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Abstract. We consider two stochastic processes, the Gribov process and the general epidemic process, that
describe the spreading of an infectious disease. In contrast to the usually assumed case of short-range
infections that lead, at the critical point, to directed and isotropic percolation respectively, we consider
long-range infections with a probability distribution decaying in d dimensions with the distance as 1/rd+σ.
By means of Wilson’s momentum shell renormalization-group recursion relations, the critical exponents
characterizing the growing fractal clusters are calculated to first order in an ε-expansion. It is shown that
the long-range critical behavior changes continuously to its short-range counterpart for a decay exponent
of the infection σ = σc > 2.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions –
64.60.Ht Dynamic critical phenomena – 05.40.+j Fluctuation phenomena, random processes,
and Brownian motion

1 Introduction

1.1 Epidemic processes

The investigation of the formation and of the properties of
random structures has been an exciting topic in statisti-
cal physics for many years. In the case that the formation
of such structures obeys local rules, these processes can
often be expressed in the language of population growth.
It is well-known that two special growth processes called
(in the language of a disease) simple epidemic with recov-
ery (Gribov process [1,2], also known in elementary par-
ticle physics as Reggeon field theory [3–5], the stochas-
tic version of Schlögls first reaction [6,7]) and epidemic
with removal (general epidemic process (GEP) [8–10]) lead
to random structures with the properties of percolation
clusters: directed percolation [11–13] in the first case and
isotropic percolation (for a recent overview see [14]) in the
last one [15–17]. These stochastic processes describe the
essential features of a vast number of growth phenomena
of populations of infected individuals near their extinction
threshold and are relevant to a wide range of models in
physics, chemistry, biology, and sociology. The transition
between survival and extinction of such a growing popula-
tion is a nonequilibrium continuous phase transition phe-
nomenon and is characterized by universal scaling laws.
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The Gribov process with short-range infection belongs
to the universality class of local growth processes with
absorbing states [6,18] such as the contact process [19–21]
and certain cellular automata [22,23]. This universality
class is characterized by the following four principles:

1. infection of susceptible (“birth”) and spontaneous an-
nihilation (“recovery”) of infected individuals;

2. interaction (“saturation”) between the infected indi-
viduals;

3. diffusion (“spreading”) of the disease in a d-
dimensional space;

4. the state without infected individuals is absorbing.

To model these principles in a universal form, we use
from the beginning a mesoscopic picture in which all mi-
croscopic length- and time-scales are considered as very
short. Thus we take a continuum approach with the den-
sity n (x, t) of the infected individuals (the ills) at time t
as an order parameter. Note that the spontaneous annihi-
lation of the ills makes it possible to avoid complications
arising in the case of only diffusion controlled reactions
which need creation and destruction operators as order
parameters for a correct description.

The Langevin equation is constructed in accordance
with the four principles as

∂tn = λ∇2n+ T [n]n+ ζ, (1)

where ζ (x, t) denotes a Gaussian Markovian noise with
short range correlations which has to vanish if n (x, t) = 0
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to model the absorbing state and the reaction rate T [n]
models birth, recovery and saturation. In a low density
expansion we may set [6]

T [n] = −λ
(
τ +

g

2
n
)
, (2)

〈ζ (x, t) ζ (x′, t′)〉 = λg′n (x, t) δ (x− x′) δ (t− t′) . (3)

The coefficient g in equation (2) has to be positive in order
to ensure that the particle density in the stationary state
is finite for arbitrary values of τ . For g ≤ 0 it is necessary
to take into account higher orders in n.

In contrast to the Gribov process (GP), the general
epidemic process (GEP) introduces besides the suscepti-
bles, S, who can catch the disease, and the infectives or
ills, I, who have the disease and can transmit it, as a third
class the removed, R, namely those who have had the dis-
ease and are now immune or death. Thus the first principle
above is to be modified to

1.’ infection of susceptible and spontaneous annihilation
but without recovery of susceptible individuals.

Therefore the reaction rate now also depends on the
number of the removed individuals, introducing a memory
term into the process. Because this term is the leading one
in the long-time and large-distance limit we now have [16]

T [n] = −λ (τ + gm) , (4)

m (x, t) = λ

∫ t

−∞
dt′ n (x, t′) . (5)

In a microscopic realization of the Gribov process a sin-
gle species of (quasi)particles, the I’s, is introduced. The
I’s represent the infected individuals (sites of a lattice).
They perform simple random walks and undergo the fol-
lowing “chemical” reaction scheme built from reversible
branching and irreversible spontaneous annihilation:

Gribov Process

{
I ↔ 2I

I → ∅
. (6)

Above some value of the branching rate of the reaction
I → 2I, the stationary state has a finite density of I’s.
As the branching rate goes down to a threshold value,
the stationary state density of I’s goes continuously to
zero, which is an absorbing state below the threshold. This
threshold value corresponds to the critical point τ = τc in
equation (2). τc = 0 as long as one neglects fluctuation
contributions.

