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Abstract. We discuss the acoustical behavior of a 1D model of granular medium, which is a chain of
identical spherical beads. In this geometry, we are able to test quantitatively alternative models to the
Hertz theory of contact between elastic solids. We compare the predictions of the different models to
experimental results that concern linear sound wave propagation in the chain submitted to a static force,
and nonlinear solitary wave propagation in an unconstrained chain. We use elastic, elastic-plastic and brittle
materials, the beads roughness extends on one order of magnitude, and we also use oxidized metallic beads.
We demonstrate experimentally that at low static forces, for all types of beads, the linear acoustic waves
propagate in the system as predicted by Hertz’s theory. At larger forces, after onset of permanent plastic
deformation at the contacts, the brass beads exhibit non Hertzian behavior, and hysteresis. Except in the
case of brass beads, the nonlinear waves follow the predictions of Hertz theory.

PACS. 83.70.Fn Granular solids – 83.10.Pp Particle dynamics – 43.25.Cb Macrosonic propagation, finite
amplitude sound; shock waves

1 Introduction

Granular materials are very common and widely spread,
both in geophysical or industrial contexts. In this respect,
acoustical methods are very useful investigation tools, and
sometimes the only one available. They allow analysis of
otherwise inaccessible geophysical materials, nondestruc-
tive control in industrial situations, and measurements of
dynamical properties in the laboratory. The description of
sound waves propagation in granular materials is thus a
problem of fundamental interest.

Those materials are assemblies of grains, and the un-
derstanding of their dynamical behavior is a complicated
many body problem. Indeed, it depends on a huge number
of parameters. A first set characterizes the statistical dis-
tributions of shape, size and constitutive materials of the
grain assembly. The second set is linked to the fact that
wave propagation obviously takes place along the contacts
between the grains. Consequently, one must include the
parameters that describe the dynamical behavior of indi-
vidual contacts, and the geometry of the contact lattice.

Experimental works were initiated by Iida [1,2] on
sand, and the contacts between grains were ensured by
gravity. Other investigations were concerned with the
propagation of seismic waves in materials submitted to
very high pressures [3–5], a rather complicated situation
in which fracturation of grains happened. Recently, Liu
and Nagel studied sound propagation in sand, focusing on
geometrical effects due to the disorder of the piling [6,7].
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In all those experiments the individual properties of
the grains themselves were rather complicated. The sim-
plest granular assemblies are pilings of identical spherical
beads. In that case, every distribution of grain proper-
ties is a Dirac function, and the acoustic behavior of the
medium depends only on the contacts. The interaction law
between two adjacent elastic spheres is an exact solution
of linear elasticity, known as the Hertz’s law [8]. It pre-
dicts that the relation between the force F0 exerted on the
spheres and the distance of approach of their centers, δ0, is

nonlinear, F0 ∝ δ
3/2
0 . The nonlinearity comes from purely

geometric effects. As a consequence of the Hertz’s interac-
tion law, the sound velocity cs in the bead lattice should

depend on the static force as a power law, cs ∝ F
1/6
0 [9].

In one dimension, the nonlinear behavior of a bead chain
has been described by Nesterenko [10,11]. Assuming Hertz
contact between adjacent beads, he proved the possibility
of solitary waves propagation.

In 1D systems, the existence of those nonlinear excita-
tions have been experimentally demonstrated [12,13], in
quantitative agreement with the theoretical predictions.
The case of linear acoustic waves is more controversial.
The 1/6 exponent have been observed in 1D systems (a
chain of spherical beads) [14], but spherical bead pilings of
higher dimensionality display more complicated features.
The case of 3D pilings have been thoroughly reviewed by
Goddard [15], and it appears that the data rather corre-
spond to an exponent 1/4.
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Two strategies may be invoked to explain this discrep-
ancy. A microscopic approach will focus on individual con-
tacts between the grains, and search for non Hertzian be-
havior of the contacts, due to deviation of actual beads
from perfectly smooth and homogeneous elastic spheres.
A more macroscopic way to tackle the problem compares
the lattice of actual, active contacts, to the bead center
lattice.

Actual beads, used in real experiments, differ from the
ideal ones considered by Hertz in several respects. They
are certainly not perfectly smooth, neither spherical, they
may be inhomogeneous and exhibit plastic deformations.
The unavoidable roughness of real beads led Goddard
[15] to study the interaction between conical microcon-
tacts, that should modelize the asperities of the beads.
De Gennes [16,17] takes into account two other different
possible causes of non Hertzian behavior. In a first model
[16], he considers the effect of a thin oxide layer at the
surface of the beads. Metallic oxides are not particularly
soft, but the layers that developpe on metals are porous,
and may greatly modify the mechanical properties of con-
tacts. In another model [17], he looked for plastic deforma-
tion of microcontacts, that is contacts between the small
asperities of the rough adjacent surfaces. Because of the
smallness of the asperities, plasticity may intervene even
at very small applied forces. All those models predict a
power law with exponent 1/4 for the sound velocity as a
function of the static force applied on the piling.

The other approach, that depends on collective be-
havior of the grains, has been proposed by S. Roux et al.
[18–20]. The idea is the following. Since contacts between
spheres (or disks in 2D numerical experiments) are point
contacts, even a small scatter in diameter distribution im-
plies that some contacts are broken. The contacts that
still transmit normal stresses, or waves, are called active
contacts. The collective behavior of the piling may thus
be modified: even if the lattice of the bead centers is per-
fect, the lattice of the active contacts is disordered, and
the effective compressibility of the piling do not follow
the Hertz law, although the individual active contacts do.
Experimental observations of 2D regular pilings of plex-
iglass cylinders in photoelasticity support this idea [21,
22]. This analysis have been validated by numerical simu-
lation on small systems [18–20], and recently it has been
confirmed on much larger systems [23,24]. In the refer-
ence cited [15], Goddard developed a macroscopic model,
based on the variation in the number density of Hertzian
contacts, due to buckling of particle chains. Those model
also give 1/4 as the power law exponent. Accordingly, it is
impossible to distinguish the relevant physical mechanism
with experiments in 2D or 3D pilings.

In this paper, we report on quantitative experiments
on both linear and nonlinear waves in a 1D system, which
is a chain of identical spherical beads of several different
materials. The contact lattice, in 1D, is as regular as the
center lattice, and we are free from the collective effects
linked to geometry of contact lattice in higher dimensions.
Consequently, properly choosing the bead materials, we
are able to test the different microscopic models [15–17]

that assume a modified Hertz law for the contact between
grains. We demonstrate experimentally that those mod-
els are not relevant to the description of our experiments,
which indicates that departure from Hertz behavior may
come from collective effects rather than non Hertzian be-
havior of individual contacts, at least for small static force.

