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Abstract. Resonant peak splitting for ballistic conductance in finite electric superlattices (ES) and mag-
netic superlattices (MS) was investigated theoretically. It is shown that, for electron tunneling through
the ES (MS) of identical n electric (magnetic) barriers, the resonance split of the conductance peak is
(n−1)-fold; while for electron tunneling through the ES (MS) made of two different barriers, one resonant
window of the former splits into two subwindows, within each of which the resonance split is (m− 1)-fold,
where m is the number of the renormalized building blocks consisting of two different barriers of the latter.

PACS. 73.40.Gk Tunneling – 73.61.-r Electrical properties of specific thin films and layer structures
(multilayers, superlattices, quantum wells, wires, and dots) – 03.65.Ge Solutions of wave equations: bound
states

Electronic transport in a two-dimensional electron gas
(2DEG) has received much attention since von Klitzing
et al. discovered the quantum Hall effect [1]. High mo-
bility 2DEG formed in GaAs/AlGaAs semiconductor het-
erostructures allows electrons to move ballistically over
distances of the order of several microns, which facilitates
the experimental study of the ballistic transport of elec-
trons [2]. On the other hand, it allows us to investigate
various effects of artificial potential that can be realized,
for example, by placing a microstructured gate electrode
or ferromagnetic or superconductor on the surface. The
resultant simple type of potential is a spacially modu-
lated electrostatic or magnetic potential with nanoscale
period [3]. It gives rise to oscillatory magnetoresistance
known as Weiss oscillation [4]. In addition, due to the
quantum confining effects induced by magnetic confine-
ment, renewed interest has been paid to the resonant tun-
neling through the multiple-barrier magnetic structure [5].

It is well known that (n − 1) resonant peaks exist in
the transmission as a function of incidence energy for elec-
tron tunneling through identical-n-barrier semiconductor
superlattices [6]. Very recently we demonstrated that such
resonant peak splitting also exists in the ballistic con-
ductance for electron tunneling through the finite MS
of identical magnetic barriers [7], though electron tun-
neling through magnetic structure is inherently a two-
dimensional process [5]. In 1998 Guo et al. investigated
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the resonant peak splitting for transmission in the semi-
conductor and magnetic superlattices by periodically jux-
taposing two different barriers [8]. They found that one
resonant domain in the identical-barrier superlattice splits
into two subdomains in the different-barrier superlattice
case.

In this letter, we studied resonant peak splitting for
ballistic conductance in two types of electric and mag-
netic supurlattices. One is the periodic arrangement of
identical electric (magnetic) barriers, while the other is
periodically juxtaposed with two different electric (mag-
netic) barriers. Since the resonance split of transmission
and ballistic conductance does not depend on the actual
shape of the electric (magnetic) barrier in ES (MS) [5–8],
we choose the rectangular barrier (barriers) as the build-
ing block for ES (MS). We show that, although electron
tunneling in ES is a one-dimensional process while that
in MS is inherently two-dimensional, the resonant peak
splitting rule for their ballistic conductance is the same.
Therefore, one can depict the resonance split for electron
tunneling through ES and through MS in a unified way.

We consider 2DEG electron tunneling through a pe-
riodic electrostatic potential shown in Figure 1a. ES is
formed by periodically arranging two building blocks A
and B. Each block consists of one electric barrier (with
height UA or UB and width lEA or lEB) and one poten-
tial well of width lE. For perfect identical-barrier ES, A =
B. In the single electron approximation, the correspond-
ing Schrödinger equation for electron tunneling through
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Fig. 1. The finite superlattice potential experienced by a
2DEG electrons: (a) ES constructed by periodically arranging
two different-height electric barriers A and B, (b) MS made of
two different magnetic barriers A and B.

the finite ES reads[
1
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(p2
x + p2

y) + U(x)
]
Ψ(x, y) = EΨ(x, y), (1)

where m∗ is the effective electron mass and U(x) is the
potential of the ES. Now we consider electron motion in
the 2DEG subjected to a perpendicular periodic magnetic
field (along the z direction) as shown in Figure 1b. MS is
similarly obtained by periodically arranging two magnetic
building blocks A and B. Each block consists of one mag-
netic barrier (with height BA or BB and width lBA or
lBB), and one magnetic well (with height −BA or −BB

and width lBA or lBB). The Schrödinger equation govern-
ing the electron motion in the MS can be written as{
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}
Ψ(x, y) = EΨ(x, y), (2)

where A(x) is the vector potential in the Landau gauge,
B(x) = dA(x)/dx. For convenience, we express all quan-
tities in dimensionless units: (1) coordinate is in units of
lE, (2) energy in units of ~/m∗l2E, (3) magnetic field in
units of ~/el2E. Since the problem is translational invari-
ant along the y direction, then Ψ(x, y) = eiqyψ(x)/

