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Abstract. Since the droplet of the lattice-gas model with long-range interaction is not circular and is
determined by the Wulff construction due to surface tension anisotropy, a calculation method of the surface
tension of the droplet is proposed in this paper. The calculated surface tension is in good agreement with
the surface tension measured by using the Laplace’s formula in consideration of the surface thickness.

PACS. 05.50+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.Fh Phase transitions: general
studies – 68.10.Cr Surface energy (surface tension, interface tension, angle of contact, etc.)

1 Introduction

A lattice-gas model can simulate fluid as a many parti-
cle system. In the system of the 2D lattice-gas, particles
are distributed on a triangular lattice and iterate propa-
gation and collision [1,2]. The time evolution of the par-
ticle distribution is macroscopically similar to the fluid
represented by the Navier-Stokes equations in the incom-
pressible limit [1–3]. It is easier by using the lattice-gas
model to simulate the flow in the system with compli-
cated boundaries [2,4,5], such as the flow in porous me-
dia, than by using macroscopic hydrodynamics equations,
because the boundary of the lattice-gas model can be im-
posed by restricting the particle existence on the node of
the lattice. Multiphase flow can be also represented eas-
ily by the lattice-gas model because it is not necessary
to consider the boundary condition at the interface be-
tween phases unlike the case of using the hydrodynamics
equations [2,5].

There are two types of lattice-gas models which can
represent the fluid system with phase separation. One is
the immiscible lattice-gas model (ILG) [6–8] which can
simulate the phase separation in the system consisting of
more than one kind of component particle. The phase
separation in the ILG model is caused by the attrac-
tive force among same kind of component particle. The
other model [9–11] can represent the phase separation in
the system consisting of one kind of component particle
by adding the long-range interaction between particles.
The phases which appear in the latter model have the
different particle number density. This model obeys an
equation of state similar to that of the liquid-vapor the-
ory of van der Waals [12,13] and has the critical point
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(dc, pc, rc) where dc, pc, and rc are the critical particle
density, the critical pressure and the critical distance of
long-range interaction [14,15]. When the system is un-
stable and has the particle density less than the critical
particle density, the high-density phase with the closed
surface is generated in the phase with low density, that
is a rare phase, like a droplet in vapor. In this paper, we
call the lattice-gas model with long-range interaction and
such generated dense phases in the rare phase the liquid-
gas model [9,10,15] and the droplet, respectively.

Surface tension is one of the most important quan-
tities in the system in which phase separation occurs
because the surface tension influences the creation and
annihilation of phases as well as the deformation of
the interface between phases. The surface tension of
the liquid-gas model has been discussed by several re-
searchers [14,16–18]. Appert et al. [14] calculated the sur-
face tension of the straight surface theoretically by using
the probability distribution of the particle existence which
depends on the coordinate normal to the interface. Appert
and d’Humières [16] improved their calculation by intro-
ducing the probability distribution which depends on the
particle velocity direction as well as the coordinate normal
to the interface. Ebihara et al. [17] measured the surface
tension of the droplet by using the Laplace’s formula in
consideration of the surface thickness. They also showed
that the obtained surface tension was close to the surface
tension of the straight surface which is not parallel to any
of link directions of the lattice. Appert and Zaleski [18]
showed surface tension anisotropy by measuring the sur-
face tension of the straight surface and that the surface
tension was adjustable by varying an arbitrary parameter.
They also proposed the empirical equation for calculating
the surface tension of the droplet. It was also shown that
the surface tension of the droplet in the zero-curvature
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limit in which the radius of the mathematical circle fit-
ting to the surface approaches infinity is in agreement with
that of the straight surface [18].

The generated droplet of the liquid-gas model is not
regarded exactly as the circular droplet because the sur-
face shape in the system with surface tension anisotropy is
in general determined by the Wulff construction [19]. Ac-
tually, the droplet shape of the liquid-gas model with the
strong anisotropy of the surface tension is nearly hexago-
nal as it is seen in Section 3.1. Since the surface tension
anisotropy depends on the position and the direction of
the surface in the liquid-gas model, it cannot be consid-
ered that the surface tension of the droplet whose radius
approaches infinity is not in agreement with that of the
straight surface. In this paper, the surface tension of the
droplet whose shape is determined by the Wulff construc-
tion is calculated by using the tension of two kinds of the
straight surface. The calculated surface tension is com-
pared with the surface tension which is measured by us-
ing the Laplace’s formula in consideration of the surface
thickness.

