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Peristaltic transport in a slip flow
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Abstract. Continuum-mechanic derivation of the entrainment of rarefied gases induced by a surface wave
along walls (or peristaltic transport) in a confined parallel-plane microchannel is conducted by the pertur-
bation method. Both no-slip and slip flow cases are investigated with the former ones matched with the
previous approach by Fung and Yih. Critical reflux values due to first order slip-flow effects become trivial
for the free pumping case, and decrease due to second order slip-flow effects after we compared them with
no-slip cases.

PACS. 05.60.-k Transport processes: theory – 47.45.-n Rarefied gas dynamics

1 Introduction

Rarefied gases flowing in rigid channels with the dominant
parameter being the Knudsen number (Kn = mfp/l, mfp
is the mean free path of the gas, l is the width of the
channel) have been considered since 1875 [1–3]. Recently
researchers [4,5] have started to investigate the slip flow
(0.001 ≤ Kn < 0.15) within (static) rigid corrugated-wall
plane microchannels which are common in microdomains
of MEMS (Micro-Electro-Mechanical Systems) [6] appli-
cations, and have found certain interesting physical behav-
iors due to the small wavy-roughness elements along the
walls. The non-zero velocity-slip [7] normally comes from
the incomplete momentum transfer along the gas-surface
interacting (collision and reflection) boundary when the
pressure in the channel is rather low [8,9]. Meanwhile, the
microdomain will induce the slip flow because of the low
pressure or the characteristic length scale of the cross-
sectional geometry being in sub-microns.

We know, however, that most of the electrostatic force
balancing sensors and resonant sensors in MEMS perform
over a wide dynamic range and with a high sensitivity, re-
spectively [10]. Besides, the bulk (cross-section) size of the
microchannel is at most a few tens of O(µm) and the wall
of the microchannel is almost sub-micron. Microchannels
built in the microstructure of MEMS are easily subjected
to environment noises, such as oscillations or vibrations,
externally excited traveling waves, etc. These kinds of dy-
namic effects could be neglected when rarefied gases are
flowing in rigid (or thick-walled) macrochannels. But, con-
sidering the material of microfabricated walls, which is not
so rigid as the traditional one (e.g. metals or alloys) and
the typical micron-thickness of the wall (even the material
is silicon-based), we need to take into account the non-
steady effect due to non-static noises upon the walls as
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the rarefied gas is flowing within these rather-thin walls.
That is to say, the flow rate of rarefied gases in microchan-
nels might be tuned by these dynamic noises even though
they are minor from the macroscopic point of view.

To extend our interests in the study of the flow of
rarefied gases in microdomains [4,5], we shall investigate
what happens when a sinusoidal wave is assumed to travel
down the walls of a 2D microchannel of constant width and
rather-long length where the velocity-slip effect is present.
A similar study, which is related to the peristaltic pumping
of the viscous liquid, has been conducted with the no-slip
boundary condition along the wall [11]. Extensive refer-
ences about the peristaltic pumping could be traced in
the recent paper [12] which still treated no-slip (but mul-
tiphase) flow. Our study here, however, might be directly
related to the gas flowing in bronchiole or micro-bronchia
or noise induced free pumping [13,14]. The critical reflux
conditions we shall present are completely different from
previous no-slip cases for all ranges of Reynolds number
and wave number [11]. In this study, we assume that the
Mach number Ma � 1, and the governing equations are
the incompressible Navier-Stokes equations which are as-
sociated with the relaxed velocity-slip boundary condi-
tions along the walls.

2 Formulations

We firstly consider a 2D channel of uniform thickness
filled with a homogeneous rarefied gas (Newtonian vis-
cous fluid). The walls of the channel are not absolutely
rigid, on which are imposed traveling sinusoidal waves of
small amplitude a. The vertical displacements of the up-
per and lower walls (y = d and −d) are thus presumed
to be η and −η, respectively, where η = a cos 2π

λ (x − ct),
λ is the wave length, and c the wave speed. x and y are
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Fig. 1. Schematic diagram of the peristaltic motion of the
walls.