√
Ly,

where q and Ly are the wave-vector and structure length
in the y direction, respectively. Substitution of Ψ(x, y)
into equations (1, 2) yields the following 1D dimension-
less Schrödinger equations[

d2

dx2
− 2U(x) + 2E − q2

]
ψ(x) = 0, (3)

and {
d2

dx2
− [A(x) + q]2 + 2E

}
ψ(x) = 0. (4)

The function V (x, q) = [A(x) + q]2 can be interpreted
as an effective q-dependent electrostatic potential. From
equations (3, 4), we find that: electron motion in ES is in
fact a one-dimensional process, while electron tunneling
in MS is inherently a complicated two-dimensional pro-
cess, which depends on the electron’s wave vectors in the
longitudinal and transverse directions of the 2DEG.

Using the transfer-matrix method derived in refer-
ence [6], one can obtain the transmission coefficient for
electron tunneling through the finite ES(MS):

T (E, q) = {1 + (T 2
11 + T 2

22 + k2T 2
12 + T 2

21/k
2 − 2)/4}−1,

(5)

where Tij(i, j = 1, 2) are the elements of the transfer ma-
trix connecting the incident wave functions to the out-
going wave functions and k =

√
2E − q. In the ballistic

regime, conductance can be derived as the electron flow
averaged over half the Fermi surface [4–7]

G/G0 =
∫ π/2

−π/2
T (EF,

√
2EF sin θ)cos θ dθ, (6)

where θ is the angle between the incidence velocity and
the x axis, EF is the Fermi energy, G0 = e2m∗vFLy/~2,
and vF is the Fermi velocity of electrons.

We begin with the study of the resonant peak splitting
of ballistic conductance for electron tunneling through the
finite ES structure. In Figures 2a-c we present the conduc-
tance as a function of incident energy for three kinds of
ES structure, one of which is the ES of identical barriers
named AA ES and another two are the ES formed by ar-
ranging two different blocks A and B named AB ES and
BA ES. The structure parameters in Figure 2 are cho-
sen as UA = 3, UB = 1.5 and lEA = lEB = lE = 1. It
can be shown that the resonant peak splitting for ballistic
conductance in the AA ES is (n − 1)-fold (Fig. 2a), i.e.,
the number of resonant peaks equals the number of ES
barriers minus 1, while the (n − 1)-fold resonant conduc-
tance peak splitting does not hold for the n-barrier ES
made of two different-height barriers (Figs. 2b, c). How-
ever, an interesting phenomenon occurs: one resonant win-
dow (energy domain where the resonant peaks appear)
for the ES of identical barriers splits into two subwin-
dows for the ES formed by arranging two different-height
barriers. Within each of the two subwindows, the num-
ber of resonant peaks is one less than the number m of
the renormalized building blocks AB or BA, with which
ES can be viewed as the identical-barrier ES, except for
the BA ES of 5 barriers. Then we can say that the reso-
nance split of ballistic conductance peaks in the ES made
of two different-height barriers is (m − 1)-fold. It should
be pointed out that the single higher barrier A can be
regarded as one renormalized block while the lower bar-
rier B cannot. The reason is that the lower barrier has
higher transmission and thus the additional quasi-bound
state is difficult to form. For electron tunneling through
the finite ES, the resonant peak splitting for ballistic con-
ductance is the direct result of transmission split. It is
known that resonance occurs, i.e., the transmission co-
efficient is 1, as the tunneling part of the incident elec-
tron energy is equal to the energy of a quasi-bound state.
Due to the tunneling coupling between wells through
the barrier, the degenerate eigenlevels of the independent
well will split. Theoretical and experimental investigations
[6,8] have shown that the resonance split of transmission is
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Fig. 2. Ballistic conductance versus energy for different num-
ber of electric barriers for (a) ES of identical A barriers, (b)
ES of periodically arranged two-barrier structure AB and (c)
ES of periodically arranged two-barrier structure BA. Here,
UA = 3, UB = 1.5 and lEA = lEB = lE = 1.