A microscopic model which belongs to the universal-
ity class of the general epidemic process involves the three
species S, I, and R specified above. Only the infected in-
dividuals I are mobile. A susceptible S may be contam-
inated, but the infected I’s may become spontaneously
immune:

General Epidemic Process

{
S + I → 2I

I → R
. (7)

The history of this model (Eqs. (4, 5, 7)) goes back to 1927
when it was first introduced in the mathematical biology
literature [10]. Here of course the stationary state is I-free.
In this model the key parameter is the initial density of
S’s, denoted by ρ: depending on the value ρ with respect
to a threshold value ρc, the infected individuals may either
start to proliferate as a solitary wave before dying out in a
finite system, which occurs for ρ > ρc (τ < τc in Eq. (4)),
or their number decreases from the outset, which takes
place for ρ < ρc (τ > τc).

1.2 Lévy-flight infections

In the standard version of the epidemic models the sus-
ceptible individuals can become contaminated by already
infected neighboring individuals. At the same time infected
individuals are subject to spontaneous healing or immu-
nization processes.

In realistic situations the infection can be also long-
ranged. This may be e.g. by a disease in an orchard where
flying parasites contaminate the trees practically instan-
taneous in a widespread manner if the timescale of the
flights of the parasites is much shorter as the mesoscopic
timescale of the epidemic process itself. Thus following a
suggestion of Mollison [8], Grassberger [24] introduced a
variation of the epidemic processes with infection proba-
bility distributions P (r) which decays with the distance
r as a power-law like

P (r) ∝
1

rd+σ
, for r →∞. (8)

We will in general denote such long-range distributions as
Lévy-flights although a true Lévy-flight is defined by its
Fourier transform as P̃ (q) ∝ exp (−b |q|σ) [25], and then
only Lévy-exponents with 0 < σ ≤ 2 give rise to posi-
tive distributions [26]. The infection rate in the Langevin
equation (1) is now given by

∂n (x, t)

∂t

∣∣∣∣
inf

=

∫
ddx′ P (|x− x′|)n (x′, t) . (9)

After Fourier transformation of this equation and after a
small momentum expansion that is relevant in our meso-
scopic consideration we get

∂ñ (q, t)

∂t

∣∣∣∣
inf

=
(
p0 − p2q

2 + pσq
σ + o

(
q2, qσ

))
ñ (q, t)

(10)

where the analytical terms stem from the short-range part
of P (r) and the nonanalytical ones arise from the power-
law decay (8). The constant p0 is included in the reaction
rate as a negative (“birth”) contribution to τ whereas p2

yields a diffusional term. Naively the parameter pσ is rel-
evant or irrelevant in the long wave-length limit if σ is
smaller or bigger than 2 respectively, and this fact has mis-
lead some authors to neglect this term from the outset if
σ > 2. But this naive (“Gaussian”) argumentation may be



H.K. Janssen et al.: Lévy-flight spreading of epidemic processes leading to percolating clusters 139

wrong in an interacting theory because the critical behav-
ior is in general determined by an nontrivial fixed point of
a renormalization group transformation. To decide which
one of the terms in equation (10) are relevant, one has to
compare with the scaling behavior of the Fourier trans-
formed susceptibility χ (q, ω) ∝ q2−η̄. If σ < 2 − η̄, the
parameter pσ is a relevant perturbation and must be in-
cluded in a renormalization group procedure. Prominent
examples of systems with η̄ < 0 are φ3-models as e.g. the
Yang-Lee-singularity model [27]. In all these cases pσ is
relevant also for σ > 2 and cannot be neglected.

In the following we define σ = 2 (1− α) and the dif-
fusion term in equation (1) is now completed by a term
proportional to ∝ q2(1−α)n (q, t). In real space we write
the completed Langevin equation as

∂tn = λ
[
1 +

v

2α

((
−∇2

)−α
− 1
)]
∇2n+ T [n]n+ ζ,

(11)

and the gradient-terms should be only considered (in
Fourier space) up to a cutoff Λ that we have set to 1.
Then stability of these terms against inhomogeneous per-
turbations is guaranteed if v ≥ 0. The analysis presented
in the present paper is based on equation (11) with the
reaction rates (2) and (4).

Grassberger [24] reported new critical exponents for
α > 0 from a 1-loop calculation that contain some numer-
ical errors. These exponents are discontinuous in the limit
α → +0 if one assumes irrelevance of the new terms for
α < 0. In this paper we will reconsider the problem and
show that the full range of values α > η̄SR/2 leads to new
critical behavior. Here η̄SR < 0 is the anomalous suscep-
tibility exponent of the epidemic models with short-range
infection. We will show that the critical exponents change
continuously at the boundary 2α = η̄SR from long-range
to short-range behavior.