Cartesian coordinates, with x measured in the direction
of wave propagation and y measured in the direction nor-
mal to the mean position of the walls (see Fig. 1). It
would be expedient to simplify these equations by intro-
ducing nondimensional variables. We have a characteris-
tic velocity c and three characteristic lengths a, λ, and d.
The following variables based on c and d could thus be
introduced:

x′ =
x

d
, y′ =

y

d
, u′ =

u

c
, v′ =

v

c
,

η′ =
η

d
, ψ′ =

ψ

c d
, t′ =

c t

d
, p′ =

p

ρc2
·

The amplitude ratio ε, the wave number α, and the
Reynolds number Re are defined by

ε =
a

d
, α =

2πd
λ
, Re =

c d

ν
·

We shall seek a solution in the form of a series in the
parameter ε:

ψ = ψ0 + εψ1 + ε2ψ2 + · · · ,
∂p

∂x
=
(
∂p

∂x

)
0

+ ε

(
∂p

∂x

)
1

+ ε2
(
∂p

∂x

)
2

+ · · · ,

with u = ∂ψ/∂y, v = −∂ψ/∂x. The 2D (x− and y−)
momentum equations and the equation of continuity could
be in terms of the stream function ψ if the pressure (p)
term is eliminated. The final governing equation is

∂

∂t
∇2ψ + ψy∇2ψx − ψx∇2ψy =

1
Re
∇4ψ,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
, (1)

and subscripts indicate the partial differentiation. Thus,
we have

∂

∂t
∇2ψ0 + ψ0y∇2ψ0x − ψ0x∇2ψ0y =

1
Re
∇4ψ0, (2)

∂

∂t
∇2ψ1 + ψ0y∇2ψ1x + ψ1y∇2ψ0x

− ψ0x∇2ψ1y − ψ1x∇2ψ0y =
1
Re
∇4ψ1, (3)

∂

∂t
∇2ψ2 + ψ0y∇2ψ2x + ψ1y∇2ψ1x + ψ2y∇2ψ0x

−ψ0x∇2ψ2y − ψ1x∇2ψ1y − ψ2x∇2ψ0y =
1
Re
∇4ψ2, (4)

and other higher order forms. The fluid is subjected
to boundary conditions imposed by the symmetric mo-
tion of the walls and the non-zero velocity-slip: u =
∓Kndu/dy [4,5,7], v = ±∂η/∂t at y = ±(1 + η). The
boundary conditions may be expanded in powers of η and
then ε:

ψ0y|1 + ε[cosα(x− t)ψ0yy|1 + ψ1y|1]

+ ε2
[ψ0yyy|1

2
cos2 α(x− t) + cosα(x− t)ψ1yy|1

+ψ2y|1
]
+· · · = −Kn

{
ψ0yy|1+ε[cosα(x−t)ψ0yyy|1+ψ1yy|1]

+ε2
[ψ0yyyy|1

2
cos2 α(x−t)+cosα(x−t)ψ1yyy|1+ψ2yy|1

]
+· · ·

}
(5)

ψ0x|1 + ε[cosα(x− t)ψ0xy|1 + ψ1x|1]

+ ε2
[ψ0xyy|1

2
cos2 α(x− t) + cosα(x− t)ψ1xy|1

+ ψ2x|1
]

+ · · · = −εα sinα(x− t). (6)

2.1 Kn ∼ O(ε) case

Considering the case of Kn ∼ O(ε) from the above bound-
ary conditions, which means the mean free path of rarefied
gases is of the same magnitude with the amplitude of the
wall-surface wave, we have

ψ0y(±1) = 0, ψ0x(±1) = 0;

cosα(x− t)ψ0yy|±1 ± ψ1y|±1 = ∓Knψ0yy(±1),

cosα(x− t)ψ0xy|±1 + ψ1x|±1 = ∓α sinα(x− t);

ψ0yyy|±1

2
cos2 α(x− t)± cosα(x− t)ψ1yy|±1 ± ψ2y|±1

= ∓Kn[cosα(x− t)ψ0yyy|±1 ± ψ1yy|±1],

ψ0xyy|±1

2
cos2 α(x−t)±cosα(x− t)ψ1xy|±1 ± ψ2x|±1 =0.

