
Eur. Phys. J. B 6, 111–115 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Broad histogram relation is exact
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Abstract. The Broad Histogram is a method designed to calculate the energy degeneracy g(E) from micro-
canonical averages of certain macroscopic quantities Nup and Ndn. These particular quantities are defined
within the method, and their averages must be measured at constant energy values, i.e. within the micro-
canonical ensemble. Monte-Carlo simulational methods are used in order to perform these measurements.
Here, the mathematical relation allowing one to determine g(E) from these averages is shown to be exact
for any statistical model, i.e. any energy spectrum, under completely general conditions. We also comment
about some troubles concerning the measurement of the quoted microcanonical averages, when one uses a
particular approach, namely the energy random walk dynamics. These troubles appear when movements
corresponding to different energy jumps are performed using the same probability, and also when the cor-
relations between successive averaging states are not adequately treated: they have nothing to do with the
method itself.

PACS. 75.40.Mg Numerical simulation studies

Consider a statistical system at thermal equilibrium under
constant temperature T (we set the Boltzmann constant
to unit). The canonical average reads

〈Q〉T =

∑
S QS exp(−ES/T )∑
S exp(−ES/T )

, (1)

where both sums run over all states S available for the
system, each one corresponding to an energy value ES
and another value QS for the particular quantity Q one is
interested in (magnetizatiom, for instance). A very use-
ful way to determine such an average is through com-
puter simulational methods, particularly the so-called
importance sampling introduced 45 years ago in a sem-
inal paper [1]. The general idea is to construct a Marko-
vian chain of states available for the system. Along this
chain, each new state is obtained by performing some ran-
dom modification (a movement) at the current state in
hands. Instead of all possible states, one uses only the fi-
nite sub-set obtained by this Markovian process, in order
to calculate an approximation for the true average (1).
The exponential terms appearing in (1), i.e. the Boltz-
mann averaging weights, are automatically taken into ac-
count during the construction of the Markovian chain:
increasing-energy random movements, i.e. S → S′ where
∆E = ES′ − ES > 0, are accepted only with probability
exp(−∆E/T ).

The value obtained from this recipe could be a very
bad approximation, if the user fails in taking into ac-
count some fundamental precautions. For instance, con-
sider an Ising model where N spins can point up or down,
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corresponding to Ω = 2N possible states. In real imple-
mentations one has, say, N ∼ 104, and the number M
of states along the Markovian chain is always much less
than Ω > 103,000. Thus, the tiny sub-set with M averag-
ing states may be a biased sample not representing the
huge set with Ω states. The simplest protocol one can
adopt to generate a new state from the current one is the
single-spin-flip protocol: one chooses randomly one spin,
and flips it or not, according to the energy rules described
above. By repeating this single-spin-flip process M times
(M ≈ N = 104), one gets successive states very similar to
each other (at most one different spin among N), which
would be statistically correlated. These correlations will
introduce systematic errors. Nobody follows this fool pro-
tocol. Indeed, one normally considers a new state along
the Markovian chain only after at least N spin-flips were
tried, i.e. only after a whole-lattice sweep was performed.
Another precaution to be taken into account is to discard a
certain number of initial states along the Markovian chain,
in order to avoid possible biases caused by any oddness of
the very first tossed state. This corresponds to wait for a
thermalization transient time.

In order to get the average 〈Q〉T as a function of T ,
one must repeat the computer run again and again, for
many different fixed values of T . This is a waste of com-
puter time, compared to another possible method where
the whole temperature spectrum could be sampled in just
one computer run. Indeed, still following the same recipes,
such a method was shown to be possible [2,3], at least in
principle. The idea is to perform an analytic reweighting
of equation (1), allowing one to obtain the average 〈Q〉T ′
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for a new temperature T ′, without performing a new com-
puter run. In order to see how this “magic” would be possi-
ble, we need first to introduce the microcanonical average

〈Q(E)〉 =

∑
S(E)QS

g(E)
, (2)

for the same quantity Q. Now, the sum runs over all states
S(E) belonging to the same energy level E. The energy
degeneracy g(E) counts their number. Instead of keeping
the system under a constant temperature T , i.e. in contact
with an equilibrated heat bath, now the condition is more
restrictive: the system is completely isolated from the en-
vironment, and its energy is kept constant. Each state
S(E) within this energy level enters equally weighted into
this microcanonical average. Nevertheless, the same kind
of fundamental precautions described above must be fol-
lowed by the user who tries to approximate this average by
random sampling some sub-set of the whole g(E) states.

