mock time τ indicates the appearance of
a critical point in the equations of state thus generated.

7 Conclusion

The extension of the n-dimensional configuration space
q1, ..., qn associated with a thermodynamic system, suc-
cessively to the 2n-dimensional space T̄ including the in-
tensive variables γ1, ..., γn, then to the 2n+ 1-dimensional
space T̄ including in addition the entropy q0, finally to the
2n+ 2-dimensional space T where the γi’s are replaced by
the variables p0, p1, ..., pn including a gauge arbitrariness,
presents practical advantages. It is adapted to changes of
variables among the various physical quantities. It sets
into the same framework all the systems which have the
same degrees of freedom q1, ..., qn but different equations
of state. Moreover it discloses a rich mathematical struc-
ture that characterizes the geometry of the spaces T̄, T̃
or T, and of the manifolds M̄, M̃ or M which represent a
thermodynamic system.

The existence of thermodynamic identities is reflected
in the Legendre structure of any M̃, characterized by
the identity ω̃ ≡ dq0 −

∑n
i=1 γidq

i = 0, or equivalently
in the Lagrange structure of any M̄ or M, characterized
by the more symmetric identity ω ≡

∑n
i=0 pidq

i = 0. The
conservation of ω in transformations which map the mani-
foldsM onto one another induces for T a symplectic struc-
ture based on the 2-form dω =

∑n
i=0 dpi ∧ dqi, where the

variables qi and pi appear as conjugate in the sense of ana-
lytical mechanics. Such mappings are then canonical, and
can be generated by Hamiltonian flows. The quantities qi
play the rôle of position variables, the quantities pi or γi
that of momentum variables. The Hamiltonians involved
should be homogeneous with degree 1 in the variables pi
so as to preserve the gauge invariance of the manifolds
M. The mappings such that the trajectory issued from
any point of some given manifold M0 lies in M0 are those
for which the Hamiltonian vanishes over M0. Finally the
stability of thermodynamic states is reflected in the fact
that the bilinear forms −

∑n
i=1 dγi dqi or p−1

0

∑n
i=0 dpi dqi

should induce on M̄, M̃ or M a Riemannian structure with
a non-negative metric.

We have shown how Hamiltonians can be constructed,
either for real motions in thermodynamic processes, even
when they are dissipative, or in fictitious dynamics which
consistently generate equations of state for different sys-
tems.

The above considerations should have more than a for-
mal value. We have worked out a few elementary examples
for the sole purpose of illustration. More realistic problems
should benefit from the existence of an ordinary Hamilto-
nian structure, which for instance readily generates vari-
ational techniques, and which anyhow is formally simpler
than the currently used contact structure.
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9. L. Benayoun, Méthodes géométriques pour l’étude des
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