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Abstract. Using a slightly simplified version of the integrate and fire model of a neural network with delay, I
study the stability of the phase-locked state dependent on the coupling between the neurons and especially
on a delay time. The coupling between neurons may be arbitrary. It is shown that the phase-locked state
becomes less stable with increasing delay and that relaxation oscillations occur.

PACS. 05.45.Xt Synchronization; coupled oscillators – 87.18.Sn Neural networks

1 Introduction

The study of phase locking in neural nets has been the
subject of numerous papers because of the intrinsic in-
terest in such effects and their experimental discovery in
animal brains [1,2]. While phase locking between two
oscillators has been studied since long in the con-
text of radio-engineering [3] and laser physics [4], the
locking between many oscillators has come to the fo-
cus of interest more recently. In his fundamental work
Kuramoto [5] studied the locking using a sinusoidal
coupling between the individual phases in the context
of chemical waves, and he applied his work more re-
cently to neural networks also [6]. Another line of
approaches is based on integrate and fire models to
which a considerable body of papers has been devoted
[7–9]. (For further references cf. [8,9].) To the best of my
knowledge, there is, however, only one paper that studies
the impact of delay on phase locking. Ernst et al. [9] stud-
ied phase locking between two neurons analytically and
used numerical simulations in the case of many coupled
neurons. In this case they assumed a mean field approach,
i.e. each neuron was coupled to any other with the same
strength. It is well-known that delay differential equations
have intrinsic difficulties that require specific efforts to be
overcome [10,11]. Our recent analytical study [12] on the
lighthouse model [13] of a pulse coupled neural net reveals
that time delays may have a considerable impact on the
stability and relaxation towards equilibrium of a phase-
locked state. Since the lighthouse model and the integrate
and fire model present the response of the dendrites of
neurons differently, the question arises whether in the case
of the integrate and fire model similar phenomena can be
found. This will be the topic of the present paper.
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To simplify our present approach, we study the
integrate and fire model in the approximation of small
damping of the action potential. We allow for arbitrary
couplings between the neurons, however.

2 The basic equations including delay
and noise

In order to formulate the following equations, we remind
the reader of a few basic experimental facts (cf. Fig. 1).

A neuron, labelled by k, sends out signals in the form
of short pulses (∼ 1 ms) through its axon. This axon is
connected to the dendrites, labelled by m, of other neu-
rons via synapses. Hereby electric currents are generated
in the dendrites. In this way, also the neuron k under
consideration receives inputs from the other neurons via
dendritic currents. In addition, the neurons may directly
receive (external) sensory inputs, e.g. from the eyes. The
basic equations that describe the coupling between den-
dritic currents ψ and axonal pulses P read as follows. The
current ψm of dendrite m obeys the equation(

d
dt

+ γ

)2

ψm(t) =
∑
k

amkPk (t− τkm) + Fψ,m(t), (1)

where γ is the damping constant, amk are coupling coeffi-
cients, Pk(t− τkm) is the pulse of axon k with delay time
τkm, Fψ,m(t) is a random force. The pulses are assumed
in the form

P (t) = f(φ(t)), (2)

where

f(φ(t)) = φ̇
∑
n

δ(φ− 2πn). (3)
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Fig. 1. Diagram of neural net. The neuron k (consisting of “soma” and “axon”) receives inputs from several dendrites and
sends outputs to several dendrites m (“output to other neurons”).

The function φ(t) is interpreted as a phase angle, that in
case of axon k obeys the equation

φ̇k(t)=S

(∑
m

ckmψm (t−τ ′mk)+Pext,k−Θk

)
+Fφ,k(t).

(4)

In many typical neurons, S(X) is a sigmoidal function of
its argument X (cf. e.g. [14]). Since in our paper we wish
to treat not too high external inputs (which would lead
to saturation), it will be sufficient to approximate S(X)
by a linear function, or by a suitable scaling of variables,
by its argument X . On the other hand, since S must be
nonnegative, X must also be nonnegative, which is for
instance guaranteed by positive external signals. Thus our
approach works in a specific, though realistic window of
external inputs. In the following we shall use S(X) = X .
The quantities in (4) are defined as follows: ckm coupling
coefficients, τ ′mk delay times, Pext,k external signal, Θk
threshold, Fφ,k fluctuating force.