The terms in both sums appearing in (1) can be ar-
ranged in groups corresponding to the same energy, and
the canonical average reads now

〈Q〉T =
∑
E

〈Q(E)〉PT (E), (3)

where

PT (E) =
g(E) exp(−E/T )∑
E′ g(E′) exp(−E′/T )

· (4)

The temperature T appears only in the Boltzmann
weights, the degeneracies g(E) being independent of T .
One can easily express 〈Q〉T ′ in terms of 〈Q〉T through

PT ′(E) =
PT (E) exp[E( 1

T
− 1

T ′
)]∑

E′ PT (E′) exp[E′( 1
T
− 1

T ′
)]
· (5)

Thus, one needs a single computer run at some fixed tem-
perature T , measuring the probability distribution PT (E).
This measurement can be performed by accumulating the
number of visits to each energy level E on a histogram.
During the same computer run, one can also accumulate
the successive values of QS in another E-histogram, allow-
ing the determination of 〈Q(E)〉 which also is, of course,
independent of T . Then, the average 〈Q〉T ′ can be ob-
tained by using first equation (5) and then replacing T by
T ′ in (3). This is the essence of the so-called reweighting
methods [2,3]. Unfortunately, the probability distribution
PT (E) is very sharply peaked around the average energy
〈E〉T , and its numerical evaluation is accurate only inside
a tiny region around this peak. Unless T ′ and T are very
near to each other, the overlap between PT (E) and PT ′(E)
is negligible, and equation (5) is useless. The new peak
position 〈E〉T ′ corresponds to the vanishing tail of the
actually measured distribution PT (E), where the statis-
tics is poor. Thus, one has no good accuracy at all near
the peak of the inferred distribution PT ′(E). The larger
the system size the worse becomes this problem, due to
the probability distribution sharpness.

That is why, in spite of the nice reasoning, reweighting
methods have difficulties in practice — see, for instance
[4]. Nevertheless, the obvious but fundamental observation
that both g(E) and 〈Q(E)〉 do not depend on the partic-
ular temperature T adopted in the computer simulation
remains an important information. Yet more fundamen-
tal is the observation that both g(E) and 〈Q(E)〉 do not
depend on any thermodynamic constraints, that they are
characteristics of the energy spectrum alone and not of
the particular interactions between the system and its en-
vironment. Thus, in principle, it is possible to devise some
computer simulational method allowing the direct deter-
mination of these quantities. Concerning the degeneracy
g(E), many such methods were tried — see, for instance
[5] — all of them relying on the histogram of visits to each
energy level.

The Broad Histogram Method [6] differs from all other
methods I know. It relies on the determination of g(E)
from the microcanonical averages, i.e. equation (2), of
two particular macroscopic quantities also introduced in
[6]. First, let’s consider some protocol of allowed changes
(movements) to be performed at the current state. For in-
stance, one can consider all possible single-spin-flips for
the case of an Ising system. Alternatively, one can think
about all two-spin-flips, to flip entire blocks containing up
to n spins, or any other protocol. Also for other mod-
els than Ising’s, one can previously determine to adopt
any protocol of allowed movements. The only important
point to be noted is the microreversibility of such a proto-
col, i.e. if some movement transforming state S into state
S′ is allowed by the particular protocol, then the back
transformation of S′ into S is also allowed, independent
of probabilities. Consider two energy levels E and E+∆E.
Starting from a given state S with energy E, the number

N
(∆E)
up,S counts all possible movements increasing its energy

by ∆E. One needs to consider all possible S′ which can be
achieved from the fixed current S, provided the movement
(S to S′) is allowed by the previously adopted protocol,
and the energy jump is ∆E. Now, considering all the g(E)
states belonging to level E, the total number of possible
movements increasing the energy from E to E +∆E is∑

S(E)