At higher forces, we observe non Hertzian behavior
in chains of brass beads. In logarithmic scales, when the
force is increased, the velocity is still a linear function of
the force, but the slope is 0.22 rather than 1/6. When
the static force is decreased, there is an hysteretic effect
since the velocity follows a third line, of slope 1/7. Brass
is a rather plastic alloy, and the force at the transition
corresponds to the onset of permanent plastic deforma-
tion of the contact area. This concerns the deformed part
of the beads in Hertz theory, not microcontacts between
asperities.

The paper is organized as follows. Section 2 is devoted
to a sketchy presentation of the relevant theoretical anal-
ysis, since details may be found elsewhere [10,11,13]. The
experimental apparatus is described in Section 3, and the
methods used for data analysis in Section 4. The experi-
mental results are exposed in Section 5, and discussed in
Section 6. Finally we conclude in Section 7.

2 Theoretical analysis

In this section, we give only the essential informations
concerning the theoretical modeling of our experimental
system. The details of the calculations may be found in
the original papers of Nesterenko [10,11], who first demon-
strate the existence of solitary waves in such systems, or
in [13].

The contact interaction of adjacent beads is described
by the relation between the static force F0 applied on the
beads and the distance of approach δ0 of their centers. We
consider either the Hertz Law, hereafter HL, for which

F0 =
2θ

3

√
a

2
δ

3/2
0 , θ ≡

E

1− ν2
, (1)

or the Modified Hertz Law, hereafter MHL, for which

F0 ∝ δ
2
0, (2)

where E is the Young’s modulus, ν the Poisson’s coeffi-
cient and a the radius of the beads, which are supposed to
be identical. The theoretical analysis leading to the MHL
are scaling theories, and give no analytic expression for
the proportionality constant in (2). In the following anal-
ysis, we will thus be concerned mainly by the search of
power laws, and the measurement of their exponents.

Those interaction laws are valid when the contacts are
submitted to a static constraint, but we will use them in
dynamic problems when the force between neighbouring
beads evolves with time. This quasistatic approximation is
justified by the experimental times scales, that are always
much smaller than the travel time of a bulk acoustic wave
along a bead diameter. The order of magnitude of this
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travel time is 2µs, whereas the period of acoustic waves is
100µs (see Sect. 3.2) and the duration of a solitary wave
30 µs (see Fig. 11).

The elastic or plastic deformation of the beads is con-
centrated in a very narrow region around the contact
point. The chain is thus well described as a chain of point
masses m = 4πρa3/3, where ρ is the bead density, linked
by nonlinear springs with a force-displacement relation
given either by (1), for the HL, or (2), for the MHL. Denot-
ing by un the displacement of the nth bead from its equi-
librium position, the dynamics of the chain is described
by a system of coupled differential equations

ün = Aα

{[
δ0 − (un − un−1)

]α
−

[
δ0 − (un+1 − un)

]α}
,

AH =
θ

2π
√

2a5/2ρ
, α =

3

2
(HL) (3)

AMH unspecified, α = 2 (MHL).

In the linear case, |un+1 − un| � δ0, we recover the
usual model of a chain of identical point masses linked
by identical linear springs, and the speed of sound in the
chain is{

cs = CHF
1/6
0 CH ≡

3
2
√
πρ

(
4θ
3a

)1/3
(HL)

cs = CMHF
1/4
0 , CMH unspecified (MHL)

(4)

so that, in both cases, there is no linear sound
propagation when no static force is applied on the
chain, that is when F0 = 0.

Another useful approximation of equation (3) is the
strongly nonlinear case |un+1−un| � δ0, in the continuous
limit when the typical size of the excitations, say L, is
much greater than a. We write un(t) = u(x, t), the total
displacement of the bead centers (including the one due to
the static force), where x is the abscissa along the chain,
and obtain from (3), up to order (a/L)2,

utt = −D2
α

{
(−ux)α

+
αa2

6

[
(α−1)(−ux)α−2u2

xx−2(−ux)α−1uxxx

]}
x

,

(5)

D2
H =

2θ

πρ
, α =

3

2
(HL)

DMH unspecified, α = 2 (MHL).

We look for progressive waves u(ξ ≡ x − V t), where the
wave velocity V is to be determined, and set ψ = −uξ.
The equation (5) is easily integrated to give

V 2

D2
α

(ψ − ψ∞) =

ψα − ψα∞ +
αa2

6

[
(α− 1)ψα−2ψ2

ξ + 2ψα−1ψξξ

]
, (6)

where ψ∞ is the displacement gradient at infinity. We
search for a localized excitation, so that ψξ → 0 when

ξ → ±∞. Making the change of variables

y =

(
V

Dα

)α+1
1−α

ψ
α+1

2 , η =
ξ

a

√
3(α+ 1)

2α
, (7)

we get [11]

yηη ≡ −
dW (y)

dy

= −
d

dy

[
1

2
y2−

α+1

4
y

4
α+1−

α+1

2
y

2
α+1

(
y

2α
α+1
∞ −y

2
α+1
∞

)]
.

(8)

This equation, in an obvious mechanical analogy, describes
the motion of a particle of unit mass at “position” y, in
the “potential” W (y), during the “time” η.

The function W (y) always has a maximum at y = y∞,
and a minimum at

yHL+ =

{
1

2

[
1− y2/5

∞ +

√(
1− y2/5

∞

)(
1 + 3y

2/5
∞

)]}5/2

,

(9)

defined for 0 ≤ y∞ ≤ 1, with

yHL+ ≥ y∞ if 0 ≤ y∞ ≤

(
2

3

)5/2

, (10)

in the HL case, and at

yMHL
+ =

(
1− y2/3

∞

)3/2

, (11)

defined for 0 ≤ y∞ ≤ 1, with

yMHL
+ ≥ y∞ if 0 ≤ y∞ ≤

(
1

2

)3/2

, (12)

in the MHL case. In the mechanical analogy, if the particle
is initially at y∞, it goes away from its unstable equilib-
rium position up to position ym, defined by

W (ym)−W (y∞) = 0, (13)

in an infinite time because y∞ is the location of a maxi-
mum of the potential, and then returns to position y∞ in
an infinite time again. Coming back to our wave problem,
this describes the propagation of a solitary wave of am-
plitude y∞ at η → ±∞, and of maximum amplitude ym
at η = 0 (say). Those solitary waves have been predicted
by Nesterenko [10,11], and observed experimentally in the
Hertz case for which α = 3/2 [12,13].

