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Abstract. We report an experimental study of large scale correlations in the power injected in turbulent
swirling flows generated in the gap between two coaxial rotating disks. We measure the pressure fluctuations
on the blades of one disk, as well as the pressure drop between the leading and the trailing edges of the
rotating blades, i.e. the local drag force. Measurements at different positions on one blade and on two
successive blades display a correlation length much larger than the ones usually expected in turbulent
flows. The time lag for which the correlation between two points is maximum, strongly depends on the
global flow configuration. These results help us to understand the statistical properties of the injected
power fluctuations in turbulent swirling flows.

PACS. 47.27.-i Turbulent flows, convection and heat transfer – 47.27.Jv High-Reynolds-number turbulence

1 Introduction

Despite their practical interest, only a few studies have
been performed on the statistical properties of the power
injected in turbulent flows. On the theoretical side, the
usual phenomenological approach of turbulence does not
take into account these fluctuations, and consider that all
global quantities, i.e. quantities averaged on the whole flow
volume (respectively on its boundaries), are constant. This
approximation could be justified if, as usually assumed,
any correlation length λ in turbulence were much smaller
than the system size L. This allows to replace all space
integrals by a sum of independent random variables. Then
the central limit theorem implies Gaussian fluctuations for
all global quantities. Moreover, their relative fluctuations
then should decrease like 1/

√
N , where N = (L/λ)d with

d = 3, (respectively 2). One could thus expect that the rms
power fluctuations relative to their mean value, σ(P )/〈P 〉,
become negligible in the limit of large Reynolds number,
Re, because λ is a decreasing function of Re [1].

However, it has been shown in a confined turbulent
flow [2] that the power injected in order to maintain a
constant Reynolds number displays large temporal fluc-
tuations (rms of about 10%) and a non-Gaussian prob-
ability distribution function. In the above experiment,
the flow motion was produced in the gap of two coaxial
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rotating disks set with blades to increase entrainment. We
present here measurements of pressure fluctuations on the
blades of one of the rotating disks maintaining the tur-
bulent flow. The pressure drop between the leading and
the trailing edges of a blade is the main contribution to
the local drag force on the blade, and its rate of work,
averaged on all the blades, is equal to the power injected
in the flow. We show that both the pressure field on the
blades surface and the local drag force display large scale
correlations on the system size L. This helps to under-
stand the statistical properties of the fluctuations of the
power injected into the flow.

2 Experimental set-up and measurements

The experimental set-up has been described in refer-
ence [2]. Two coaxial disks of radius R = 10 cm, H =
20 cm apart, are fitted with vertical blades of height
hb = 2 cm, perpendicular to the disk surface. They are
driven by independent 450 Watt d.c. motors, the rotation
frequencies of which are adjustable from 0 to 45 Hz and
controlled by a feed-back loop. Air is the working fluid
and the disks are enclosed in a cylindrical cylinder 23.2
cm in diameter.

Pressure fluctuations are measured by four piezoelec-
tric transducers PCB 103A mounted flush with the leading
or trailing vertical edges of a blade. Their active diameter
is 2.1 mm, their low frequency cut-off at −5% is 0.05 Hz
and their rise-time is 25µs. The transducers are mounted



564 The European Physical Journal B

RC

p
2

p
4p

1
p

3

RC

Fig. 1. Pressure sensors positions on the leading edge and on
the trailing edge of two successive blades of the upper disk.
The disk radius is 10 cm. The pressure sensor p1 is at 9 cm
from the disk center on the leading edge. The sensor p2 is at
the same distance on the trailing edge. p3 is at 4 cm on the
leading edge and p4 is at 4 cm on the trailing edge.

either on the same blade, two on the leading edge, p1 and
p3, 9 cm (respectively 4 cm) away from the disk axis, and
the two others on the trailing edge, p2 and p4, opposite
to p1 and p3, or on different blades of the upper disk (see
Fig. 1). Electric signals from the rotating pressure trans-
ducers are retrieved using Air Precision T13HP slip rings.

The fluid motion is mainly created by the motion of
the blades. We can compute the injected power, P , by
multiplying the Navier–Stokes equation by the velocity
and taking the average over all the flow volume. To leading
order, we get

P ≈ −Ω
∫
Sb

∆p(r, t) rdS, (1)

where Ω is the angular rotation rate, ∆p(r, t) is the pres-
sure drop between the leading and trailing edges of a blade
at a distance r from the rotation axis, and Sb is the to-
tal surface of the blades leading vertical edges. ∆p(r, t)
times the active surface of a pressure sensor is roughly
the local drag force applied on the blade at distance r
from the rotation axis, and its work, integrated on the
blades leading vertical edges, gives the power injected into
the flow. There is actually another contribution to the in-
jected power which is due to the work of the viscous fric-
tion forces on the blades and on the disks, but it is known
to be negligible compared to the pressure drag at large
Re [3]. In the absence of blades and with smooth disks,
only the viscous forces contribute to the injected power,
and qualitative differences in the mean rate of energy in-
jection have been observed [4,5].