N
(∆E)
up,S = g(E)〈Nup(E)〉, (6)

where the definition (2) of microcanonical average was
used. Analogously, starting from some state S′ with en-

ergy E+∆E, N
(∆E)
dn,S′ is the number of possible movements

decreasing its energy to E. The total number of possible
movements from level E +∆E to level E is∑

S′(E+∆E)

N
(∆E)
dn,S′ = g(E +∆E)〈Ndn(E +∆E)〉. (7)

Due to the quoted microreversibility, these two numbers
are equal, and one has

g(E)〈Nup(E)〉 = g(E +∆E)〈Ndn(E +∆E)〉, (8)

which is the fundamental relation introduced in reference
[6]. It is now proven to be exact for any statistical model,
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i.e. any energy spectrum g(E). Note that in both averages
〈Nup(E)〉 and 〈Ndn(E)〉 only movements corresponding to
energy jumps ∆E and −∆E respectively must be taken
into account.

For any system, relation (8) can be used in order to de-
termine g(E) from the microcanonical averages 〈Nup(E)〉
and 〈Ndn(E)〉 measured as functions of the energy E.
These measurements (including also 〈Q(E)〉) can be per-
formed by any Monte-Carlo approach, the result’s accu-
racy depending exclusively on the quality of this particular
approach — not on equation (8) which is exact. Once these
two averages are known, one can determine all the spec-
trum g(E) from the ground state degeneracy g(E0) sup-
posed to be previously known. In practice, this previous
knowledge is not necessary (except for entropy estimates)
because g(E0) cancels out in equation (4). Thus, the Broad
Histogram Method consists in measuring the microcanon-
ical averages 〈Nup(E)〉, 〈Ndn(E)〉 and 〈Q(E)〉 by using
any Monte-Carlo approach, the results being stored in E-
histograms. After that, when the computer simulation is
already over, equation (8) allows one to determine g(E),
and then equations (4) and (3) can be used in order to
determine the canonical averages of interest, for any tem-
perature T .

Equation (8) can be put into alternative forms. Taking
∆E � E, one can approximate it by

d ln g(E)

dE
=

1

∆E
ln
〈Nup(E)〉

〈Ndn(E)〉
· (9)

Moreover, by using a dirty mathematical transformation,
one can write also

d ln g(E)

dE
= ln

〈
∑
∆E Nup(E)1/∆E〉

〈
∑
∆E Ndn(E)1/∆E〉

, (10)

which could be useful in order to average various values of
∆E simultaneously, saving computer time. Nevertheless,
the dirty trick of introducing the exponent 1/∆E inside
the average brackets could lead to systematic errors which
remain to be verified by the user for each case. For the
Ising model in two and three dimensions, for instance, it
works very well [7].

Hereafter, we will discuss a particular Monte-Carlo ap-
proach originally adopted [6,7] in order to calculate the
microcanonical averages used within the Broad Histogram
Method. Canonical simulations under a fixed temperature
T cover only a narrow energy window around the average
value 〈E〉T . In order to obtain the microcanonical aver-
ages appearing in (8), this is not a good strategy, because
one needs to sample a broad energy range. It does not help
much to increase the computer time improving the statis-
tics on the exponentially vanishing tails of the distribution
PT (E): its width does not depend on the computer time.
One possible solution is to replace such canonical dynam-
ics by a random walk along the energy axis. This idea
was implemented [6] by using a simple rejection rule: any
increasing-energy tossed movement is performed only with

probability N
(∆E)
dn,S /N

(∆E)
up,S , where N

(∆E)
dn,S and N

(∆E)
up,S are

measured at the current state S, both corresponding to the

same energy difference ∆E of the tossed movement. Fol-
lowing this rule, the range of visited energies will increase
proportionally to

√
t, where t is the computer time. Thus,

to obtain a broad energy histogram is a simple matter
of having enough computer time, within this RW dynam-
ics (for random walk). Actually, I discovered later that
RW dynamics was previously introduced in a nice paper
[8], considering the much more general problem of opti-
mization in conflicting-interaction systems. Nevertheless,
the dynamics introduced in [8] is distinct from that intro-
duced in [6] in a subtle but fundamental detail discussed
later.