(n − 1)-fold for electron tunneling through the identical-
n-barrier semiconductor superlattices. For electron tun-
neling through the n-barrier ES formed by periodically
arranging two different barriers the (n − 1)-fold resonant
splitting of transmission peaks no longer holds since the
coupling between the wells are different. However, if one
regards the two-well structure with two low-transmission
barriers and one high-transmission barrier as a single well
in which there exists two well-separated quasi-bound lev-
els [9], then two quasi-bound levels will split into two
corresponding well-separated subwindows within each the
number of quasi-bound levels is closely related to the num-
ber of low-transmission barriers. Therefore in each of the
split resonant windows, the resonant peak splitting for
transmission in the ES formed from two different barriers
is (m−1)-fold, where m is the number of low-transmission
barriers, which is also the number of the renormalized
building blocks. Though the resonant transmission peaks
have different positions for different transverse wave vec-
tor q, the number of resonant transmission peaks is the
same for different q. According to equation (6), ballistic
conductance is the transmission averaged over all possi-
ble transverse wave vectors, therefore the number of ob-

Fig. 3. Ballistic conductance versus energy for different num-
ber of magnetic barriers for (a) MS of identical A barriers,
(b) MS of periodically arranged two-barrier structure AB and
(c) MS of periodically arranged two-barrier structure BA.
BA = 3, BB = 1.5 and lBA = lBB = 1.

servable resonant conductance peaks is the same as for
transmission. Hence, the resonant peak splitting for bal-
listic conductance is the same as for transmission in ES
structures.

Now we inspect the resonance split of ballistic conduc-
tance peaks for MS. Calculated conductances for three
kinds of MS structures AA MS, AB MS and BA MS are
given in Figures 3a-c, respectively. In Figure 3 the param-
eters are chosen as BA = 3, BB = 1.5 and lBA = lBB = 1.
By comparing the number of resonant conductance peaks
with that of magnetic barriers in the corresponding MS,
one can find the same resonant splitting rule for ballis-
tic conductance peaks as that in the ES case, i.e., for
electron tunneling through an identical-n-magnetic barrier
MS, the resonant conductance peak splitting is (n − 1)-
fold; while for MS made of two different magnetic bar-
riers, one resonant window in the former splits into two
subwindows, within each of which the resonant splitting is
(m− 1)-fold, where m is the number of the renormalized
building magnetic barrier blocks. In MS structure, due
to the close relation between transmission and transverse
wave vector q, there exists no explicit unified rule for reso-
nance splitting of transmission peaks. Nevertheless, since
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ballistic conductance is derived as the transmission over
half the Fermi surface, ballistic conductance can be viewed
as the transmission of the electron’s collective tunneling
with a characteristic positive transverse wave vector q
through an averaged effective potential Vave(x), which has
the same number of barriers as the magnetic barriers of
the MS profile [7]. Then the number of resonant conduc-
tance peaks for MS is also the same as that of resonant
transmission peaks for electron tunneling through the ES
structure which has similar potential structure. Therefore,
for electron tunneling through the finite MS structure, the
rule for the resonance split of ballistic conductance peaks
is the same as that for the corresponding ES structure.

What would result if electric and magnetic modula-
tions with the same period were simultaneously applied?
It is shown in references [10,11] that, as long as the elec-
tric and magnetic modulation are in phase, the resonant
peak splitting of ballistic conductance does not change.
If they were out of phase, the situation would be signifi-
cantly different. In this case, resonant splitting for ballistic
conductance peaks would depend on the strength of the
electric and magnetic modulations. Very recently, Ibrahim
and Peeters [12] have studied magnetic superlattices com-
prising infinite magnetic barriers and diffusive conduc-
tance in the framework of semiclassical theory. They found
that magnetic minibands have a pronounced effect on the
oscillatory longitudinal conductivity and trivial influence
on the transverse conductivity. In contrast, the magnetic
superlattice we considered is finite and the conductance
studied is ballistic. Instead of magnetic miniband struc-
ture, in the energy spectrum of a finite MS, there only
exist discrete quasi-bound levels through which the tun-
neling is resonant and thus transmission and conductance
exhibit resonant structure.

In summary, we studied the resonant peak splitting
for ballistic conductance in electric and magnetic super-
lattices. Our results showed that the resonance split of
conductance peaks is the same for electric and magnetic
superlattices. For electron tunneling through the finite ES
(MS) of periodically arranged identical n electric (mag-
netic) barriers, the resonant peak splitting for ballistic
conductance is (n − 1)-fold. However, for the ES (MS)
constructed by periodically juxtaposing two different

electric (magnetic) barriers, one resonant window in the
former structure splits into two subwindows in the latter
structure, within each of which the resonant peak split-
ting is (m− 1)-fold, where m is the number of the renor-
malized electric (magnetic) barrier buildings blocks, with
which the ES (MS) can be regarded as the ES (MS) of
periodically arranged identical m barriers.
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