The main interest of our local pressure or drag mea-
surements is to study the spatiotemporal correlations in
the energy injection mechanisms in the turbulent flow,
i.e. to determine if the right hand side of equation (1)
can or cannot be replaced by a sum of independent ran-
dom contributions in the limit of large Re. These mea-
surements are not performed to get a quantitative eval-
uation of the injected power P using equation (1). A
lot more pressure sensors should be used for that pur-
pose and there exist other simpler measurement methods,

for instance the electric power consumption [2] or torque
measurements [4]. Note however that the determination of
the injected power using pressure measurements present
several advantages compared to these global measure-
ments: no high frequency filtering due to the inertia of the
disks and rotors, no bias due to Joule dissipation in the
motors, etc. It may thus be an efficient method to measure
drag fluctuations on bluff bodies in high Re flows.

Most of the experimental results presented below have
been obtained with counter-rotating disks at the same ro-
tation rate but in an asymmetric configuration: we used
an upper disk with four blades on which pressure was mea-
sured but a lower disk with eight blades. With these non
symmetric conditions, the shearing zone between the disks
moves toward the upper disk so that the measurements are
done in a strongly turbulent flow. We have compared this
situation with the symmetric one with four blades on each
disks. We have also studied the open flow geometry as well
as the flow generated by co-rotating disks. These system-
atic studies have been reported in reference [6]. We will
recall them here as needed, to underline the differences
with our reference flow.

Note that a convenient definition of the Reynolds num-
ber, Re, that takes into account the number of blades,
Nb, and their height, hb, is Re = 2NbhbRΩ/ν, where
ν the kinematic viscosity. The flow is indeed created by
blades of characteristic size hb moving at typical ve-
locity RΩ in the fluid. The rotation rate being in the
range [4, 44 Hz], we have one decade in Reynolds number,
9× 104 < Re < 9× 105.

3 Results

Power density spectra (PDS) of pressure fluctuations on
the leading edge, p1, (respectively the trailing edge, p2), of
a rotating blade are displayed in Figure 2, and compared
to the pressure fluctuations on the cylindrical boundary
in the mid-plane between the disks.

We first observe that the pressure PDS on the rotat-
ing blades involves sharp peaks at the rotation frequency
and its harmonics. In the symmetric counter-rotating con-
figuration (two disks with four blades), only the fourth
harmonic clearly emerges from the background. In the
open flow configuration, the pressure PDS on the leading
edge is similar to the one of Figure 2a, but with smaller
peaks, whereas they almost vanish in the pressure PDS on
the trailing edge. Thus, the pressure field on the rotating
blades involves a large coherent part which is smaller in
the bulk of the flow, but strongly depends on the global
flow geometry. The pressure field on one disk, and thus
the injected power by that disk, depends on the charac-
teristics of the other disk and on the open or shrouded
flow configuration.

The pressure PDS in Figure 2 are all rather flat at low
frequency but their high frequency cut-off are different.
The cut-off is at much larger frequency in the PDS of
pressure on rotating blades, in particular on the leading
edge. This is easily understood if one considers that the
frequency cut-off is proportional to the advection velocity
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Fig. 2. (a) PDS of the pressure signal on the leading edge p1

(full line) compared with the one of a pressure signal at the
lateral boundary (dashed line). (b) PDS of the pressure signal
on the trailing edge p2 (full line). Ω/2π = 44 Hz, Re = 905 000.

of the spatial pressure disturbances on the pressure sensor.
Then, according to Figure 2, the large scale velocity is
roughly 10 times larger on the blades than in the bulk of
the flow.

Finally, the slopes of the high frequency decay of the
pressure PDS are roughly equal and in agreement with
the −7/3 power law exponent predicted for isotropic tur-
bulence [7]. The slight differences observed for the pres-
sure PDS on rotating blades can be explained if one takes
into account the effect of the Coriolis force in the equa-
tion for the pressure obtained by taking the divergence of
the Navier-Stokes equation in the rotating frame of the
blades [6].
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Fig. 3. PDFs of pressure fluctuations at the previously defined
positions on a rotating blade: p1 (full line), p2 (dashed line), p3

(dotted line) and p4 (+++), reduced by the standard deviation
of the sensor p1. Re = 905 000.

The probability density functions of the pressure fluc-
tuations (PDF) on a moving blade are presented in Fig-
ure 3 for Re = 9×105. All the PDF are related to the stan-
dard deviation of the pressure fluctuations on the leading
edge, p1. Pressure PDF on the trailing edge, p2 and p4,
display a negative skewness (respectively equal to −0.53
and −0.33). As already observed for pressure at a fixed
boundary in such flows [8,9], the tail of low pressure events
corresponds to vorticity concentrations, here in the wake
of the blades. On the contrary, a large positive skewness
is observed for pressure PDF on the leading edge of the
blades (respectively 0.61 and 0.78 for p1 and p3). High
pressure fluctuations are connected to regions with strong
strain which are expected in the vicinity of the leading
edge of the blades. The asymmetry of the pressure PDFs
thus reflects the different flow geometries in the vicinity
of the leading (respectively trailing) edges of the moving
blades.