With no static force applied on the chain, there is no
displacement gradient at infinity, so that y∞ = 0. This
simplification allows an explicit integration of (8), and
leads to

ψ(x, t) =


(

5

4

V 2

D2
H

)2

cos4 x− V t

a
√

10
(HL)

3

2

V 2

D2
MH

cos2 x− V t

2a
(MHL).

(14)
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Table 1. Tolerance specifications of the beads

Bead material Diameter Sphericity

(µm) (µm)

Stainless Steel ± 4 ± 2

Brass ± 20 ± 10

Glass ± 20 ± 20

Nylon ± 50 ± 25

In the limiting case of no static force applied on the chain,
we do not recover solitary waves, but rather nonlinear pe-
riodical waves [11]. This limit is mathematically singu-
lar, because solitary waves do exist for any nonzero static
force, however small. Most importantly, as shown in [13],
the limiting shape of the solitary wave when the static
force tends to zero is one arch of the periodical wave (14).
This is confirmed by direct numerical simulations of (3),
in the Hertz case, where solitary wave propagation have
been observed by Nesterenko [10] in a chain without static
force. Solitary waves in a chain of steel beads under no
static force have also been observed experimentally in [13],
and a very good agreement is found with the theoretical
predictions, both for the shape and the velocity of the
wave. This configuration is also particularly important to
discriminate between the HL and the MHL, as shown by
(14) for the wave profile, and by (18, 20) for the wave
velocity. This point is emphasized in Section 4.

3 Experimental setup

We study experimentally the acoustical behavior of a 1D
chain of identical spherical beads. In order to discard any
geometrical effect, great care is taken in the realization
of the device that ensures alignment of the beads in the
chain. This system allows an unambiguous test of the dif-
ferent microscopic theories leading to the MHL. To this
end, we use beads of different kinds, with mechanical be-
haviors that may be of concern to the various mechanisms
that are at the basis of the three different versions of MHL.
Their characteristics are detailed in Section 3.1 below. We
use similar, but not identical setups for the study of linear
and nonlinear waves. They are described in Sections 3.2
and 3.3.

3.1 Bead characteristics

Our aim in this paper is to test several different alternative
theories to the Hertz theory of solid bodies in contact.
They all predict that the sound velocity in a chain of beads

in contact under a static force F0 scales as F
1/4
0 , rather

than F
1/6
0 as predicted by Hertz, but the relevant physical

mechanisms are rather different.
In his first model [16], De Gennes considers that for

metallic beads, a thin oxidized layer is responsible for a

Table 2. Material properties of the beads. Data for steel and
brass are taken from reference [31], data for Nylon from refer-
ences [29,32], data for glass from [32].

Signification Young Poisson’s Density

modulus coefficient

Symbol E σ ρ

Unit N/m2 – kg/m3

Stainless steel 2.26× 1011 0.3 7650

Brass 1.04× 1011 0.37 8600

Glass 6.2× 1010 0.24 2500

Nylon 3.55 × 109 0.4 1140

discrepancy with the HL. In order to test this prediction,
we use brass beads (60% Cu, 40% Zn), that are furnished
with a clean and polished surface (see specifications in
Tab. 1). We oxidate some beads by putting them dur-
ing six hours in a solution of Nitric acid 0.1 M; they will
be called hereafter oxidized brass beads. Oxidation of the
other brass beads is completely negligible in comparison,
during the completion time of the experiments. We also
use stainless steel, glass and nylon beads for which we are
sure that no oxidation occurs. The prediction of the model
in reference [16] is that the chain of oxidized brass beads
should behave differently than the others.

The second De Gennes model [17] attributes to local
plastic deformations at microcontacts the deviation from
the HL. We use beads in several plastic materials, stainless
steel, brass and nylon, in order of decreasing yield stress
(see Tabs. 2 and 4 for numerical values of relevant physical
constants), and beads of glass, a brittle material. A result
of our experiments is that plasticity has indeed an effect
on the dynamics of the chain, both for linear and nonlin-
ear waves, although not really in the sense of De Gennes
predictions. This point is discussed at length in Section 6.

In his model, Goddard [15] uses classical linear elas-
ticity theory, but for conical contacts. Physically, devia-
tions from perfectly smooth and spherical surface may be
responsible for a discrepancy between HL and actual be-
havior of solid bodies in contact. Obviously, all beads,
whatever their material, do have non ideal spherical
shapes, and are candidates for this model. However, the
deviation from perfect sphericity depends strongly on the
beads materials. As shown in Table 1, the tolerance for as-
phericity ranges from ± 2µm for steel beads up to± 25µm
for nylon beads. In some experiments, fracturation of the
glass beads occurs, which increases the probability of con-
ical contacts apparition.

Let us summarize the respective properties of the var-
ious types of beads used in our experiment:
• Stainless steel beads are the most spherical and less plas-
tic ones, and its no surprise if their behavior is in excellent
agreement with HL. This confirms, and extends, previous
results of reference [13].
• Brass beads are less spherical, much more plastic,
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Fig. 1. Sketch of the experimental setup. The sound emitter is on the right hand side; it consists in two coaxial and cross
polarized piezoceramics, sandwiched between two conical brass pieces. At the end of the chain, on the left hand side of the
sketch, a dynamic force sensor measures the acoustic signal, and a static force sensor measures the force applied on the chain.
Two mechanical devices, not represented, ensure longitudinal displacement of both the emitter and the sensors.

and may easily be oxidized, so that they are relevant for
all of the three mechanisms.
• Glass beads are less smooth than the others, but are
constituted from brittle material, so that only Goddard’s
mechanism may intervene to correct HL.
• Nylon beads are the most plastic, and less spherical ones.

3.2 Linear waves

Our experimental setup is quite similar to the one de-
scribed in reference [13] and is sketched in Figure 1. The
chain consists in 51 identical beads, 8 mm in diameter.
The material characteristics of the beads are given in Ta-
ble 2, while their tolerances are given in Table 1. The chain
is surrounded by a framework of polytetrafluoroethylene
(PTFE). It consists of two parts, each one 30 mm high,
40 mm wide and 400 mm long, with a straight channel of
squared cross section, 8.02 mm wide, milled in the lower
part, that contains the beads. The sound velocity in bulk
PTFE is about 400 m/s, which is less than the sound ve-
locity in the chain. Thus confusion between the signal that
propagates in the chain and in the framework is avoided.