Equations above, together with the condition of symme-
try and a uniform pressure gradient in the x-direction,
(∂p/∂x)0 = constant, yield:

ψ0 = K0[y − y3

3
], K0 =

Re

2
(−∂p
∂x

)0, (7)

ψ1 =
1
2
{φ(y)eiα(x−t) + φ∗(y)e−iα(x−t) + φ0(y)}, (8)
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where the asterisk denotes the complex conjugate. A sub-
stitution of ψ1 into equation (3) yields{

d2

dy2
− α2 + iαRe[1−K0(1− y2)]

}(
d2

dy2
− α2

)
φ

− 2iαK0Reφ = 0, φ0yyyy = 0. (9)

The boundary conditions are

φy(±1) = 2K0, φ0y(±1) = 4K0Kn, φ(±1) = ±1.
(10)

Similarly, with

ψ2 =
1
2
{D(y) +E(y)ei2α(x−t) +E∗(y)e−i2α(x−t)

+G(y)eiα(x−t) +G∗(y)e−iα(x−t)}, (11)

we have

Dyyyy = − iαRe
2

(φφ∗yy − φ∗φyy)y, (12)

[
d2

dy2
−
(
4α2 − 2iαRe

)]( d2

dy2
− 4α2

)
E =

i2αReK0(1− y2 + 2Kn)
(

d2

dy2
− 4α2

)
E

+ i4αK0ReE +
iαRe

2
(φyφyy − φφyyy) = 0; (13)

{
d2

dy2
− α2 + iαRe[1−K0(1− y2)]

}(
d2

dy2
− α2

)
G

− 2iαK0ReG = Re
iαφ0y

2
(−α2φ+ φyy), (14)

and the boundary conditions

Dy(±1)± 1
2

[φyy(±1) + φ∗yy(±1)]− 2K0 = 0,

Gy(±1) = ∓Kn(φyy(±1)∓K0), (15)

Ey(±1)± 1
2
φyy(±1)− K0

2
= 0,

E(±1)± 1
4
φy(±1) = 0. (16)

2.2 Free pumping case

To simplify the approach and obtain preliminary ana-
lytical solutions of the above complicated equations and
boundary conditions, we only consider the case in which
(∂p/∂x)0 vanishes or K0 = ψ0 = 0. Hence equations (9,
10) become (

d2

dy2
− α2

)(
d2

dy2
− ᾱ2

)
φ = 0,

where

ᾱ2 = α2 − iαRe and φ0yyyy = 0, (17)

φy(±1) = 0, φ(±1) = ±1, φ0y (±1) = 0. (18)

After lengthy algebraic manipulations, we obtain

φ = c0eαy + c1e−αy + c2eᾱy + c3e−ᾱy,

where c0 = (A+ A0)/det, c1 = −(B +B0)/det,
c2 = (C + C0)/det, c3 = −(T + T0)/det;

det = Aeα −Be−α + Ceᾱ − T e−ᾱ,

A = eαᾱ2(e−2ᾱ − e2ᾱ)− 2αᾱe−α + αᾱeα(e−2ᾱ + e2ᾱ),

A0 = e−αᾱ2(e−2ᾱ − e2ᾱ) + 2αᾱeα − αᾱe−α(e2ᾱ + e−2ᾱ),

B = e−αᾱ2(e−2ᾱ − e2ᾱ) + 2αᾱeα − αᾱe−α(e−2ᾱ + e2ᾱ),

B0 = eαᾱ2(e−2ᾱ − e2ᾱ)− 2αᾱe−α + αᾱeα(e−2ᾱ + e2ᾱ),

C = e−ααᾱ(eᾱ−α − eα−ᾱ)− αe2α+ᾱ(α− ᾱ)

+ αe−α(αeᾱ−α − ᾱeα−ᾱ), (19)

C0 = eααᾱ(eᾱ−α − eα−ᾱ)− α(αe2α−ᾱ − ᾱeᾱ)