We have thus a simple explanation for the negative
skewness of the injected power observed in confined tur-
bulent swirling flows [2]: equation (1) indeed shows that
the injected power is a sum of terms involving the pressure
on the trailing edge minus the pressure at the leading edge
at each radius of the blade. If all these contributions add
in a coherent way, the PDF of the injected power should
have a tail of low power events, i.e. a negative skewness.
This mechanism of course operates only if the pressure
field on the blades has a large enough spatial coherence.
Otherwise, as said above, if the sum consists of random
independent contributions, one expects a Gaussian PDF.
We thus need to estimate the spatial correlation length of
pressure fluctuations on the blades.

We have first studied the correlation between two pres-
sure transducers located on the leading edge of the same
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Fig. 4. PDF of pressure fluctuations p3 conditioned by in-
tense pressure events (larger than twice the standard devia-
tion) recorded for p1 at the same time (dashed line) or after
a time lag τc = 4ms (full line); non conditioned PDF (dotted
line). Re = 520 000.

blade, one in the vicinity of the outer radius of the blade,
p1, and the other in the vicinity of the inner radius, p3 (see
Fig. 1). To wit, we have plotted in Figure 4 the PDF of
p3 conditioned or not to the presence of intense pressure
fluctuations for p1, observed at the same time or after a
time lag τc. If p1 and p3 are independent then the con-
ditioned and non conditioned PDFs should be the same.
Otherwise, the probability of the rare events for p3 should
be strongly affected by the way its PDF is conditioned.
The optimum time lag, τc, can be estimated by looking
at the cross-correlation between p1 and p3 which shows
a maximum for τc = 4 ms. The PDFs in Figure 4 show
that the probability of rare events for p3 (larger than twice
the standard deviation) is reduced by a factor 10 when an
intense event is recorded at the same time for p1, but in-
creased by a factor 3 if an intense event is recorded for p1

after a time lag τc = 4 ms. These two transducers being
5 cm apart, this shows that spatially localized pressure
fluctuations are advected along the blade with a charac-
teristic velocity larger than 10 m/s. Large scale correla-
tions in the pressure field on the blades are thus clearly
observed. However, the way these pressure or local drag
fluctuations add in equation (1) to give the shape of the
PDF of the injected power fluctuations cannot be simply
predicted because of the time lags which strongly depend
on the global flow geometry. In the symmetric case or in
the open flow geometry, the individual pressure PDFs are
similar to the ones shown in Figure 3, but the correlation
time τc between pressure measurements on the same blade
vanishes.

We have similarly studied the correlation of the pres-
sure field on two successive blades. We have also observed
a strong correlation with a time lag 1/4Ω, i.e. the time
requisited to find the two successive blades at the same
place in the flow volume.
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Fig. 5. rms fluctuations of the pressure pi divided by the
square of the local velocity, (RiΩ)2, as functions of the
Reynolds number. All measurements are divided by the average
value computed for p1 on the full range of Reynolds numbers.

4 Concluding remarks

We have shown the existence of large scale correlations in
the pressure field or the local drag force on the rotating
blades generating a turbulent swirling flow. We thus do
not expect the fluctuations of the injected power to display
Gaussian statistics. These features are consistent with the
strong correlation of the power injection at each disk as
reported in [2,11]; in addition they are not not specific to
swirling flows and have been also observed in turbulent
convection [10].

However, the manner the local fluctuations of drag add
to give the shape of the injected power PDF cannot be
simply predicted; depending on the time lag that exists
between different locations, these local fluctuations may
be instantaneously correlated or anti-correlated. If they
mostly add coherently (configuration symmetric with re-
spect to the midplane), then the shape of the power PDF
with a tail of low power rare events, is in agreement with
our measurements of the local drag fluctuations. However,
this shape is likely to be modified in the presence of a
mean flow resulting from any asymmetry with respect to
the horizontal midplane between the disks.

Similarly, it is not simple to predict the behavior of the
rms power fluctuations related to their mean value as the
Reynolds number is increased, using local drag measure-
ments. On our Reynolds number range, we have checked
that the local pressure or drag fluctuations on the blades
scale like the square of the rotation rate (see Fig. 5). If
they add coherently in equation (1), this would lead to
rms power fluctuations scaling like the cube of the rota-
tion rate, i.e. constant power fluctuations related to their
mean value. This is in agreement with the global measure-
ments of reference [2] performed on the same range of Re,
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but similar experiments performed on a larger range show
a slow decrease of the relative power fluctuations as Re
is increased [11]. This deserves further studies on larger
range of Re.
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