The static force applied to the chain is controlled by
a static force sensor (FGP InstrumentationTM, of sensi-
tivity 3 mV/N). The longitudinal acoustic signal is de-
tected with a dynamic force sensor (Dytrantm, sensitivity
10 mV/LbF), held at the end of the chain. The alignment
of the sensors ensures that they have the same axis as the
chain. Sound emission is ensured by a set of two coax-
ial annular plates of piezoelectric material, longitudinally
polarized, with cross polarizations [25]. To increase the
signal amplitude, the ceramics are held between two con-
ical pieces of brass [26]. The length of the brass pieces
is adjusted in order to set the resonant frequency of the
emitter to 10 kHz. This frequency is low enough to stay
on the linear part, ω = csk, of the dispersion curve for
the chain [14]. We thus measure with this apparatus the
acoustic velocity cs, for different applied static forces.

The conical shape of the brass concentrators ensures a
signal of greatest amplitude on the side with the smallest
cross section; this side is kept in contact with the chain,
whereas reflection on the other side is reduced. This shape
is not the most efficient one, but is by far the easiest to
built.

We produce acoustic wave trains, made of 3 (some-
times 5, with no significant difference) oscillations of fre-
quency 10 kHz. The period of wave train emission is 0.1 s,
much greater than the time taken by the wave to travel
along the chain (1 ms in the worst cases). Each wave train
is thus completely damped when the next one is emitted.
The time of flight is measured with a digital scope, taking
into account emission and reception delays with the help
of a first measurement, in which the dynamic force sensor
is directly held onto the emitter.

3.3 Nonlinear waves

The setup used to produce and analyze nonlinear solitary
waves is described at length in reference [13], so we will
be very brief here. The experimental realization of the
beads chain is extremely similar to the preceding one. The
only modification is that the dynamometer at the end of
the chain is replaced by a static force sensor, ensuring a
somewhat greater precision.

The high amplitude compressional waves are produced
with an impact generator. This device consists in a tung-
sten carbide bead, which moves freely between the first
bead of the chain and a piston that oscillates periodically.
The impact with the chain is very brief (typically 50µs),
allowing a large momentum transfer.

The impact creates a longitudinal solitary wave that
propagates along the chain. A dynamical force sensor is
mounted on the static one, at the end of the chain. It mea-
sures the temporal evolution of the wave’s amplitude; with
the help of a digitizing oscilloscope, we can thus record the
complete wave profile on a computer.
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Three other dynamical force sensors are held along the
chain, in contact with beads 6, 26 and 46 respectively, and
measure the force exerted by the bead normally to the
chain axis. This transverse force is related in a complex,
nonlinear, way to the force exerted along the chain axis
[27], so that those sensors give no information about the
wave profile. However, they allow velocity measurements,
because the time of flight between two sensors is known.

We explain in Section 4 why we mainly look for power
laws, and thus make measurements with no static force
applied on the chain. In that case, we proceed in the fol-
lowing way: we first apply a force to the chain in order
to keep the beads into contact, and only then do we re-
lax it to zero. The impact of the moving tungsten carbide
bead creates a solitary wave, that is felt by the first dy-
namical sensor, which triggers the digitizing oscilloscope.
This apparatus allows for pre-triggering, so that we reg-
ister the arrival of the wave on the first sensor. We thus
get all informations about the shape and velocity of the
wave. After its arrival at the end of the chain, the beads
are separated from each other, and we must again keep
them into contact.

4 Data analysis

In this section, we emphasize which experimental tests
are most suitable to discriminate between the HL and the
MHL, taking into account that the proposed modifica-
tions of the Hertz law actually give a power law exponent
for the velocity as a function of the force, but not the
prefactor [15–17].

In the case of small dynamical excitations, we measure
the velocity cs of long wavelength (compared to the beads
radius) acoustic waves, for different values of the static
force F0. The sound emitter described in Section 3.2 is
specially designed to send an acoustic signal of low fre-
quency, typically 10 kHz; the cut-off frequency of the chain
depends as a power law on the static force too, with the
same exponent as the velocity [14], but is at least 30 kHz,
ensuring that we actually are in the long waves regime. As

shown by (4), cs ∝ F
1/6
0 for the HL and cs ∝ F

1/4
0 for the

MHL. This allows a clear experimental test, the results of
which are displayed below in Section 5.1.

In the case of high amplitude excitations, we focus on
the behavior of the chain without any static force. This
case is of particular importance for two reasons. First,
acoustic wave propagation is impossible in this configu-
ration, and the nonlinear solitary waves are the only ex-
citations that propagate along the chain. This is typical
of nonlinear partial differential equations like (5), what-
ever the value of α, and in contrast with usual models with
solitary waves solutions, such as Korteweg-de Vries or Cu-
bic Schrödinger equations [28], that support acoustic wave
propagation in the small amplitude limit. This distinctive
feature of nonlinear wave propagation in a chain of beads
is typical of the contact law, and constitutes a severe test.
The second reason is that we can exhibit power laws for
the velocity and shape of the wave, as we will see below.

As shown in Section 3, we have access in our exper-
iments to the velocity of the wave, by performing time
of flight measurements, and to the time evolution of the
force felt by the dynamic force sensor held at the end of
the chain. The permanent constraint applied on the chain
is measured with a static force sensor. The quantity ψ,
which appears in (6) is the gradient of the total displace-
ment of the bead center. It is the sum of the constant value
at equilibrium, ψ∞ = δ0/(2a), which depends on the static
force only and is given by the static force sensor, and a

time varying part ψ̃(t) which is measured by the dynamic
force sensor.

Let us first consider the HL case. We have to take
into account that the contact between the sensor and the
last bead of the chain is between a plane and a sphere,
so that [8]

δplane−sphere = δsphere−sphere/2
1/3. (15)

Moreover, the contact surface is at a distance a from the
center of the bead. Let xw be the position of the sensor,
and δw the distance of approach between the sensor and
the last bead; we have

δw ≡ u(xw − a)− u(xw) = −a

(
∂u

∂x

)
xw

= aψ. (16)

From those equations, we deduce the relationship between
the signal given by the sensor, F (t), of maximum value

Fm, and ψ̃(t), which reads without static force

ψ̃(t) =

(
3

4a2θ

)2/3 [
2F (t)

]2/3
. (17)

This relation, together with the analytic solution (14) and
the definition of DH in (5), gives an explicit relation be-
tween the velocity VH of the wave and its maximum am-
plitude Fm,

VH = BHF
1/6
m , BH ≡

(
3

5πρ

)1/2(
16θ

3a

)1/3

, (HL).