This paper is organized as follows. The liquid-gas
model which is used in this paper is described in the next
section. In Section 3, a calculation method of the surface
tension of the droplet by using the tension of the straight
surface without arbitrariness is proposed after the surface
tension anisotropy of the liquid-gas model is described. In
Section 4, first, the surface tension of two types of straight
surfaces; one is parallel to one link of the lattice and the
other is not parallel to any of links, is measured in numeri-
cal simulation. The surface tension on the straight surface
which is parallel to one link is different from that on the
straight surface which is not parallel to any links because
of the surface tension anisotropy. It is found that the sur-
face tension anisotropy is remarkable as the distance of the
long-range interaction increases. Second, the surface ten-
sion of the droplet is measured by applying the Laplace’s
formula in consideration of the surface thickness and is
compared with the surface tension which is calculated by
the proposed method in Section 3. It is seen that both
surface tensions of the droplet is in agreement with each
other. It is verified that the difference between the surface
tension of the straight surface and that of the droplet re-
mains after the radius of the droplet approaches infinity.
This paper is concluded in Section 5.

2 Liquid-gas model

The lattice-gas model which was proposed by Frisch, Hass-
lacher and Pomeau in 1986 (the FHP model) [1] can simu-
late fluid dynamics in the 2D system by the time evolution
of the distribution of particles. The 2D space is discretized
by the triangular lattice and the particles are distributed
on the lattice nodes. The velocity direction of the particle
is represented by the link, which connects nearest neigh-
bor nodes, and its speed by the length of the link, that is
the lattice constant. The equation of the time evolution
in the macroscopic limit is similar to the incompressible

Navier-Stokes equations [1–3]. The FHP model is classi-
fied according to its collision rules. Among FHP models,
the FHP3 model is one of the most general models because
this model involves all kinds of collisions which conserve
local mass and momentum, that is the binary head-on
and triple collisions and the dual collisions of them. The
FHP3 model has the rest particle whose velocity is zero
and the spectator particle which remains unaffected in
collisions [3,20].

The equation of the time evolution is represented as

ni(t+ 1,x + ci) = ni(t,x) +∆i[n(t,x)], (1)

where n(t,x) = {ni(t,x)} is the particle configuration at
the node x and the step t, ni(t,x) takes 0 or 1, the index
i which runs from 0 to 6 represents the velocity direction
and ci is the velocity vector

ci = (cos[(i− 1)π/6], sin[(i− 1)π/6]) (i = 1 ∼ 6), (2)
c0 = (0, 0). (3)

In equation (1), ∆i[n(t,x)] is the collision term and sat-
isfies

∑
i
∆i[n(t,x)] = 0 due to mass conservation. Here

three directions of the lattice-gas model are defined in
Figure 1a. The direction along c1 is defined as the di-
rection 1, which is parallel to the horizontal link. The
direction along c2 is defined as the direction 2. The re-
mained direction which is along c3 is defined as the
direction 3. Applying the mean field approximation to
equation (1) under the molecular chaos approximation,
n(t,x) is replaced by the non-equilibrium particle distri-
bution function N(t,x), so that the Boltzmann equation
is obtained [2,3,15]. The non-equilibrium particle distri-
bution function satisfies the following equations,

ρ(t,x) =
∑
i

Ni(t,x), ρ(t,x)u(t,x) =
∑
i

ciNi(t,x),

(4)

where ρ(t,x) is the local particle density and u(t,x) is the
macroscopic velocity at (t,x). By using the low-speed ex-
pansion and the multi-scale expansion (Chapman-Enskog
expansion), the macroscopic equations similar to the in-
compressible Navier-Stokes equations are obtained [2,3].