We remark that the interest in reaction-diffusion prob-
lems involving particles that perform Lévy flights is not
new. In the physics literature, they have most recently
arisen as follows. Particles performing simple random
walks are subject to the reactions A + B → ∅ and
A+A→ ∅ in the presence of a quenched velocity field [28].
The effect of the quenched velocity field is then to enhance
diffusion in such a way that the effective action of the ve-
locity field is reproduced if Lévy flights are substituted for
the simple random walk motion. In the above mentioned
reactions the time decay of the particle density is alge-
braic with an exponent related to that of the step length
distribution of the Lévy flights defined in equation (8).
These results have been confirmed by several renormal-
ization group calculations [29,30].

2 The Gribov process with Lévy-flights

2.1 Renormalization group analysis

In order to develop the renormalization group analysis
we recast the Langevin equation (11) as a dynamic

functional [6,31–33]

J [s̃, s] =

∫
ddxdt s̃

{
∂t + λ

g

2
(s− s̃)

+λ
[
τ −∇2 +

v

2α

((
−∇2

)1−α
+∇2

)]}
s (12)

where s̃ is Martin-Siggia-Rose response field [34]. We note
that he dynamic functional can also be derived using the
methods developed in [35–37] from a microscopic master
equation. By a suitable rescaling of the density n ∝ s,
the constant g′ in equation (3) is made equal to g. The
dynamic functional (12) is then symmetric in the absorb-
ing phase under the exchange s (x, t) ↔ −s̃ (x,−t). All
correlation and response functions can be calculated as
functional integrals with weight exp (−J ) in a perturba-
tion expansion involving the propagator (the unperturbed
response function)

G0 (q, t) = Θ (t) exp
{
−λ
[
τ + q2 +

v

2α

(
q−2α − 1

)
q2
]
t
}

(13)

as a function of momentum q and time t. This propagator
guarantees stability for all α as long as τ ≥ 0, v ≥ 0, and
q = |q| ≤ 1. For simplicity we have set the momentum
cut-off Λ = 1.

To study the critical behavior of this system near the
critical point we use Wilson’s renormalization procedure.
We introduce the usual coarse graining parameter b > 1
and split the fields s and s̃ into components which are non
zero on the momentum shell Ωb = {q|1/b ≤ |q| ≤ 1} and
components defined on the complement of Ωb, the latter
being denoted by s< and s̃<. We integrate out the short
scale degrees of freedom in the weight exp (−J ), that is,
those defined on Ωb, and rescale the fields according to

s (x, t) → s′
(
b−1x, b−2−ζt

)
= b(d+γ)/2s< (x, t) ,

s̃ (x, t) → s̃′
(
b−1x, b−2−ζt

)
= b(d+γ)/2s̃< (x, t) . (14)

Renormalized parameters τ ′, v′, and g′ are defined in such
a way that the coarse grained functional looks like the old
one. The one-loop calculation is standard and does not
present any technical difficulties. For infinitesimal renor-
malization transformation with b− 1� 1 we obtain

iω + λ

[
τ ′ + q2 +

v′

2α

(
q−2α − 1

)
q2

]
=

iωb−γ

[
1−

u

4 (1 + τ)
2 ln b

]
+λb2+ζ−γ

[
τ +

u

2 (1 + τ)
ln b

]

+ λq2bζ−γ

[
1 +

v

2α

(
b2αq−2α − 1

)
−

uK (v)

8 (1 + τ)
2 ln b

]
(15)

and

u′ = ub4−d+2ζ−3γ

[
1−

2u

(1 + τ)
2 ln b

]
. (16)
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Fig. 1. Stability regions of the Gribov process with long range
spreading in the (α, d = 4− ε) plane. G, LG, DP and LDP in-
dicate the respective stability regions of the short range Gaus-
sian, Lévy Gaussian, short range directed percolation and Lévy
directed percolation (Eq. (21)) fixed point.

Here ω is the frequency, u = Sdg
2/2 with Sd the surface

of the unit sphere in d dimensions divided by (2π)
d

, and
K (v) = 1 − cv, where c is an uninteresting positive con-
stant. Note that the calculation neglects terms of order
O
(
u2
)

but is exact (for the coarse graining method we
have used) with respect to the parameter v. By compari-
son of the terms ∝ ω and q2 in equation (15) we get the
Wilson-functions

γ = −
u

4 (1 + τ)
2 +O

(
u2
)
,

γ̄ = γ − ζ = v −
uK (v)

8 (1 + τ)2 +O
(
u2
)
. (17)

We use l = ln b as the flow parameter of the renormaliza-
tion transformation that yields then from the other terms
in equations (15, 16) the flow equations

dτ

dl
=

[
(2− γ̄) τ +

u

2 (1 + τ)
+O

(
u2
)]
, (18)

du

dl
=

[
4− d− γ − 2γ̄ −

2u

(1 + τ)
2 +O

(
u2
)]
, (19)

dv

dl
= (2α− γ̄) v. (20)

The last equation is exact since the operator s̃
(
−∇2

)1−α
s

in the dynamic functional (12) is not renormalized. The
reason is that the renormalization procedure can only gen-
erate contributions that are analytic in the momenta.