The RW dynamics solves the problem of obtaining
broad histograms. However, there is no free lunch, and this
advantage has a price: the correlations appearing between
successive states along the Markovian chain are worse to
treat than they are within canonical, fixed temperature
dynamics, for which correlations can be eliminated simply
by waiting some few whole-lattice sweeps before comput-
ing a new averaging state. In this case, this simple precau-
tion is enough, because the energy never jumps very far
from the average value 〈E〉T , thus the successive states are
always thermalized (of course, after the initial discarded
transient steps). Within the RW dynamics, on the con-
trary, big energy jumps occur, and just after one of them
the current state is not yet thermalized: it carries biases
from the recently visited far-away energies, and must be
considered as an odd state concerning this new energy
level. The solution is not simply to wait for more spin
flips, because the energy would jump again and again. One
possible solution is to thermalize the current state before
computing its contribution to the averages. This can be
done by performing a few canonical sweeps under the tem-
perature T (E) corresponding to the current energy level.
A rough estimate for this value can be measured at the
current state itself, through

1

T (E)
=

1

∆E
ln
N

(∆E)
up,S

N
(∆E)
dn,S

, (11)

or, again using the already quoted dirty trick,

1

T (E)
= ln

∑
∆E(N

(∆E)
up,S )1/∆E∑

∆E(N
(∆E)
dn,S )1/∆E

· (12)

Some few such extra thermalization sweeps were adopted
in references [6,7], in between two RW sweeps. We ob-
served that one RW sweep followed by one canonical extra
sweep is enough to eliminate the correlations within our
numerical accuracy.

Introducing extra canonical simulational steps into a
method whose main purpose is to eliminate some prob-
lems appearing in canonical simulations, however, is not
fair. Nevertheless, our main purpose in references [6,7] was
to test whether our fundamental equation (8) is valid or
not, because we have not yet proven that it is exact at
this time. Now it is proven in general. On the other hand,
as already quoted, which particular simulational approach
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Table 1. To be compared with Table 1 of reference [11], where the wrong results (WRW) obtained from the wrong RW dynamics
are now corrected by using the correct RW dynamics (RW) introduced in [6]. The error bars are supposed to be similar to that
of WRW. Correct canonical simulations (CS) [11] are also included for comparison.

i −2 −1 1 2

CS 0.018853(03) 0.072752(04) 0.331070(11) 0.389694(09)

WRW 0.034282(26) 0.057936(19) 0.350240(43) 0.388130(55)

RW 0.018835 0.072766 0.331080 0.389678

would be adopted in order to calculate the microcanoni-
cal averages appearing in (8) is a matter of user’s choice. I
have obtained very accurate results [9] by adopting a mi-
crocanonical simulator [10] instead of the RW dynamics,
nothing to do with neither canonical simulations nor RW
dynamics.

Finally, I show that RW dynamics introduced in [8] is
not so bad as claimed in [11], provided the proper cor-
rections were made into its wrong (in thermodynamic
grounds) dynamic rule. The rule in [8] is: 1) compute
the numbers Nup,S and Ndn,S of possible movements one
could perform at the current state S, respectively increas-
ing or decreasing its energy; 2) choose one random move-
ment and perform it according to a probability pdn pro-
portional to Nup,S in case this movement decreases the
energy, or pup proportional to Ndn,S in case the energy
would increase; 3) non-varying-energy movements can be
performed at will. According to this rule [8], the probabil-
ity of performing some tossed movement does not depend
on the value of the energy jump ∆E. In order to measure
thermal averages, this rule is certainly bad, once differ-
ent energies are treated within the same probability. This
fundamental concept was ignored in [11], in spite of being
already noted many times [12–15] within microcanonical
simulations. In [11], of course, wrong averages were found.
However, the purpose of reference [8] is not to compute
thermal averages, but only to search for cost-minimum
states in complex landscapes. For this purpose, thermody-
namic concerns do not matter (although can help some-
times), and this dynamics works very well.