+ α(αe−(ᾱ+2α) − ᾱe−(2α+ᾱ)), (20)

T = e−ααᾱ(eᾱ+α − e−(α+ᾱ))− αᾱ(e2α−ᾱ − eᾱ)

+ α2e−α(−e2α + e−2α), (21)

T0 = eααᾱ(eᾱ+α − e−(α+ᾱ))− αᾱ(e−ᾱ − eᾱ−2α)

+ α2eα(−e2α + e−2α). (22)

To obtain a simple solution which relates to the mean
flow so long as only terms of O(ε2) are concerned, we
see that if every term in the x-momentum equation is
averaged over an interval of time equal to the period of
oscillation [4,5,11], we obtain for our solution as given by
the above equations the mean pressure gradient

∂p

∂x
= ε

(
∂p

∂x

)
1

+ ε2
(
∂p

∂x

)
2

= ε
φ0yyy

2Re
+ ε2

[
Dyyy

2Re
+

iRe
4

(φφ∗yy − φ∗φyy)
]

+O(ε3)

= ε
r0
Re

+ ε2
a0

Re
+O(ε3), (23)

where r0 and a0 are integration constants for the integra-
tion of equations (9, 12). φ0y = −r0(1− y2).
Now, from equation (14), we have

Dy(±1) = −1
2

[φyy(±1) + φ∗yy(±1)]}, (24)
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where Dy(y) = a0y
2 + a1y + a2 + C(y), and from equa-

tion (12),

C(y) =
α2Re2

2

[
c0c
∗
2

g2
1

e(α+ᾱ∗)y +
c∗0c2
g2

2

e(α+ᾱ)y

+
c0c
∗
3

g2
3

e(α−ᾱ∗)y +
c∗0c3
g2

4

e(α−ᾱ)y +
c1c
∗
2

g2
3

e(ᾱ∗−α)y

+
c∗1c2
g2

4

e(ᾱ−α)y +
c1c
∗
3

g2
1

e−(ᾱ∗+α)y +
c∗1c3
g2

2

e−(ᾱ+α)y

+
c2c
∗
3

g2
5

e(ᾱ−ᾱ∗)y +
c∗2c3
g2

5

e(ᾱ∗−ᾱ)y

+2
c2c
∗
2

g2
6

e(ᾱ∗+ᾱ)y + 2
c3c
∗
3

g2
6

e−(ᾱ∗+ᾱ)y

]
,

with g1 = α + ᾱ∗, g2 = α + ᾱ, g3 = α − ᾱ∗, g4 = α − ᾱ,
g5 = ᾱ − ᾱ∗, g6 = ᾱ + ᾱ∗. In practical applications we
must determine r0, a0 from considerations of conditions
at the ends of the channel. a1 equals to zero because of
the symmetry of boundary conditions.
Once r0, a0 is specified [11], our solution for the mean
speed (averaged over time) of flow is

Ū = ε
φ0y

2
+ ε2

Dy

2
= ε
−r0(1− y2)

2

+
ε2

2
{C(y)− C(1) +R0 + a0(y2 − 1)} (25)

where R0 = −[φyy(1) +φ∗yy(1)]/2 , which has a numerical
value of about 3 for a wide range of α and Re [10].

3 Results and discussion

Numerical calculations confirm that the mean streamwise
velocity distribution (averaged over time) due to the peri-
staltic motion in the case of free pumping is dominated
by R0 (or Kn) and the parabolic distribution −r0(1−y2),
−a0(1− y2). R0 which defines the boundary value of Dy

has its origin in the y-gradient of the first-order stream-
wise velocity distribution, as can be seen in equation (14).

In addition to the terms mentioned above, there is
a perturbation term (within the 2nd order) which varies
across the channel: C(y)−C(1) [10]. Let us define it to be

F (y) =
−200
α2Re2

[C(y)− C(1)]. (26)

To compare with previous no-slip (Kn = 0) results [11],
we plot two cases, α = 0.1, Re = 1 and α = 0.4, Re = 1, of
our results: Kn = 0 with Fung and Yih’s [11] into Figure 2.
This figure confirms our approaches since we can recover
previous results by using Kn = 0.