In order to study the fixed point structure we find it
useful to introduce ε̄ = 4 (1− α) − d = ε − 4α. Near the
fixed points we linearize the flow equation (18) for the
relevant variable τ about τc = τ∗ as dτ/dl ≈ ν−1 (τ − τ∗).
The flow equations (18–20) have, besides the trivial short-
range Gaussian fixed point (τ∗, u∗, v∗) = (0, 0, 0), stable
for α < 0 and d > 4, and the trivial Lévy-Gaussian fixed
point (τ∗, u∗, v∗) = (0, 0, 2α) with η̄LG = γ̄∗ = 2α, z =
2 + ζ∗ = 2 (1− α), stable for d > 4(1−α) and α > 0, two
non trivial fixed points. The first one is the already known

short-range directed percolation fixed point (τ∗, u∗, v∗) =
(−ε/3, 2ε/3, 0)+O

(
ε2
)
, with η̄DP = γ̄∗ = −ε/12+O

(
ε2
)
,

zDP = 2+ζ∗ = 2−ε/12+O
(
ε2
)
, ν−1
DP = 2−ε/4+O

(
ε2
)
,

stable for ε > 0, α < −ε/24 + O
(
ε2
)
. The second one is

the new Lévy-directed-percolation fixed point

u∗ =
4

7
ε̄+O

(
ε̄2
)
,

v∗ =
28α+ ε̄

14 + cε̄
+O

(
ε̄2
)
,

τ∗ = τc = −
ε̄

7 (1− α)
+O

(
ε̄2
)

(21)

which is stable for −ε/24 +O
(
ε2
)
< α < ε/4 (ε > 0). We

obtain for this fixed point the critical exponents

ηLDP = γ∗ = −
ε̄

7
+O

(
ε̄2
)
, (22)

η̄LDP = γ̄∗ = 2α, (23)

zLDP = 2 + ηLDP − η̄LDP = 2 (1− α)−
ε̄

7
+O

(
ε̄2
)
,

(24)

ν−1
LDP = 2 (1− α) −

2ε̄

7
+O

(
ε̄2
)
. (25)

Note that at all fixed points u∗ and v∗ are non-negative
as they should for stability of the theory.

We have depicted in Figure 1 the stability regions
for each of the above fixed points in the (α, d) plane. A
glance on the exact flow equation (20) of the parameter
v shows that the boundary between the domains of at-
traction of the directed percolation fixed point and the
Lévy-directed-percolation fixed point is given exactly by
η̄DP = η̄LDP = 2α. At this boundary all exponents change
continuously upon varying the parameter α from their val-
ues at the directed percolation fixed point to those of the
Lévy-directed-percolation fixed point and vice versa.

2.2 Scaling analysis

In the following we consider the scaling behavior of two
key quantities: the time dependent order parameter (the
density of infected individuals) ρ (t) = 〈s (x, t)〉ρ0 for t > 0
if the initial state at time t = 0 is prepared with a ho-
mogeneous initial density ρ0 , and the response function
χ(x, t) = 〈s (x, t) s̃ (0, 0)〉 that yields the density of in-
fected individuals after the epidemic is initialized by a
pointlike source at t = 0 and x = 0. Here we are inter-
ested in the Lévy-flight case only, thus we will disregard
the subscripts at all critical exponents. We set τ − τc → τ
in the following.

From the rescaling equation (14) we get at the Lévy
fixed point (which is approached for b � 1) the relation-
ship

ρ (t, τ, ρ0) = b−(d+η)/2ρ
(
b−zt, b1/ντ, b(d−η)/2ρ0

)
, (26)

where the critical exponents are displayed by equations
(22–25). The scaling of the initial density is easily found by
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noting that ρ0 arises in the Langevin equation (11) as an
additive source term q(x, t) = ρ0δ (t) that translates in the
dynamic functional J , equation (12), to a further additive
contribution

∫
ddxρ0s̃(x, 0) from which one directly reads

off the scaling behavior of ρ0 if one knows that s̃(x, 0)
scales as s̃(x, t) [38]. At criticality, for τ = 0, one obtains
from equation (26) that the order parameter first increases
in a universal initial time regime [33,39] as