(18)

In the MHL case, we can easily show that the solitary
wave velocity depends on its maximum amplitude as a
power law, and calculate the exponent. Let us drop in (5),
written for the α = 2, the most derivated terms; we obtain

utt ∼ D
2
MH(−ux)uxx (19)

which is a nonlinear wave equation with an amplitude-
dependent wave velocity VMH ∼ DMH(−ux)1/2. Using

the modified Hertz law (2), we may write (−ux) ∝ F
1/2
m ,

so that we get

VMH ∝ F
1/4
m (MHL). (20)

In a sense, this result is what dimensional analysis predicts
for the MHL, because the solitary wave velocity depends
on its amplitude in the same way as the acoustic wave
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Table 3. Summary of sound velocity measurements, displayed
in Figures 2–6. The indicated values for brass beads concern
low static force only. See Sections 5.1 and 6 for details. The
theoretical value of the power law exponent αl is 1/6 for the
HL and 1/4 for the MHL. See Section 2 for other definitions
and Section 5.1 for comments on those results.

CthH CexpH ε W α−1
l

Units m/sN1/6 m/sN1/6 N N –

Stainless steel 422 447± 10 2.5 1.0 6.0± 0.1

Glass 474 515± 14 0.6 0.3 6.0± 0.1

Brass 316 353± 10 0.1 1.1 6.0± 0.1

Oxydated brass 316 342± 10 0.1 1.1 6.0± 0.1

Nylon 281 278± 15 0.0 0.15 6.0± 0.1

velocity on the static force. The comparison between the
power law relations (18, 20) and the experimental results
is done in Section 5.2.

The theoretical expression for the shape of the solitary
wave, when no static force is applied on the chain, is one
arch of the following nonlinear periodical wave solution,
derived from (14),

F (t) = Fm cos6

(
VH(Fm)t
√

10a

)
(HL), (21)

F (t) = Fm cos4

(
VMH t

2a

)
(MHL). (22)

In the HL case, the wave velocity VH(Fm) is a known
function of the maximum amplitude Fm, from equation
(18), so that the value of the maximum amplitude gives
the complete shape of the wave, without any adjustable
parameter. The MHL gives no explicit expression for the
velocity VMH ; in order to test (22), we take for the veloc-
ity the experimental one. The result of the comparison is
displayed in Section 5.3.

5 Experimental results

5.1 Velocity of linear acoustic waves

We describe in this section the results of linear veloc-
ity measurements, in 1D chains of identical beads made
of different materials (stainless steel, glass, brass or oxi-
dized brass, nylon). The experimental setup is described in
Section 3.2. We monitor the static force applied on the
chain, and we measure the sound velocity for several
forces. The evolution of the velocity with the static force
is then compared to the prediction of HL and MHL (4).

We display log-log plots of the sound velocity cs as a
function of the static force F0. It appears that the best fit
of the data is

cs = CexpH (F0 + ε)αl . (23)
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Fig. 2. Logarithmic plot of the sound velocity cs (in m/s)
versus the static force applied to the chain F = F0+ε (in N) for
a chain of stainless-steel beads. The linearity is good, and the
slope of the solid line, fitting the thirty points, corresponds to
the equation (23). The values of the exponent αl, of the residual
force ε and of the proportionality coefficient CH are to be found
in Table 3. The static force range is F0 ∈ [5, 974] N, and the
corresponding sound velocity range cs ∈ [562, 1383] m/s.

The experimental values of the three parameters of the
fit, together with the theoretical value CthH are given in
Table 3.

Except for steel beads, the residual force ε is less than
the precision of static force measurements, which is typ-
ically 1 N. We interpret this small force as an effect of
contact between beads and the PTFE framework (solid
friction, small local deformation of the framework ...). The
order of magnitude is comparable to the weight W of the
chain, as shown in Table 3, which supports this interpre-
tation. Given the uncertainty on the static force measure-
ments, the only case of importance is that of stainless-
steel beads, for which ε = 2.5 N. It represents a force per
bead of 5 × 10−2 N, to be compared to a bead weight of
2.5× 10−2 N. If we consider that those beads are the ones
with higher tolerances, it is no surprise that they all in-
teract with the framework, with a normal force that can
be somewhat greater than their weight. In contrast, for
beads of other materials, tolerances are poorer, and since
we discard too big beads, the mean static interaction with
the framework may be smaller.

The sound velocity data are displayed in Figures 2–
6. The experimental slopes, together with the coefficient
of proportionality in (23), are summarized in Table 3. In
all cases except brass at high static force, the numerical
value of the exponent αl is very near its HL value 1/6. The
experimental values of the proportionality constants CexpH

are in rather good agreement with HL predictions CthH , cal-
culated with the data of Table 2, although they seem to
be somewhat higher. The physical constants are tabulated
for bulk materials, whereas the beads are obtained after
complicated and uncontrolled mechanical operations, so
that their mechanical properties may be somewhat differ-
ent from those for bulk materials in large samples. Static
measurements of mechanical properties can be done only
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Fig. 3. Same as Figure 2, but for a chain of glass beads. The
static force range is F0 ∈ [3, 600] N, and the corresponding
sound velocity range cs ∈ [563, 1480] m/s. The linear fit is in
agreement with HL predictions
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Fig. 4. Same as Figure 2, but for a chain of nylon beads.
The static force range is F0 ∈ [2, 90] N, and the corresponding
sound velocity range cs ∈ [297, 595] m/s. The available static
force range is smaller than for the other materials; we have
thus indicated a dashed line of slope 1/4 which indicates that
this exponent is clearly incompatible with the data. The lin-
ear fit (solid line), on the contrary, is in agreement with HL
predictions. There is no measurable residual static force.

for nylon (see Sect. 6), and they give excellent agreement
with sound velocity measurements.

The results for oxidized brass, displayed in Figure 5,
are in contradiction with the predictions of reference [16].
There is no significant difference with the behavior of clean
brass beads, and an oxidized surface layer does not seem to
be responsible for discrepancies with HL. We will comment
the behavior of the brass beads at high static forces in
Section 6.