The purpose of reference [6] was to compute thermal

averages. Namely, the microcanonical averages of N
(∆E)
up,S

and N
(∆E)
dn,S . Note the difference between these quantities

and that used in [8] (last paragraph): now, as already men-
tioned after equation (8), both quantities correspond to
a single value of ∆E. Only movements corresponding to
the same energy jump ±∆E appear into the microcanon-
ical averages 〈Nup(E)〉 and 〈Ndn(E + ∆E)〉. In order to
calculate these averages, the rule in [6] is: 1) choose one
random movement, and measure its energy jump ±∆E;

2) compute the numbers N
(∆E)
up,S and N

(∆E)
dn,S of possible

movements one could perform at the current state S, re-
spectively increasing or decreasing its energy by the same
amount ∆E of the tossed movement; 3) perform it ac-

cording to a probability pdn proportional to N
(∆E)
up,S in case

this movement decreases the energy, or pup proportional to
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Fig. 1. Average energy (dots) and specific heat (crosses) for
the 32 × 32 square lattice Ising ferromagnet. The continuous
lines show the exactly known curves [16], the specific heat peak
also blown up in the inset. This is a very rough estimate, with
only 32 × 1920 Monte-Carlo sweeps along the whole energy
axis, running in less than 6 minutes on a workstation.

N
(∆E)
dn,S in case the energy would increase; 4) non-varying

energy movements can be performed at will. Considering
the particular case of the square lattice Ising ferromagnet
within the further particularity of the single-spin-flip pro-
tocol, one has two different possible values for ∆E. One
corresponds to spins surrounded by four parallel neigh-
bours (i = 2, according to the notation adopted in [11]),
which must be flipped according to some probability, say
y. The other corresponds to spins surrounded by three
parallel neighbours, with a single one pointing in the op-
posite sense (i = 1), which must be flipped according to
probability x. The correct RW dynamics [6] corresponds
to take y = x2, and not y = x as in [11].

Table 1 shows the wrong RW results (WRW) obtained
in [11] for Ni, with i = −2, −1, 1 and 2 (we use here
the same notation), for the same 80 × 80 square lattice
Ising ferromagnet, compared with the correct canonical
averages (CS, also copied from [11]). Now, I included the
correct results I got by using the correct RW dynamics
(RW) introduced in [6]. I computed only 32 × 200 states
per energy level around the desired region. This corrected
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RW rule [6], different from the one used in [11], is good
for computing thermal averages, as already tested in [6,
7]. Nevertheless, I need to emphasize once again that this
corrected RW rule is not supposed to be confused with the
Broad Histogram Method, i.e. equation (8), for which any
other microcanonical simulator can be applied. The micro-
canonical averages appearing in equation (8) could even be
calculated from another protocol of allowed movements,
completely distinct from that used in order to count the

numbers N
(∆E)
up,S and N

(∆E)
dn,S at the current state.

Even within the corrected RW dynamics [6], some pre-
cautions in dealing with the correlations may be impor-
tant. As already quoted, the extra correlations within RW
dynamics, as compared to canonical, fixed temperature
simulations, are a consequence of the large energy jumps.
Thus, an obvious and simple way to avoid these correla-
tions is just to forbid these jumps. This can be done by
dividing the energy axis in adjacent small windows, per-
forming RW dynamics inside each window, sequentially.
I have done this for the square lattice Ising ferromagnet,
and the results for the average energy and specific heat
are displayed in Figure 1.

This is a much more crucial test than that presented in
[11] for a single energy value (see Tab. 1), once it depends
on the whole function g(E), along the whole energy axis.
As one can see, the quality of the results is the same as
obtained first in [7] where canonical steps were introduced
in between RW steps, and [9], where another completely
different simulational dynamics [10] was adopted. All the
three cases, however, share the same status: they were
obtained by using the exact equation (8), more specifically
its approximation (10).

Concluding, the Broad Histogram Method [6], equa-
tion (8), was proven to be exact for any statistical
model, or any energy spectrum, under completely gen-
eral conditions. It serves for determining the energy
degeneracies g(E) from the microcanonical averages
〈Nup(E)〉 and 〈Ndn(E)〉 measured at constant energies
E. The number Nup counts the possible modifications, or
movements one can perform at the current state increasing

its energy by an amount ∆E. Analogously, Ndn counts
the number of possible movements decreasing its energy
by the same amount.

I am indebted to my collaborators Thadeu and Hans, and also
to the people from the Metallurgy Engineering School in Volta
Redonda, another campus of my university where I give classes
during this term, and where the proof of equation (8) came to
my mind.
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