ρ (t, ρ0) ∝ ρ0t
θ (27)

where the universal initial time exponent θ is given by

θ = −
η

z
=

ε̄

7σ
+O

(
ε̄2
)
, (28)

and we have set σ = 2 (1− α). Then, after some crossover
time, the order parameter decreases as

ρ (t) ∝ t−(d+η)/2z,

with
d+ η

2z
= 1−

3ε̄

7σ
+O

(
ε̄2
)
. (29)

In the non absorbing stationary state, i.e. for τ < 0 and
t→∞, the order parameter behaves as

ρstat (τ) ∝ |τ |β , (30)

where the order parameter exponent β is found as

β =
ν (d+ η)

2
= 1−

2ε̄

7σ
+O

(
ε̄2
)
. (31)

Finally, at the critical dimension d = 2σ = 4 (1− α), the
scaling behavior is mean-field like with logarithmic cor-
rections,

ρ (t) ∝ ρ0 ln1/7 t

in the initial time regime at criticality,

ρ (t) ∝
ln3/7 t

t
in the long time regime at criticality,

ρstat (τ) ∝ |τ | ln2/7

(
1

|τ |

)
in the stationary state, (32)

which we mention for completeness.
The scaling behavior of the response function is given

by

χ (x, t) = b−(d+η)χ
(
b−1x, b−zt, b1/ντ

)
. (33)

First we read off the correlation lengths for space and time
and the corresponding exponents as

ξ⊥ ∝ |τ |
−ν⊥

with ν⊥ = ν =
1

σ
+

2ε̄

7σ2
+O

(
ε̄2
)
, (34)

ξ‖ ∝ |τ |
−ν‖

with ν‖ = zν = 1 +
ε̄

7σ
+O

(
ε̄2
)
. (35)

At criticality, τ = 0, we have

χ (x, t) = t−(d+η)/zF
(
x/t1/z

)
(36)

with a universal scaling function F (x) . This relation
shows that the density of infected individuals as the re-
sult from a pointlike seed dies out with an exponent
(d + η)/z = 2β/νz. Comparing with the general decay
law (29), we find that the probability to find after a time
t an infected individual if there was a pointlike seed at
time t = 0 decays with an exponent β/νz. The Fourier
transformed susceptibility at the critical point scales as

χ (q, ω) = q−2+η̄F̃ (ω/qz) ∝ q−σ. (37)

As the last scaling exponent that can be deduced in the
usual way from the given critical exponents we present the
fractal dimension of the clusters of the infected individu-
als:

df = d−
β

ν
=
d− η

2
= σ −

3ε̄

7
+O

(
ε̄2
)
. (38)

We note that the values of the exponents ν‖ (34), ν⊥ (35),
β (31), and df (38) that we have found are different from
those given by Grassberger [24]. The values of all the ex-
ponents changes continuously at the stability boundary
σ = 2 (1− α) = 2 − η̄DP = 2 + ε/12 + O

(
ε2
)

to their
short-range directed percolation values.

2.3 Comparison with existing simulations

In a recent letter Albano [40] has presented a numerical
study of one-dimensional branching and annihilating ran-
dom walks (BARW) in which the individuals perform Lévy
flights. For Brownian particles in d < 2 dimensions the
BARW (which is defined by the equations A→ (m+ 1)A
and A+A→ ∅) is known to belong for m odd to the uni-
versality class of directed percolation [41,42]. For d > 2
the systems shows a phase transition at zero branching
rate which can be described by mean field exponents. If
the random walk is replaced by Lévy flights, noise becomes
irrelevant above dσ = σ.

Albano has investigated the behavior of the critical
exponents for m = 1 as a function of σ, for 0.25 ≤ σ ≤ 11.
His results are summarized in the following table.

σ z η z − σ − η

2 1.590 −0.482 0.072

1.5 1.585 −0.483 0.568

1 1.583 −0.489 1.073

0.75 1.581 −0.512 1.343

0.5 1.575 −0.553 1.628

0.25 1.569 −0.574 1.893

(39)

The critical dimension dσ is lower than 1 for σ ∈
{0.25, 0.5, 0.75}. (For σ = 0.25 even the critical dimension
of the Lévy-flight directed percolation dc = 4(1−α) = 2σ
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is lower than 1). Therefore the phase transition should oc-
cur at zero branching rate, and critical exponents should
be the mean field ones (βmf = 1, zmf = σ and ηmf = 0);
this is clearly not the case for the exponents given in Ta-
ble (39). The hyperscaling relation z = σ + η (Eqs. (23,
24)), which we have shown to hold in any dimension, is
violated as σ is decreased. These facts cast doubt on the
reliability of the simulations performed in [40]. A possible
explanation is to be found in the Lévy flight generation
procedure. Indeed the author uses a distribution equa-
tion (8) truncated at some distance cut-off, the effect of
which is to produce an effectively short range motion. This
interpretation is confirmed by the slow variation of the ex-
ponents as a function of σ, their values remaining close to
that of directed percolation with simple random walk dis-
placement.