The dendritic currents can be eliminated from (1) and
(4) in two ways. Here we describe one way, another can be
found in Section 3. We treat the linear region of (4) and
apply the operator (

d
dt

+ γ

)2

(5)

to both sides of (4), which yields(
d
dt

+ γ

)2

φ̇k(t) =
∑
k′m

ckmamk′Pk′ (t− τk′mk)

+ Ck(t) + F̂k(t), (6)

where we have used the abbreviations

τk′mk = τk′m + τ ′mk, (7)

Ck(t) =
(

d
dt

+ γ

)2

(Pext,k −Θk) , (8)

F̂k(t) =
∑
m

ckmFψ,m (t− τ ′mk) +
(

d
dt

+ γ

)2

Fφ,k(t). (9)

Because c carrying on the indices k′,m, k of τ as well as the
product ckmamk′ in (6) would make the following treat-
ment clumsy, we relabel the corresponding quantities. As

a simple analysis shows, we may relabel τk′mk by τ` and
replace ckmamk′ by Ajk,`. (We first arrange all τk′mk ac-
cording to their size which allows us to introduce the label
`.) In a more concise form (6) can be written as(

d
dt

+γ
)2

φ̇j(t)=
∑
k,`

Ajk,`f (φk (t−τ`))+Cj(t)+F̂j(t).

(10)

In the present paper I assume

F̂j = 0, Cj(t) = C. (11)

The case with nonvanishing fluctuating forces will be
treated elsewhere.

Before we go on to study the phase-locked state, we
establish a connection of our approach with the integrate
and fire model.

3 Connection with integrate and fire model

Usually, in integrate and fire models, the dendritic cur-
rents ψm do not occur explicitly (cf. e.g. [8]). In our for-
mulation of equations (1) and (4) they can be easily elim-
inated. To this end we write (1) in the form(

d
dt

+ γ

)2

ψm(t) = gm(t). (12)

Under the initial conditions

ψm(0) = 0, ψ̇m(0) = 0 (13)

the formal solution of (12) reads

ψm(t) =

t∫
0

(t− σ)e−γ(t−σ)gm(σ)dσ, (14)

which can be inserted into (4). To make further contact,
we note that the phase φ can be connected with the action
potential U by means of φ = 2πU and constraining φ
to 0 ≤ φ < 2π. We write (4) (after elimination of the
dendritic currents) in the form

φ̇ = I, (15)

where – in the same notation – the basic equation of the
integrate and fire model reads

φ̇ = −γ′φ+ I, (16)
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where usually time and I are scaled such that γ′ = 1.
To bring out the essence of the difference between (15)
and (16), we assume I time-independent. Then the time
interval ∆ during which φ(U) increases from 0 to 2π, (0
to 1) is given in case (15) by

∆ =
2π
I
, (17)

whereas in case (16) by

∆ = − 1
γ′

ln
(

1− 2πγ′

I

)
. (18)

In a limit

2πγ′/I � 1 (19)

that we may call medium to strong coupling or weak
damping, (18) reduces in the leading approximation to
(17) so that both models coincide.

4 The phase locked state

This state is defined by

φj(t) = φ(t) for all j. (20)

When we insert (20) into (10), we obtain an equation for
the phase-locked state. Thereby we note that trivially the
left-hand side becomes independent of the index j. Thus,
also the r.h.s. must be independent of j. A sufficient con-
dition for this to happen is (11) and∑

k

Ajk,` = A` independent of j. (21)

From (10, 11, 21) we derive(
d
dt

+ γ

)2

φ̇ =
∑
`

A`f (φ (t− τ`)) + C. (22)

We expect that φ increases monotonously and that its
time derivatives are periodic

φ̈ (tn+1) = φ̈(tn), φ̇ (tn+1) = φ̇(tn), (23)

but that after a time interval

∆ = tn+1 − tn (24)

the phase φ has increased

φ (tn+1)− φ(tn) = 2π. (25)

We integrate (22) on both sides over the time interval (24).
Note that f (3) contains exactly one peak in this interval.
We obtain

tn+1∫
tn

(...
φ +2γφ̈+ γ2φ̇

)
dt =

∑
`

A` +∆C. (26)

Because of (23), (25) and (24), the relation

∆ =
1
C

(
2πγ2 −

∑
`

A`

)
(27)

can be derived, i.e. we determined the period ∆.