The liquid-gas model was proposed by Appert and
Zaleski [9]. While the collision rule of the FHP model sat-
isfies the semi-detailed balance [14] as local mass and mo-
mentum conservation, the local momentum conservation
is broken in the liquid-gas model by introducing the long-
range interaction between particles. The phase separation
occurs in the system including only one kind of compo-
nent particle. The liquid-gas model can have several kinds
of interactions [9,15,18]. In this paper, we use the liquid-
gas model with five long-range interactions in Figure 1b
which was proposed by Appert et al. [9]. These interac-
tions have a good symmetry. In Figure 1b, the distance
of long-range interaction is denoted by r. The equation of
the time evolution (1) is modified as follows,

n′i(t,x) = ni(t,x) + Li[n(t,x); r], (5)
ni(t+ 1,x + ci) = n′i(t,x) +∆i[n′(t,x)], (6)
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Fig. 1. (a) Link directions: The solid arrow means the direction of the link and the dashed arrow means the velocity direction.
(b) Long-range interaction: The solid arrow means the site occupied by the particle and the dashed arrow means the hole site.
This figure represents the configuration before applying the interaction. After the interaction, the solid arrow is exchanged with
the dashed arrow. The interaction distance is denoted by r.

where Li[n(t,x); r] is the long-range interaction term. In
the macroscopic limit, pressure, viscosity and sound speed
are modified by adding the long-range interaction [2].

3 Surface tension of the droplet

First, the surface tension anisotropy of the liquid-gas
model is described in this section. Next, the method to
calculate the surface tension of the droplet in the liquid-
gas model is proposed by considering the surface tension
anisotropy. The surface tension calculated by this method
is compared with that measured by using the Laplace’s
formula in consideration of the surface thickness.

3.1 Surface tension anisotropy

The surface tension anisotropy of the liquid-gas model is
described by considering the surface tension of straight
surfaces. The surface tension of the straight surface, σ,
can be measured by using the following formula [21],

σ =
∫ ∞
−∞
{pn − pt(z)}dz, (7)

where z is the direction normal to the surface, pn and
pt(z) are the normal pressure and the tangential pressure

to the surface. The pressure for the liquid-gas model is ob-
tained from the momentum flux which is the momentum
transferred by the particle propagation and the long-range
interaction [14,15,18]. The momentum flux is measured
on each lattice link. The measured momentum flux on
each link is decomposed into the normal component and
the tangential component for obtaining the normal and
tangential pressure in equation (7) [14,18]. If the straight
surface is parallel to one link direction, the transferred
momentum in this link direction is different from that in
the link direction which is not parallel to the surface be-
cause the particles which undergo the long-range interac-
tion are in the same phase. Therefore the surface tension
of the straight surface which is parallel to one link direc-
tion is different from that of the straight surface which is
not parallel to any of link directions. This is the surface
tension anisotropy of the liquid-gas model.

Because of the surface tension anisotropy of the liquid-
gas model, it is considered that the shape of the gen-
erated droplet is determined by the Wulff construction.
In Figure 2, two droplets in equilibrium are shown as
the particle distribution in the 600 × 600 lattice system
with d = 0.17. Here d means the reduced density which
is obtained by dividing the particle number density of
the system by the maximum number of particles in one
node [2,3]. One is for r = 9 and the other for r = 19.
In this figure, the tone of the dot changes gradually from
dark to white as the particle density of the node decreases.
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(a) (b)

Fig. 2. Droplets (a) for r = 9 and (b) for r = 19: Both droplets are generated in the 600 × 600 lattice system with d = 0.17.
The tone of the dot changes gradually from dark to white as the density of the node decrease.

It is found in the figure that the droplet for r = 19 is
deviated from the circle more clearly than that for r = 9.

3.2 Calculation method of the surface tension
of the droplet

Generally, the surface in the system with surface tension
anisotropy is determined by the Wulff construction and is
not circular. Thus, it is considered that the surface of the
droplet of the liquid-gas model consists of many pieces of
small straight surfaces. On the basis of the discussion in
Section 3.1, it is assumed that the liquid-gas model has
two values of the surface tension according to the surface
direction; one is the surface tension of the straight surface
which is parallel to one link direction, σ‖, and the other
is that of the straight surface which is not parallel to any
link direction, σ⊥. By using these two surface tensions,
the surface tension of the droplet, σc, is represented by

σc = α‖σ‖ + α⊥σ⊥ (8)

where α‖ is the ratio of the length of the surface with
the tangent parallel to one of three link directions to the
length of the droplet surface and α⊥ = 1−α‖. The surface
of the droplet is divided into the parallel part and the non-
parallel part according to the relation between the tangent
of the surface of the droplet and the link direction. This
means that the surface tension of the droplet is repre-
sented by combining the tension of the straight surfaces.
Thus it is necessary to define the tangent of the surface
which is parallel to the link direction in the liquid-gas
model.