The glass and nylon beads follow closely the predic-
tions of HL, although they have the less spherical shapes
(see Tab. 1), which seems to contradict the model of
reference [15]. For the glass beads, we apply static force up
to 600 N. At this force breaking of the beads begins. Before
this fracturation, that extends on the scale of the bead
diameter, small fractures appear at the contacts. Thus
some conical contacts, in the sense of reference [15], prob-
ably appear at this stage. Nevertheless, the predictions of
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Fig. 5. Same as Figure 2, but for a chain of superficially ox-
idized brass beads. The static force range is F0 ∈ [2, 124] N,
and the corresponding sound velocity range cs ∈ [361, 757] m/s.
The linear fit is in agreement with HL predictions
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Fig. 6. Logarithmic plot of the sound velocity cs (in m/s)
versus the static force applied to the chain F = F0 + ε (in
N) for a chain of non oxidized brass beads. The static force
range is F0 ∈ [3, 690] N, and the corresponding sound velocity
range cs ∈ [386, 1166] m/s. The filled disks show the evolution
of the velocity when the static force is increased. The data
clearly display two linear regimes, corresponding to the HL at
low static forces, but with a slope αl = 0.22 = 1/4.5 at higher
static forces. The value of the force at the transition, F0 ≈
80 N, corresponds to the onset of plastic yield (see Tab. 5).
The empty disks show the evolution of the velocity when the
static force is decreased from its maximum value. It seems to
be linear, too, this time with a slope 1/7. Hysteretic behavior
is clearly observed.

HL are still valid despite this strongly inelastic behavior.
However, using spherical grains is not fully satisfactory to
test this model, which may be relevant for grains of more
prismatic shapes, like sand grains.

Figures 5 and 6 show that brass, either oxidized or
not, follows closely the Hertz prediction for static forces
up to 80 N. We will insist on the characteristic features
of brass beads in Section 6, where we show that their
behavior at small static force is in contradiction with the
model in which De Gennes assumes plastic deformation of
microcontacts [17].

The brass beads exhibit a very interesting effect at
large static force. Indeed, for forces up to 1200 N in our
experiments, the data show an exponent αl equal to 0.22.
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Table 4. Summary of solitary wave velocity measurements,
displayed in Figures 7–10. The theoretical value for the power
law exponent αnl is 1/6 for the HL and 1/4 for the MHL. See
Section 2 for other definitions and Section 5.2 for comments
on those results.

BthH BexpH α−1
nl

Units m/sN1/6 m/sN1/6 –

Stainless steel 346.2 350± 10 5.9± 0.1

Glass 388.4 400± 12 6.0± 0.1

Brass 256.5 200 ± 20 4.5 ± 0.1

Oxydated brass 256.5 200 ± 20 4.5 ± 0.1

Nylon 230.0 228 ± 7 5.9 ± 0.1

We have conducted experiments on steel beads up to the
same value of static force, and Figure 2 shows that for steel
beads the HL is still valid. Moreover, when the force is de-
creased, an hysteretic effect is observed in the brass beads
chain. We turn back on the details of this behavior in
Section 6, but it is interesting at this stage to compare
with the measurements of Duffy and Mindlin [9]. They
used steel beads, 3 mm in diameter, arranged in a regular
FCC packing. The tolerance is extremely high, ± 0.25µm
and ± 1.25µm, to be compared with the specifications
of our steel beads given in Table 1. Their experiment is
clearly in a 3D geometry, even if the length to width ratio
is fairly large, around 8. Indeed, they do observe inactive
contacts, that is adjacent grains without stress transmis-
sion between them, and inhomogeneities in normal forces.
The average normal force between adjacent contacts is
appreciately greater than in our experiments, because it
ranges in [267, 3563] N. They observe a power law with ex-
ponent 1/4 at small static force, which means in their ex-
periments F0 ≤ 1250 N, and the 1/6 exponent is recovered
at higher static force. This is clearly a 3D effect, coming
from the progressive activation of the contacts rather than
from a modification in their individual behavior. They do
not report on any hysteretic effect. This is in complete con-
trast with our observations for a 1D experiment in which
obviously all contacts are active ones.

5.2 Velocity of nonlinear solitary waves

In this section, we report on solitary wave velocity mea-
surements in 1D chains of identical beads in the same
materials as in the linear case, without any static force
applied on the chain. The experimental setup is described
in Section 3.3, and in reference [13]. We compare the re-
sults to the predictions of HL (18) and MHL (20).

The data are displayed in Figures 7–10, where we plot
the solitary wave velocity V as a function of its maxi-
mum amplitude Fm in logarithmic scales. The experimen-
tal slopes of the linear fits, together with the coefficient
of proportionality in (18), are summarized in Table 4. In
all cases except brass, the exponent αnl ≈ 1/6, and the
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Fig. 7. Logarithmic plot of the solitary wave velocity V (in
m/s) versus its amplitude Fm (in N) for a chain of stainless-
steel beads without any applied static force. The solid line is
a linear fit of the data. The values of the exponent αnl and of
the proportionality coefficient BH are to be found in Table 4.
The amplitude range is Fm ∈ [16, 737] N, and the correspond-
ing velocity range V ∈ [523, 1025] m/s. The data display an
excellent agreement with HL predictions
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Fig. 8. Same as Figure 7, for a chain of glass beads. The ampli-
tude range is Fm ∈ [44, 578] N, and the corresponding velocity
range V ∈ [746, 1110] m/s. The data display an excellent agree-
ment with HL predictions

proportionality constant BexpH clearly follows the HL pre-
dictions BthH .

The results for steel beads, shown in Figure 7, confirm
and extend our previous study [13]. The amplitude range
is Fm ∈ [16, 736] N, to be compared to the [16, 650] N range
of reference [13]. For glass beads, the amplitude range is
almost the same, Fm ∈ [44, 578] N, and the comparison
with HL very favorable, as shown in Figure 8. This is
important, because the physical properties that may be
relevant for the various versions of MHL are very different
in the two types of beads: steel beads are high tolerance
ones, made of elastic-plastic material, when glass beads
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Fig. 9. Same as Figure 7, for a chain of nylon beads. Due
to the very low value of the restitution coefficient during the
impact with the moving bead (see Sect. 3.3 for details about
the nonlinear wave emitter), the amplitude range is very small.
It is Fm ∈ [1.0, 33] N, and the corresponding velocity range V ∈
[235, 433] m/s. In this range, the data display good agreement
with HL predictions

are of poor surface quality, made of brittle material. At
the highest amplitudes, the first glass beads in the chain
exhibit localized fractures caused by the violence of initial
impact. It seems thus that the solitary wave properties are
very robust, and persist even when some contacts behave
quite far from linear elasticity. We insist on the relevance
of this result as a test of Goddard’s model, because most of
the solitary waves are observed after localized fracturation
of the first beads in the chain, which thus exhibits conical
asperities rather than flat surfaces at contacts.