3 The general epidemic process
with Lévy-flights

3.1 Renormalization group analysis

The renormalization group analysis of the GEP is per-
formed analogously to the corresponding analysis of the
Gribov process presented in Section 2. The Langevin equa-
tion for the GEP (11), where now the reaction rate is given
by equation (4), is recast in the dynamic functional [16]:

J [s̃, s] =

∫
ddxdt s̃

{
∂t + λgS − λ

g

2
s̃

+λ
[
τ −∇2 +

v

2α

((
−∇2

)1−α
+∇2

)]}
s.

(40)

The field S (x, t) = λ
∫ t
−∞ dt

′ s (x, t′), a rescaled form of

equation (5), introduces a memory term in the dynam-
ics. In analogy to the Gribov process we have rescaled
the fields so that g′ = g. The dynamic functional (40) is
then symmetric under the exchange S (x,−t)↔ −s̃ (x, t),
or s (x,−t) ↔ ∂ts̃ (x, t) [16]. From this symmetry follows
that we only need to consider one coupling coefficient g
for the two interaction terms in J . The perturbation ex-
pansion involves also the propagator displayed in equa-
tion (13), and v ≥ 0 is needed for stability. We inte-
grate out the short scale degrees of freedom in the weight
exp (−J ), and rescale now the fields according to

s (x, t)→ s′
(
b−1x, b−2−ζt

)
= b(d+2+γ)/2s< (x, t) ,

s̃ (x, t)→ s̃′
(
b−1x, b−2−ζt

)
= b(d−2+γ̃)/2s̃< (x, t) . (41)

Note that from the exchange symmetry follows exactly

ζ =
γ − γ̃

2
· (42)

The renormalized parameters τ ′, v′, and g′ are now defined
by the coarse graining equations calculated to one-loop

order with b− 1� 1

iω + λ

[
τ ′ + q2 +

v′

2α

(
q−2α − 1

)
q2

]
=

iωb−(γ+γ̃)/2

[
1−

3u

4 (1 + τ )3 ln b

]
+ λb2−γ̃

[
τ +

u

2 (1 + τ )2 ln b

]
+λq2b−γ̃

[
1 +

v

2α

(
b2αq−2α − 1

)
−

(d− 2)uK (v)

4d (1 + τ )2 ln b

]
(43)

and

u′ = ub6−d−3γ̃

[
1−

4u

(1 + τ)
3 ln b

]
, (44)

where u = Sdg
2, and K (v, τ = 0) = 1 − cv, and c is an

uninteresting positive constant. The Wilson functions and
the renormalization group equations follows now as

γ + γ̃ = −
3u

2 (1 + τ)3 +O
(
u2
)
, (45)

γ̃ = v −
(d− 2)uK (v)

4d (1 + τ)
2 +O

(
u2
)
, (46)

dτ

dl
=

[
(2− γ̃) τ +

u

2 (1 + τ)
2 +O

(
u2
)]
, (47)

du

dl
=

[
6− d− 3γ̃ −

4u

(1 + τ)3 +O
(
u2
)]
u, (48)

dv

dl
= (2α− γ̃) v. (49)

The last equation is exact. Equation (41) shows that the
fixed point values of the Wilson functions, γ∗ = η and
γ̃∗ = η̄, give the anomalous contributions to the scaling
dimensions of s and s̃, respectively.

In order to study the fixed point structure we find
it useful here to introduce ε̄ = 6 (1− α) − d = ε − 6α.
The flow equations (47–49) have, besides the trivial short-
range Gaussian fixed point (τ∗, u∗, v∗) = (0, 0, 0), stable
for α < 0 and d > 6, and the trivial Lévy-Gaussian
fixed point (τ∗, u∗, v∗) = (0, 0, 2α) with η̄LG = γ̃∗ = 2α,
ηLG = γ∗ = −2α, z = 2 + ζ∗ = 2 (1− α), stable for
d > 6 (1− α) and α > 0, two non trivial fixed points.
The first one is the already known short-range-GEP fixed
point (where the static exponents are known from undi-
rected percolation) (τ∗, u∗, v∗) = (−ε/7, 2ε/7, 0)+O