The tangent of the surface which is parallel to the link
direction is defined by considering the way of the pres-
sure measurement in the liquid-gas model. As described
in the Section 3.1, the pressure of the liquid-gas model is

obtained from the momentum flux which is measured on
the lattice link by counting the transferred momentum by
the particle propagation and the long-range interaction.
In order to calculate the surface tension of the droplet,
it is necessary to obtain the momentum flux at a certain
point. The momentum flux at a point is obtained by inter-
polating the momentum flux on links which surround the
point concerned. The measurement of the momentum flux
at the point is illustrated in Figure 3. According to the fig-
ure, the momentum flux at the point is determined by the
particle configuration on the segments with 2r or 2r−1 in
length which surround the point concerned. If the point of
contact of the tangent of the surface is considered as the
point discussed above, the momentum flux at this point
of contact changes due to the direction of the tangent. In
other words, the relation between the tangent of the sur-
face and the segments which surround its point of contact
determines the momentum flux at the point of contact.
When one of these segments is included in one of phases
which are separated by the interface, the momentum flux
is largely different from the momentum flux of the case
that all of the segments intersect the interface. Therefore,
for the liquid-gas model, when the tangent of the droplet
surface does not intersect one of segments with 2r or 2r−1
in length surrounding its point of contact, the tangent is
defined to be parallel to the link direction along this seg-
ment. Examples of the definition of the parallel tangent
of the surface of the droplet are illustrated in Figure 4.

According to this definition, the tangent parallel to
the link direction is determined by the position of the
point of contact, the slope of the tangent and the distance
of the long-range interaction. Therefore the droplet sur-
face can be divided into the parallel part and non-parallel
part without any arbitrariness. Since the tangent of the
surface of the droplet has any slope, the surface tension
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Fig. 3. Measurement of the momentum flux at a certain point: The point concerned is C. In these figures, the distance of the
long-range interaction is considered as r = 3. (a) The point C is neither lattice links nor lattice nodes. The momentum flux
at the point is obtained by interpolating the momentum flux on the links, a1a2, a2a3, and a1a3, which is determined by the
particle configuration on the segments, s1, s2, and s3, respectively. The length of these segments is 2r − 1 = 5. (b) The point
C is not on nodes but on the link, a1a3. The momentum flux at the point is obtained by interpolating the momentum flux on
the links, a1a2, a2a3, a1a3, a1a4, and a3a4, which is determined by the particle configuration on the segments, s3b, s1a, s2, s1b,
and s3a, respectively. The length of these segments is also 2r − 1 = 5. (c) The point C is on the node. The momentum flux
at the point is obtained by interpolating the momentum flux on six links which surround this point. The momentum flux on
links, Ca1 and Ca4, is determined by the particle configuration on the segment s1, Ca2 and Ca5 is by s2, Ca3 and Ca6 is by
s3, respectively. The length of these segments is 2r = 6.

of the droplet is not in agreement with that of the straight
surfaces if the radius of the droplet approaches infinity.

4 Numerical simulations

In this section, first, σ‖ and σ⊥ in equation (8) are mea-
sured on the straight surfaces. Next, the surface tension
of the droplet is measured by using the Laplace’s formula
in consideration of the surface thickness and is compared
with the surface tension which is calculated by using the
method in the previous section.