Now, let us define a critical reflux condition as one
for which the mean velocity Ū(y) goes to to zero at the
center-line y = 0. With equations (18, 20, 21), we could
only have, for the second order term

a0 = Re

(
∂p

∂x

)
2

= −
[
α2Re2

200
F (0)−R0

]
, (27)
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Fig. 2. Comparison of the mean-velocity perturbation func-
tion F (y).

Fig. 3. Comparison of a0 = Redp/dx2 at the critical-reflux
condition.

which means the critical reflux condition is reached when
a0 has the above value. Pumping against a positive
pressure-gradient greater than the critical value would re-
sult in a backward flow (reflux) in the central region of
the stream. This critical value depends on α, Re, and Kn.
There will be no reflux if the pressure gradient is smaller
than this a0.

We plot the 3D view of a0(α,Re;Kn = 0) in Fig-
ure 3 where α has the range between 0.1 and 1.0; Re =
0.01, 0.1, 1, 10, 100. Similarly, those values of a0 for the
case of Kn = 0 recover previous results exactly [11].

For the first order effect, the critical reflux condition
can occur as the trivial case as shown in equation (19) for
r0 = 0. We then compare second order slip-effect results
with no-slip ones and put them into Table 1. The critical
reflux values decrease for the slip cases: Kn = 0.01 for all
ranges of (Re, α). This result is different from the previous
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Table 1. Comparison of critical reflux (a0) values.

Fung and Yih Present: No-slip Slip (Kn = 0.01)

Re α Re (dp/dx)2|cr Re (dp/dx)2|cr Re (dp/dx)2|cr

0.01 0.1 3.0035 3.0040 2.8881
0.2 3.0157 3.0161 2.9002
0.3 3.0365 3.0365 2.9207
0.4 3.0656 3.0656 2.9497
0.5 3.1038 3.1039 2.9877
0.6 3.1519 3.1519 3.0355
0.7 3.2105 3.2106 3.0936
0.8 3.2806 3.2806 3.1629
0.9 3.3630 3.3630 3.2444
1.0 3.4587 3.4587 3.3390

0.10 0.1 3.0040 3.0040 2.8881
0.2 3.0161 3.0161 2.9002
0.3 3.0365 3.0365 2.9207
0.4 3.0656 3.0656 2.9497
0.5 3.1039 3.1039 2.9877
0.6 3.1519 3.1519 3.0355
0.7 3.2106 3.2106 3.0936
0.8 3.2806 3.2806 3.1629
0.9 3.3630 3.3630 3.2444
1.0 3.4587 3.4587 3.3389

1.0 0.1 3.0040 3.0040 2.8881
0.2 3.0160 3.0160 2.9001
0.3 3.0362 3.0362 2.9203
0.4 3.0650 3.0650 2.9491
0.5 3.1029 3.1029 2.9868
0.6 3.1505 3.1505 3.0341
0.7 3.2086 3.2086 3.0917
0.8 3.2780 3.2780 3.1603
0.9 3.3597 3.3597 3.2410
1.0 3.4545 3.4545 3.3347

10.0 0.1 3.0003 3.0003 2.8844
0.2 3.0015 3.0015 2.8856
0.3 3.0037 3.0037 2.8879
0.4 3.0075 3.0075 2.8916
0.5 3.0135 3.0135 2.8975
0.6 3.0228 3.0228 2.9065
0.7 3.0363 3.0363 2.9198
0.8 3.0556 3.0556 2.9386
0.9 3.0820 3.0820 2.9645
1.0 3.1173 3.1173 2.9992

one [11] which didn’t consider velocity-slip effects. The
direct interpretation about this behavior is that once

there are velocity-slips along both walls, the backward
gases flow is much more easily triggered than no-slip ones
inside the channel so that the pumping power should be
increased at the beginning. Meanwhile, as there is early
backward flow due to slip-flow effects, the gas flow might
become more unstable compared to the previous no-slip
cases. Thus the detailed study of gases flowing in bron-
chiole or micro-bronchia should be performed as early as
possible for our health’s sake.
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