(
ε2
)
,

with η̄GEP = γ̃∗ = −ε/21 + O
(
ε2
)
, ηGEP = γ∗ =

−8ε/21 + O
(
ε2
)
, zGEP = 2 + ζ∗ = 2 − ε/6 + O

(
ε2
)
,

ν−1
GEP = 2 − 5ε/21 + O

(
ε2
)
, stable for ε > 0, α <

−ε/42 + O
(
ε2
)
. The second one is the new Lévy-GEP

fixed point

u∗ =
1

4
ε̄+O

(
ε̄2
)
,

v∗ =
96α (1− α) + (2− 3α) ε̄

48 (1− α) + c (2− 3α) ε̄
+O

(
ε̄2
)
,

τ∗ = τc = −
ε̄

16 (1− α)
+O

(
ε̄2
)

(50)
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Fig. 2. Stability regions of the general epidemic process with
long range spreading in the (α, d = 6− ε) plane. G, LG, GEP
and LGEP represent the stability regions of the short range
Gaussian, Lévy Gaussian, short range percolation and Lévy
percolation (Eq. (50)) fixed point, respectively.

which is stable for −ε/42 +O
(
ε2
)
< α < ε/6 (ε > 0). We

obtain for this fixed point the critical exponents

ηLGEP = γ∗ = −2α−
3ε̄

8
+O

(
ε̄2
)
, (51)

η̄LGEP = γ̃∗ = 2α, (52)

zLGEP = 2 + ζ∗ = 2 (1− α)−
3ε̄

16
+O

(
ε̄2
)
, (53)

ν−1
LGEP = 2 (1− α)−

ε̄

4
+O

(
ε̄2
)
. (54)

Note again that at all fixed points u∗ and v∗ are non-
negative as they should for stability of the theory. We
have depicted in Figure 2 the stability regions for each of
the above fixed points in the (α, d) plane. Now a glance
at the exact flow equation (49) of the parameter v shows
that the boundary between the domains of attraction of
the short-range-GEP fixed point and the Lévy-GEP fixed
point is given exactly by η̄GEP = η̄LGEP = 2α. At this
boundary all exponents are again continuous functions of
the parameter α.

3.2 Scaling analysis

At first we consider the scaling behavior of the time de-
pendent density of infected individuals ρ (t) = 〈s (x, t)〉ρ0

for t > 0 if the initial state at time t = 0 is prepared with
a homogeneous initial density ρ0. We are interested in the
Lévy-flight case only, thus we will disregard the subscripts
at all critical exponents. Again we set τ − τc → τ .

Here we find from the rescaling equation (41) at the
Lévy fixed point (which is approached for b � 1) the
relationship

ρ (t, τ, ρ0) = b−(d+2+η)/2ρ
(
b−zt, b1/ντ, b(d+2−η̄)/2ρ0

)
,

(55)

where the critical exponents are displayed by equa-
tions (51–54). The scaling of the initial density is also
found by adding a source term q(x, t) = ρ0δ (t) to the

Langevin equation (11) that translates in the dynamic
functional J , equation (40), to the additive contribution∫
ddxρ0s̃(x, 0) from which one reads off the scaling be-

havior of ρ0 since s̃(x, 0) scales as s̃(x, t). At criticality,
for τ = 0, it follows from equation (55) that the infection
density first increases in the universal initial time regime
as

ρ (t, ρ0) ∝ ρ0t
θ (56)

where the universal initial time exponent θ is given by

θ = −
η + η̄

2z
=
σ

z
− 1

=
3ε̄

16σ
+O

(
ε̄2
)
. (57)

We have set σ = 2 (1− α).
As an order parameter we consider the density of the

removed (immune) individuals (5) namely

ρ̄ (t, τ, ρ0) ∝ 〈S (x, t)〉ρ0 = λ

∫ t

−∞
dt′ 〈s (x, t)〉ρ0 . (58)

The scaling properties of this order parameter are deter-
mined from equation (55) by

ρ̄ (t, τ, ρ0) = b−(d−2+η̄)/2ρ̄
(
b−zt, b1/ντ, b(d+2−η̄)/2ρ0

)
.

(59)

The initial infection density ρ0 plays here the role of an
ordering field. In the infinite time limit at criticality, when
τ = 0, the order parameter ρ̄stat = ρ̄ (t→∞) goes to zero
with ρ0 as

ρ̄stat (τ = 0, ρ0) ∝ ρ
1/δ̄

0 ,

with δ̄ =
d+ 2− η̄

d− 2 + η̄
=
d+ σ

d− σ
· (60)

(Here and in the following critical exponents that describe
the clusters of immune individuals for t→∞ are indicated
by an overbar.) Below threshold, that is τ > 0, the order
parameter is linear in ρ0 with a coefficient that diverges
as τ → 0+:

ρ̄stat (τ > 0, ρ0) ∝ ρ0τ
−γ̄ ,

with γ̄ = (2− η̄) ν = σν

= 1 +
ε̄

4σ
+O

(
ε̄2
)
. (61)