4.1 Surface tension of the straight surface

In order to measure σ‖ and σ⊥, two straight surfaces of
the dense phase which is generated on one wall of two
parallel walls are used in the numerical simulation in the
600 × 600 lattice system with d = 0.17. One is parallel
to the x-axis and the other is perpendicular to the x-
axis. We call the former straight surface the horizontal
straight surface and the latter the vertical straight sur-
face. In Figure 5, both dense phases in equilibrium are
shown as the particle distribution. The surface tension of
both straight surfaces is measured by using equation (7).
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Fig. 4. Examples of the relation between the tangent and the segment along the link direction: T is the tangent and C is the
point of contact. The segments, a1a2, b1b2, and c1c2, are along the direction 1. In these examples, the case of r = 3 is shown
and a1a2 = b1b2 = 2r − 1 = 5 and c1c2 = 2r = 6. (a) and (b) are for the case that the point C is on neither the link nor the
node. (c) ∼ (h) are for the case of that the point C is on the link. (i) and (j) are for the case of that the point C is on the node.
(a), (c), (d), and (i) are examples of the tangent parallel to the direction 1 because the tangent intersects neither the segment
a1a2 nor b1b2 nor c1c2. (b), (e), (f), (g), (h), and (j) are examples of the tangent which is not parallel to the direction 1 because
the tangent intersects the segment.
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Fig. 5. (a) Horizontal straight surface and (b) Vertical straight surface : Both dense phases are generated on one wall of two
parallel walls in the 600 × 600 lattice system with d = 0.17 and r = 15. The tone of the dot changes gradually from dark to
white as the density of the node decrease.
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The pressure in equation (7) was obtained by averaging
over 1200 steps in each simulation. The surface tension
was obtained by averaging over 5 simulations. The mea-
sured surface tension on both straight surfaces is shown
in Figure 6 for r = 9 to r = 19. It is seen that the surface
tension of the horizontal straight surface is larger for each
r than that of the vertical straight surface. It is found that
the difference between the surface tension of both straight
surfaces is remarkable as the distance of the long-range
interaction increases.

4.2 Surface tension of the droplet

4.2.1 Determination of the surface position

In order to measure the surface tension of the droplet by
using the Laplace’s formula, it is necessary to define the
surface position clearly.

Considering the interface between the dense phase and
the rare phase, the profile of the density distribution ρ(z)
in the vicinity of the interface is ideally represented by us-
ing the dense-phase density, ρD, and the rare-phase den-
sity, ρR, in equilibrium as [21]

ρ(z) = ρR +
1
2

(ρD − ρR){1− tanh ζ(z −Rs)}, (9)

where ζ is an arbitrary steepness parameter, z is the di-
rection from the dense phase to the rare phase and Rs is
the interface position. The interface position, Rs, satisfies
the equation,∫ Rs

−∞
{ρD − ρ(z)}dz =

∫ ∞
Rs

{ρ(z)− ρR}dz. (10)

By replacing ±∞ with Rs±α in this equation where α is
an arbitrary finite constant, the relation,

1
2α

∫ Rs+α

Rs−α
ρ(z)dz =

1
2

(ρD + ρR) ≡ ρS, (11)

Table 1. Particle densities of the dense phase and the rare
phase in equilibrium

r ρD ρR

9 3.5329 (±4.61× 10−4) 0.2142 (±1.26× 10−3)
11 4.0369 (±8.54× 10−4) 0.1099 (±4.94× 10−4)
13 4.3743 (±7.63× 10−4) 0.0637 (±4.59× 10−4)
15 4.6228 (±3.64× 10−4) 0.0399 (±3.37× 10−4)
17 4.8153 (±7.49× 10−4) 0.0252 (±2.32× 10−4)
19 4.9707 (±3.02× 10−4) 0.0168 (±2.23× 10−4)
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Fig. 7. Density profile of Figure 5b: The dash-dotted line rep-
resents the position of the interface

is obtained. This relation means that Rs can be repre-
sented by using ρD and ρR because α is arbitrary.

This relation is used for the determination of the sur-
face position in the liquid-gas model. The density in the
circle with the radius, r, whose center is the lattice node,
ρcir, is measured and compared with ρS. If ρcir ≥ ρS, the
node at the center of the circle is considered as the node
in the dense phase. If ρcir < ρS, the center node is in the
rare phase. By applying this procedure to every node in
the system, all of the nodes are classified into the dense
phase or the rare phase. This method is called the local-
region clustering method [17]. Then the node of the surface
is obtained as the node in the dense phase which is next
to the node in the rare phase.

Here it is necessary to measure the particle densities
of the dense phase and of the rare phase in equilibrium,
ρD and ρR, which are used in the local-region clustering
method. Since ρD and ρR depend only on the distance of
the long-range interaction, these are measured by gener-
ating the vertical dense phase on the wall as described in
Section 3.1. In Figure 7, the particle density distribution
of Figure 5b is shown as an example. The obtained den-
sity distribution changes abruptly in the vicinity of the
interface and is almost constant in the dense-phase region
and the rare-phase region except the region in the vicin-
ity of the wall. The densities, ρD and ρR, are obtained
by averaging over the region with the constant density
respectively. The obtained density is shown for r = 9 to
r = 19 in Table 1.
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Fig. 8. Surface tension against the radius of the fitted circle: The surface tension of the droplet measured by using the Laplace’s
formula is plotted and the surface tension calculated by using the proposed method is also plotted as the small circle. The error
bars of the calculated surface tension are less than 10−3 and smaller than the size of the small circle. The upper horizontal solid
lines represent σ‖ and the lower is for σ⊥, and the vertical dash-dotted line represents R = 6r.