5 Stability equations of the phase locked
state

We integrate (10) with (11) over time, which yields(
d
dt

+ γ

)2

φj(t) =
∑
k,`

Ajk,`H (φk(t− τ`)) + Ct, (28)

where

H(φ) = (2π)−1(φ− φmod 2π). (29)

To study the stability of the phase-locked state φ, we make
the hypothesis

φj = φ+ ξj . (30)

Inserting (30) into (28) and subtracting the corresponding
equation for φ, we obtain(

d
dt

+γ
)2

ξj(t)=
∑
k,`

Ajk,`(2π)−1 {φ+ξk−(φ+ξk) mod 2π

−(φ− φmod 2π)}t−τ` . (31)

To bring out the essential steps that allow us to evaluate
the r.h.s. of (31), we first treat this equation without delay,
τ` = 0 and put Ajk,` = Akj . Below we shall show how our
results can be generalized to the case τ` 6= 0. Since | ξj |
may be a small quantity, we may certainly assume

0 ≤ ξk < 2π. (32)

By means of the curly bracket in (31), we define

[...] = (2π)−1{...}. (33)

At time t−nk, where φ+ ξk = 2πn, [...] suffers a jump + 1,
(34)

and

at time t+n , φ = 2πn, a jump back to 0. (35)

Equation (31) can be formally solved by means of a
Green’s function K (cf. Sect. 3)

ξj(t) =
∑
k

Ajk

t∫
−∞

K(t, σ)[...]σdσ. (36)
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Because of (34) and (35), the r.h.s. of (36) can be written
more explicitly

ξj(t) =
∑
k

Ajk
∑′

n

t+n∫
t−nk

K(t, σ)dσ, (37)

where

∑′

n
=
t+n≤t∑
n

. (38)

We assume that K(t, σ) changes in the interval [t−nk, t
+
n ]

but little. This allows us to perform the integral in (37)

ξj(t) =
∑
k

Ajk
∑′

n
K
(
t, t+n

) (
t+n − t−n,k

)
. (39)

To conclude our derivation of the equations for ξk, we
must determine

(
t+n − t−nk

)
. To this end, we recall from

(34) and (35)

φ
(
t−nk
)

+ ξk
(
t−nk
)

= 2πn, (40)

φ
(
t+n
)

= 2πn, (41)

and by subtracting (41) from (40)

ξk
(
t−nk
)

= φ
(
t+n
)
− φ

(
t−nk
)
. (42)

Because of

t+n − t−nk small, (43)

we may assume that up to higher order

ξk
(
t−nk
)
≈ ξk

(
t+n
)
. (44)

Using the approximation

φ
(
t+n
)
− φ

(
t−nk
)
≈ φ̇

(
t+n
) (
t+n − t−nk

)
, (45)

we eventually find

t+n − t−nk ≈ φ̇
(
t+n
)−1

ξk
(
t+n
)
. (46)

If the derivative of φ has a jump at t+n , we define

φ̇
(
t+n
)

=
1
2

(
φ̇(t+ + ε) + φ̇(t+ − ε)

)
. (47)

We can replace t+n − t−n,k in (39) by means of (46)

ξj(t) =
∑
k

Ajk
∑′

n
K
(
t, t+n

)
φ̇
(
t+n
)−1

ξk
(
t+n
)
. (48)

In order to convert (48) into a differential equation, in a
first step we cast it into the form

ξj(t)=
∑
k

Ajk

t∫
−∞

K(t, σ)
∑
n

δ
(
t−t+n

)
φ̇
(
t+n
)−1

ξk(σ)dσ.

(49)

The same analysis can be performed with negative ξk lead-
ing to the same formal result (49). Finally, it is possible
to take into account delays, τ` 6= 0 by means of a simple
trick. On the r.h.s. of the equations (31, 36, 37, 39, 48, 49)
and in all the other formulas (40–46) we replace in each
individual sum term

φ(t) by φ̃(t) = φ (t− τ`) , (50)

ξk(t) by ξ̃k(t) = ξk (t− τ`) . (51)

Accordingly, (49) can be rigorously generalized to

ξj(t) =
∑
k

Ajk,`

t∫
−∞

K(t, σ)
∑
n

δ(t− t+n )φ̇
(
t+n − τ`

)−1

× ξk (σ − τ`) dσ. (52)

Because of the periodicity of φ̇, we may use

φ̇
(
t+n − τ`

)
= φ̇ (t0 − τ`) independent of n. (53)

Returning to our original problem (31), we convert the
integral equation (49) into the corresponding differential
equation(

d
dt

+ γ

)2

ξk(t) =
∑
k,`

ajk,`
∑
n

δ
(
t− t+n

)
ξk(t− τ`),

(54)

where we introduced the abbreviation

ajk,` = φ̇ (t0 − τ`)−1
Ajk,`. (55)

We note that the whole procedure is valid for more general
differential operators(

d
dt

+ γ

)2

→ L

(
d
dt
, t

)
, (56)

if the kernel K is replaced by a Green’s function belonging
to L.