The corresponding curve for nylon beads is displayed
in Figure 9. There is also good agreement with the HL
predictions, but in this case the accessible dynamic range
is very small: Fm ∈ [1, 33] N. Indeed, the restitution coef-
ficient for the impact with the moving bead is very small
(see details on nonlinear wave generation in Sect. 3.3) and
the amount of transfered energy rather small. We will
come back to the behavior of the nylon beads chain in
Section 6.

For brass beads there is a very clear discrepancy with
the HL. Indeed, as shown by Figure 10, there is actually
no power law between the velocity and the amplitude.
Velocity measurements indicate that brass beads do not
follow at all the HL for nonlinear wave propagation. This
point is discussed in Section 6.

5.3 Shape of nonlinear solitary waves

As a last test of the different theoretical models, we com-
pare the shape of experimental solitary waves with the
theoretical predictions (21, 22), for the same type of beads.
As we said before at the end of Section 4, the description
of the complete shape requires the knowledge of the wave
velocity for a given amplitude. Nesterenko’s theory, based
on HL, gives an explicit relation (18) and the shape is
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Fig. 10. Same as Figure 7, for a chain of brass beads. The
amplitude range is Fm ∈ [32, 107] N, and the corresponding
velocity range V ∈ [410, 569] m/s. The data are in complete
discrepancy either with HL or MHL, because they do not ex-
hibit any power law.

completely known once the maximum amplitude is given,
without free parameters. Since the three versions of MHL
give just the exponent of a power law, not the prefactor,
the velocity is not known as a function of the amplitude.
For steel, glass and nylon beads, we use the experimen-
tal values of the velocity as an input. For brass, there is
too much scattering in the data, and we rather use the
value predicted by the Hertz theory. With this method,
the shape measurements provide a new, independent test
of HL and MHL in the nonlinear regime.

In all cases, as shown most clearly by Figure 11, there
is an excellent agreement between the experimental points
and the profile predicted by the HL, shown as a solid line,
and a very clear discrepancy with the MHL, shown by the
dashed line. This was already known for steel beads [13],
and its no surprise for glass or nylon beads for which the
velocity measurements were in good agreement with HL.
The behavior of brass beads seems rather strange, in view
of the nonlinear waves velocity results shown in Figure
10. In the next section, we try to interpret this seemingly
contradictory result.

6 Discussion

In this section, we try to explain the rather complicated
behavior of brass beads. We think that plastic deforma-
tion of the contacts is responsible for it. Since the liter-
ature [29] predicts that nylon beads should be as plastic
as brass beads, we also discuss the linear and nonlinear
wave propagation, together with an experiment of static
compression in nylon beads chain.

Let us first comment the brass beads behavior. As
shown by Figure 6, when the applied static force is in-
creased, we observe two different regimes for acoustic
wave propagation. At small static force, roughly less than
70−80 N, the sound wave velocity follow the HL. At higher
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static forces, the power law exponent of sound velocity is
rather 0.22 than 1/6, as shown in Figure 6. If we now
decrease the static force applied on the same configura-
tion of the setup, the velocity decreases too, but with a
different exponent, very near 1/7. Finally, if we take the
beads off the setup, mix them and build a different chain
configuration, the HL behavior is recovered at small in-
creasing static force. Thus after high deformation of the
beads, their behavior is hysteretic. This hysteresis is a
strong evidence that plastic deformation of the beads is
involved.

The contact between beads (more generally, solids with
smooth surfaces) is discussed by Johnson [30]. When the
force applied on the beads is small, the behavior of the
material is elastic and the deformation is described by
Hertz’s law. The elastic deformation extends in a very
narrow region near the contact point. At higher forces, the
deformed region keeps to be narrow, but a small part of
it endures irreversible plastic deformation, while the other
part still behaves elastically. The plastically deformed re-
gion increases with the force. Finally, at very large forces,
the plastic deformation extends on a size scale comparable
to the beads radius. Let b be the radius of the circular con-
tact area between two adjacent identical beads of radius
a. The Hertz’s law predicts that

b =

(
3F0a

4θ

)1/3

. (24)

The mean pressure is thus p = F0/(πb
2), and the maxi-

mum pressure, at the center of the contact region, is shown
to be pm = 3p/2. It thus reads

pm =

(
6F0θ

2

π3a2

)1/3

. (25)

An empirical statement fixes the onset of yielding when
the maximum pressures reaches 1.6 × Y , where Y is the
Yield stress of the relevant material. This is called von
Mises criterium by Johnson ([30], Sect. 11.5); the limiting
force is thus

F0 < Fl ≡
π31.63

6
Y 3 a

2

θ2
· (26)

Taking for a the order of magnitude of 1µm, as for a mi-
crocontact, lead to a very small value of Fl. It is clear
that plastic behavior of microcontacts is not seen in our
experiments. The numerical values of Fl, for the different
plastic materials used in our experiments, and for identi-
cal beads of radius 4 mm, are given in Table 5. For steel,
Fl ≈ 1300 N, which is greater than either the static force
applied to the chain (see Sect. 5.1), or the nonlinear waves
amplitude (see Sect. 5.2), so that we stay during all experi-
ments in the elastic regime. For brass beads, the numerical
value of Fl coincides with the transition from the 1/6 to
the 0.22 exponent, shown by Figure 6. Moreover, once the
limiting force is exceeded, the chain behavior is hysteretic.
It is thus reasonable to think that plastic deformation is
responsible for this change in the behavior of brass beads.

Table 5. Limit force for onset of plastic behavior in the contact
of two beads of radius 4 mm [see Eq. (26)]. Data for steel and
brass are taken from reference [31], data for Nylon are taken
from technical documentation of the bead manufacturer.