4.2.2 Measurement and comparison of the surface tension
of the droplet

The surface tension of the droplet is measured by applying
the Laplace’s formula,

σc = (pin − pout) R, (12)

where pin and pout are the pressures in the inside and the
outside regions respectively. The radius R is obtained by

fitting the mathematical circle to the interface position
found by using the local-region clustering method in the
previous section. The inside region and the outside region
are defined as the region with the constant density and
the constant mean free path. Then the region with the
radius less than Rs − 2r is regarded as the inside region
and the region more than Rs + 2r as the outside region,
so that the surface thickness is 4r [17]. In other words, the
surface tension is measured by ignoring the detail of the
shape of the droplet surface.
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In Figure 8, the surface tension measured by using the
Laplace’s formula (12) is plotted for r = 9 to r = 19
against the radius of the fitted circle. The size of the
dense phase was varied by changing the lattice size from
200× 200 to 700× 700. For each lattice size, d = 0.07 and
d = 0.17 were used as the reduced density of the system.
The inside and the outside pressures were obtained by
averaging 1200 steps in each simulation and the surface
tension was obtained by averaging 5 simulations. In the
figure, the surface tension of the droplet is not constant
for the small radius because it is difficult to measure rea-
sonable pressure in the small region. For the radius more
than 6r, which is represented by the vertical dash-dotted
line, the surface tension of the droplet is almost constant.
However it is found for r = 15, 17, and 19 that the surface
tension of the droplet deviates from σ‖ and σ⊥ which are
represented by the horizontal solid line.

Next, the method proposed in Section 3.2 is applied to
the surface of the droplet. It is necessary that the surface
obtained by using the local-region clustering method is
smoothed partially to obtain the reasonable tangent. The
coordinates of the point of contact is obtained by averag-
ing over the coordinates of the continuous three nodes on
the obtained surface. The slope of the tangent is also ob-
tained as the slope of the line fitting to these three nodes.
By applying this procedure and the proposed method to
all of the surface nodes, it is determined whether the tan-
gent at each surface node is parallel to the link direction or
not. The ratio of the number of the surface node with the
tangent parallel to the link direction to the number of the
surface node gives the coefficient α‖ in equation (8). The
surface tensions of both straight surfaces which are mea-
sured in Section 4.1 are used as σ‖ and σ⊥ in equation (8).
The surface tension is calculated for each droplet surface
of 5 simulations by the proposed method. The calculated
surface tensions are averaged to obtain σc. In Figure 8,
the obtained surface tension, σc, is also plotted as the
small circle. It is found in the figure that the surface ten-
sion measured by using the Laplace’s formula in the re-
gion of R ≥ 6r is in agreement with that calculated by
the proposed method. The surface tension in the region
of R < 6r, which cannot be obtained reasonably by using
the Laplace’s formula due to the small inside region, is
also calculated by the proposed method.

5 Conclusion

A calculation method of the surface tension of the droplet
in the liquid-gas model was proposed in consideration of
the anisotropy of the surface tension because the shape of
the droplet is determined by the Wulff construction and is
not circular. The calculated surface tension of the droplet

by the proposed method was in agreement with that mea-
sured by using the Laplace’s formula in consideration of
the surface thickness. According to Figure 8, it is found
that the surface tension of the droplet was in agreement
with neither σ‖ nor σ⊥ if the radius of the droplet ap-
proaches infinity. This difference increases as the distance
of the long-range interaction is large.

Although σ‖ and σ⊥ are obtained by the numerical
simulation in this paper, these may be derived by using the
method by Appert and d’Humières [16]. The surface ten-
sion of the droplet could be calculated without numerical
simulations. Since the proposed method gives the surface
tension of the droplet as the combination of the surface
tension of the straight surface, the surface tension of the
part of the surface of the deformed droplet in flow fields
can be calculated by the proposed method.
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