Lastly for τ < 0, the order parameter is independent of ρ0

in the limit ρ0 → 0, and goes to zero with τ as

ρ̄stat (τ < 0) ∝ |τ |β̄ , (62)

where the order parameter exponent is given by

β̄ = ν
(d− 2 + η̄)

2
= ν

(d− σ)

2

= 1−
ε̃

4σ
+O

(
ε̄2
)
. (63)
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At the critical dimension d = 3σ, the scaling behavior of
ρ̄stat

ρ̄stat(τ = 0, ρ0) ∝ ρ 1/2
0

ρ̄stat(τ > 0, ρ0) ∝ ρ0
ln1/4 τ

τ

ρ̄stat(τ < 0) ∝ |τ | ln1/4

(
1

|τ |

)
(64)

is mean-field like with logarithmic corrections. At critical-
ity we find from (59) the scaling behavior

ρ̄ (t, ρ0) = ρ
(d−σ)/(d+σ)

0 F
(
tρ

2z/(d+σ)
0

)
(65)

with a universal scaling function

F (x) ∝

{
xσ/z for x� 1

1 (exponentially) for x→∞.
(66)

Note that the “static” exponents β̄, γ̄, δ̄, η̄ (and ν) cor-
respond to well-known undirected percolation exponents
but for long-range connectivity. They were already given
in [43,44].

To study the spread of the infection by computer
simulations one may investigate the response function
χ̄(x, t) = 〈S (x, t) s̃(0, 0)〉 which describes the density of
the immune percolating individuals at the time t caused
by an infection at t = 0, x = 0. Its scaling behavior is
given by

χ̄(x, t, τ) = b−(d−2+η̄)χ̄
(
b−1x, b−zt, b1/ντ

)
. (67)

We read off the correlation lengths for space and time and
the corresponding exponents as

ξ ∝ |τ |−ν

with ν =
1

σ
+

ε̄

4σ2
+O

(
ε̄2
)
, (68)

ξt ∝ |τ |
−νt

with νt = zν = 1 +
ε̄

16σ
+O

(
ε̄2
)
. (69)

At criticality, τ = 0, we have

χ̄ (x, t) = |x|−(d−2+η̄) Fχ
(
|x| /t1/z

)
(70)

with an universal scaling function F (x) . The Fourier
transformed susceptibility at the critical point scales as

χ (q, ω) = q−2+η̄−zF̃ (ω/qz) ∝ q−σ−z. (71)

As the last scaling exponent that can be deduced in the
usual way from the given critical exponents we present
the fractal dimension of the percolation clusters of the
removed individuals:

df = d−
β̄

ν
=
d+ σ

2
· (72)

We note that the value of the exponent νt (69) that we
have found is different from that given by Grassberger [24].
The values of all the exponents change continuously at the
stability boundary σ = 2 (1− α) = 2− η̄GEP = 2+ε/21+
O
(
ε2
)

to their short-range undirected percolation values
(for equilibrium systems with long range interactions the
continuous variation of critical exponents is well-known,
see e.g. [45] and Refs. therein).

We close this section with a brief discussion of a work
by Prakash et al. [46] who performed computer simula-
tions of percolation clusters with long range correlations.
In these simulations the individual sites of a lattice are
not occupied independently (as usual) but with correla-
tions that decay in Fourier space as q−λ. For λ = 0 one
thus recovers uncorrelated percolation whereas the case
λ < 0 leads to antiferro-type correlations. Simulations for
various λ in the range λ ∈ [0, 1.75] have shown that crit-
ical exponents change continuosly with λ. However, due
to the different way the clusters are generated in [46] the
exponents obtained there belong to a universality class
different from our model (GEP with long range spreading
of the infection).

4 Conclusions

Epidemic processes are growth models for phenomena
arising abundantly in nature. We have shown by impos-
ing a Lévy flight type of infection spreading that new
long-range determined universality classes come into play.
We were able to characterize the universality classes by
determining the critical exponents to first order in an
ε-expansion around their upper critical dimension. There
exist exact relationships between the exponents, and some
critical exponents are given exactly as functions of spatial
dimension and the exponent characterizing the long-range
tail of the Lévy flight infection. Besides, we have been able
to build a renormalization group flow that possess a fixed
point structure that allows to describe short-range and
long-range infection in the same and to pass continuously
from one behavior to another by varying the Lévy flight
exponent. Because the anomalous susceptibility exponent,
the analog of the Fisher exponent in critical equilibrium
phenomena, is negative here, the continuous crossover be-
tween long- and short-range behavior arises at a Lévy ex-
ponent greater than 2. We hope that this work triggers
more simulational work on this subject.

This work has been supported in part by the SFB 237 (“Unord-
nung und große Fluktuationen”) of the Deutsche Forschungs-
gemeinschaft.
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