Signification Yield stress Limit force

Symbol Y Fl

Unit N/m2 N

Stainless steel 6.12× 109 1260

Brass 1.44× 109 70

Nylon 108 19

In the nonlinear experiments, the impact between the
moving tungsten-carbide bead and the chain of brass
beads is certainly highly plastic (see Sect. 3.3 and [13]
for details on the experimental setup). This causes a large
damping of the energy transfered in the chain by the ini-
tial impact, during the first stage of wave propagation.
In that case, the wave amplitude at the end of the chain
is much smaller than its initial amplitude, and its actual
travel time differs from what it should have been if its am-
plitude stay constant and equal to its final value. On the
contrary, as shown by Figure 11, the final shape of non-
linear waves that have traveled along a brass bead chain
is accurately described by (21), which is the prediction of
the HL. We emphasize that the wave is supposed to have
the velocity given by HL. Of course, their amplitudes are
respectively 30 N and 90 N, which is below the onset of
plastic yielding. But it is clear from Figure 10 that the
measured velocity of waves with a final amplitude in this
range, 1.5 ≤ log10 Fm ≤ 1.95, do not follow the HL pre-
dictions. There is nevertheless no paradox between this
result and our previous interpretation of the discrepan-
cies between the nonlinear waves velocity measurements
and the HL. The picture of nonlinear wave propagation
in brass is as follow: in a first stage, the plastic deforma-
tion of contacts is very important, and the wave looses a
great amount of energy during its propagation. Then, the
contact dynamics is essentially elastic, following HL. The
waves observed at the end of the chain thus have a shape
which is accurately predicted by (21). The violent impact
with the tungsten carbide bead causes rotation of the first
brass beads in the chain1, and thus the contacts between
beads are ensured by different parts of the bead surface in
different experiments. Since plastic deformations occur in
a small part of the beads, the contacts have different his-
tory for each solitary wave that is sent in the chain. This
may lead to the large, and poorly reproducible, scatter in
solitary wave velocity shown in Figure 10.

In the litterature [29], the Yield stress for nylon may
vary in a rather large interval. All our experiments show

1 This rotation of the beads is observed in all experiments,
whatever the bead material, except perhaps the nylon beads
for which the restitution coefficient is very small. The effect
is seen on brass beads only because they exhibit permanent
plastic deformation of the contacts.
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Fig. 11. Shape of solitary wave, where the amplitude in N is shown as a function of time in µs. The graphs respectively
correspond to a chain of steel beads (a), (b), glass beads (c), (d), nylon beads (e), (f) and brass beads (g), (h). The dots are
experimental points, taken from the digital scope, the solid line displays the HL prediction (21) and the dotted line the MHL
prediction (22). For all materials, the agreement is much better with the shape predicted by HL.

that the nylon beads closely follow the HL. The maximum
amplitude of nonlinear waves is 33 N, which is slightly
greater than the value of Fl, 19 N; nevertheless, nonlinear
wave propagation in nylon is described by HL. To study
the propagation of acoustic waves, we exert on the chain
a static force up to 90 N. The maximum static force is
greater than the upper limit for Fl, but we do not see
any change in the slope of the linear fit in Figure 4, nei-
ther any hysteresis. It seems that the Nylon beads be-
have elastically in all our experiments. We have verified
this fact with a simple experiment, in which we measure

the deformation of the chain as a function of the static
compression. The displacement of the static force sensor
is monitored by an endless screw of thread 1 mm. The
nylon beads are so soft that this device, together with
the force sensor, may be considered as perfectly rigid.
Moreover, the displacement of the sensor is of several mil-
limeters and may be precisely measured. In Figure 12, we

display the static force F0 as a function of δ
3/2
0 . The lin-

ear fit is excellent, providing a direct confirmation of (1).
The experimental value of the slope is 1.23× 108 N/m3/2,
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Fig. 12. Plot of the static force F0, in N, exerted on a chain
of nylon beads as a function of the displacement between the
centers of adjacent beads, δ0 in m, to the power 3/2. There
are few experimental points, but the linearity is good and the
experimental value of the slope is very near the HL predictions.

to be compared to the theoretical value for the HL,
which is from the data of Table 2, (2θ/3)

√
a/2 = 1.26×

108 N/m3/2. In the experiment, we do not observe any
permanent plastic deformation, although we apply a max-
imum force of 60 N, greater than Fl for nylon beads. No
hysteresis is observed, neither in sound velocity measure-
ments nor in the static experiment. The onset of plastic
yielding for the nylon beads seems to extend outside the
available static force range in our experiments, which may
be caused by the mechanical treatment undergone during
their making.

7 Summary and conclusion

Let us summarize our results.
Linear velocity measurements show that the HL de-

scribes satisfactorily the behavior of all types of beads,
at small static forces. The fact that the behavior of brass
beads is not affected by oxidation is in contradiction with
the first De Gennes model, that attributes to metallic ox-
ide layers a correction to HL [16]. The Goddard model
[15] assumes conical contacts between grains. Although
the beads used in our experiments have tolerances that
range on one order of magnitude, no significant evolution
with the distance to perfect spherical shape is observed.
Those observations do not rule out the relevance of this
model to assemblies of prismatic grains. But glass beads
display a behavior that is fully consistent with HL, on
a static force range that extends toward breaking of the
beads. Localized fracturation at the contacts happens well
before, and inevitably causes contacts between conical as-
perities, which does not seem to imply any discrepancy
with HL. Finally, the fact that for small static forces the
behavior of all beads is described by HL is in disagreement
with the second De Gennes model [17], which attributes to
plastic deformations of microcontacts the difference with
pure Hertzian contact. As a simple estimate readily shows,

deviations from Hertzian behavior should happen at our
first measurements.

Nonlinear measurements confirm those observations,
except in the case of brass beads. No discrepancy with HL
is observed, even for rather high amplitude waves. Non-
linear waves should nevertheless be more sensitive to the
different mechanisms suggested by the different versions
of the MHL. Indeed, wave propagation in a chain of beads
in contact, but without any constraining force is a purely
nonlinear effect, strongly dependent from the contact law
between adjacent grains. Moreover, no adjustable parame-
ter is used in the analysis, assuming only HL. Observation
of nonlinear solitary waves constitutes thus a very severe
test for the HL.

A natural static force scale seems to be the onset of
plastic yielding, as shown by the data for brass beads. Be-
low this limit, they behave in close agreement with linear
elasticity. At higher static force, the sound velocity evolves
with the force as a power law of exponent 0.22 rather than
1/6. Accordingly, the propagation of nonlinear waves in
brass beads is strongly affected by plastic deformations at
the contacts.

Our observations rule out the microscopic models lead-
ing to a modified law of interaction at grain-grain contact,
although the Goddard’s model should be relevant for pris-
matic grains. At moderate forces, or for waves of moderate
amplitude, plastic materials such as brass display consid-
erable discrepancies with the Hertz law: the exponent in
the power laws is not 1/6, an hysteretic behavior is ob-
served in sound velocity measurements when the static
force is decreased, and the velocity of nonlinear waves as
a function of their amplitudes is not even described by
a power law. It seems that one should not consider plas-
tic deformation of a microscopic scale (in the sense of De
Genne’s microcontacts), but rather on a length scale com-
parable to the one that arise in the Hertz theory of contact.

We gratefully acknowledge technical help from D. Bouraya dur-
ing the making of the setup.
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