6 Solution of stability equations

In order to show how equations (54) can be solved, we
cast them into vector form(

d
dt

+ γ

)2

ξ(t) =
∑
`

Â`
∑
n

δ
(
t− t+n

)
ξ(t− τ`) (57)

and treat a single delay time so that

τ` = τ, Â` = Â. (58)

We first seek the eigenvectors and eigenvalues of

Âvµ = λµvµ. (59)
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We assume a non-degenerate case and represent ξ(t) as

ξ(t) =
∑
µ

ξ′µ(t)vµ. (60)

To proceed further, we project both sides of (57) on the
vectors vµ. In order to facilitate the writing, we drop the
index µ of ξµ(t) and put

λµ = a. (61)

Thus we have to deal with equations of the form(
d
dt

+ γ

)2

ξ′(t) = a
∑
n

δ
(
t− t+n

)
ξ′(t− τ). (62)

We note that

t+n = n∆ (63)

and assume that the delay time τ is an integer multiple
of ∆

τ = M∆. (64)

As we are showing elsewhere by a related model [12],
the general behavior is similar if M is not integer. Equa-
tion (62) with the δ-functions on its r.h.s. can be treated
in the usual way. We assume continuity of ξ′, i.e. in
particular

ξ′(tn+1 + ε) = ξ′(tn+1 − ε). (65)

Here and in the following we write tn instead of t+n . To
take care of the δ-functions, we perform the integral

tn+1+ε∫
tn+1−ε

...dt (66)

on both sides of (62), which jointly with (65) yields the
jump condition

ξ̇′(tn+1 + ε) = ξ̇′(tn+1 − ε) + aξ′(tn+1−M ). (67)

From equations (65, 67) we can derive recursive equations.
To this end, we solve (62) in the region

tn < t < tn+1, (68)

where the r.h.s. of (62) vanishes. The solution reads

ξ′(t) = gne−γ(t−tn) + hn(t− tn)e−γ(t−tn). (69)

From the continuity condition (65) and the jump condition
(67), we obtain

gn+1 = gne−γ∆ + hn∆e−γ∆, (70)

hn+1 = hne−γ∆ + agn+1−M , (71)

respectively. To solve these equations, we make the
hypothesis

gn = g0β
n, (72)

hn = h0β
n, (73)

which yields the equations

g0β = g0e−γ∆ + h0∆e−γ∆, (74)

h0β
M = h0e−γ∆βM−1 + ag0. (75)

The requirement of a vanishing determinant yields(
β − e−γ∆

)2
βM−1 = a∆e−γ∆. (76)

For its solution we make the hypothesis

β = e−γ∆ + δ, (77)

which yields in lowest order of δ

δ = ±
√
a∆eγ∆M/2e−γ∆. (78)

If a < 0, δ is imaginary. To obtain the further solutions,
we assume

β 6= e−γ∆ + δ, M ≥ 2, (79)

or more precisely

| β |� e−γ∆. (80)

This yields the M − 1 roots

β =
(
a∆eγ∆

)1/(M−1)
e2πij/(M−1), j = 0, 1, ...,M − 2.

(81)

Since there are M + 1 eigenvalues βk, k = 1, ...,M + 1 of
(76), there are M + 1 solutions (g0k, h0k) to (70, 71). The
general solution of (70, 71) has the form(

gn
hn

)
=
M+1∑
k=1

ck

(
g0k

hok

)
βnk , (82)

where the coefficients must be determined from the initial
conditions (cf. [12]). Because the eigenvalues (81) and, if
a < 0, (78), are complex, (82) represents oscillatory be-
havior. Both (78) and (81) show that damping decreases
with increasing M , i.e. increasing time delay τ (64). Fi-
nally we note that due to the different eigenvalues λµ, the
most general solution to (57, 58) has the form (cf. (60))

ξ(t) =
N∑
µ=1

vµ
∑
k

ckµ
(
g0kµe−γ(t−tn)

+ h0kµ(t− tn)e−γ(t−tn)
)
βnkµ (83)

for tn ≤ t < tn+1.
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