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Abstract. A model for the evolution of the wealth distribution in an economically interacting population
is introduced, in which a specified amount of assets are exchanged between two individuals when they
interact. The resulting wealth distributions are determined for a variety of exchange rules. For “random”
exchange, either individual is equally likely to gain in a trade, while “greedy” exchange, the richer individual
gains. When the amount of asset traded is fixed, random exchange leads to a Gaussian wealth distribution,
while greedy exchange gives a Fermi-like scaled wealth distribution in the long-time limit. Multiplicative
processes are also investigated, where the amount of asset exchanged is a finite fraction of the wealth of one
of the traders. For random multiplicative exchange, a steady state occurs, while in greedy multiplicative
exchange a continuously evolving power law wealth distribution arises.

PACS. 02.50.Ga Markov processes – 05.70.Ln Nonequilibrium thermodynamics, irreversible processes
– 05.40.+j Fluctuation phenomena, random processes, and Brownian motion

1 Introduction and models

Recent applications of ideas developed in statistical
physics, such as scaling, self-organization, optimization
in a complex landscape, etc., are helping to establish a
new conceptual framework for the scientific analysis of
economic activities [1–4]. In this spirit of seeking univer-
sal mechanisms, as well as simplicity and concreteness
of modeling, we introduce microscopic “asset exchange”
models as an attempt to account for the wealth distri-
bution of an economically interacting population. We in-
vestigate basic consequences of our model and attempt
to understand how generic features of a wealth distribu-
tion emerge. We are particularly interested in constructing
specific examples which generate a power law wealth dis-
tribution, a form which has been observed in many coun-
tries [5].

The basis of our modeling is that the elemental kernel
of economic activity in a dynamic economy is the interac-
tion between two individuals which results in a redistri-
bution of their assets. Here, we view an “individual” as a
single person or a self-contained economic entity, such as
a company. We also regard an “asset” as any economic at-
tribute – cash or physical asset – which contributes to the
overall wealth of an individual. As an example, a farmer
pays cash to buy a tractor from a store owner. With the
tractor, the farmer produces a crop which is then sold at a
profit. If this sale is again with the same dealer, one may
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view the composite interaction as an “exchange” in which
the farmer gains cash while the store owner pays out some
cash (the price difference of the tractor and the crop), and
has exchanged a tractor for crop. Depending on the price
at which this crop is re-sold, the assets of the store owner
may increase or decrease by these transactions. With this
example in mind, the economic activity of a population
may be viewed as many two-body exchanges of assets be-
tween randomly-chosen pairs of traders. Through this pro-
cess a global wealth distribution develops, and we wish to
understand how generic features of this distribution de-
pend on the nature of the two-body interaction. While our
idealized asset exchange models omit many important fea-
tures of real economic activity, one has the advantages of
simplicity and solvability of the basic equations of motion.
Further, the insights gained in the study of our models
may help guide the construction of more comprehensive
descriptions of the evolution of the wealth distribution.

In the next section, we first treat “additive” processes
in which a fixed amount of asset is exchanged between
two traders, independent of their wealth before the in-
teraction [6]. While the restriction to fixed assets is un-
realistic, the resulting models are soluble and provide a
starting point for more economically-motivated general-
izations. Within a (mean-field) rate equation description,
the wealth distribution typically exhibits scaling, from
which both the time dependence of the average wealth
and the form of the scaled wealth distribution can be ob-
tained. We first give an exact solution for the example of
random additive exchange, where either trader is equally
likely to profit in an interaction. The scaling approach
is then applied to greedy exchange, in which the richer
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person profits in an interaction. The asymptotic scaled
wealth distribution is found to be Gaussian for random
exchange, and resembles the Fermi distribution for greedy
exchange.

We next consider “multiplicative” processes in Sec-
tion 3, in which a fixed fraction of the current wealth of one
of the traders is exchanged in an interaction. This rule is
motivated by the observation that fractional exchange un-
derlies many economic transactions – for example, loan in-
terest or investment return is quoted in percentage terms.
In parallel with our discussion of additive processes, we
consider both random and greedy multiplicative exchange.
The former leads to a steady state; this arises because the
randomness of the exchange ensures that a rich individual
experiences many wealth reducing interactions and is thus
driven towards the middle class. Greedy multiplicative ex-
change is the most interesting of our models because, for
a broad range of parameters, a power law form for the
wealth distribution results in which the rich get richer and
the poor get poorer. Since real wealth distributions are of-
ten a power law, our model may provide a framework for
their quantitative description.

In Section 4, we summarize, mention a number of ex-
tensions, and discuss several limitations of our approach.
In the Appendix, we treat additive exchange in a low-
dimension “economic” space, when diffusion is the trans-
port mechanism which brings trading partners together.

2 Additive asset exchange

Consider a population of traders, each of which possesses
a certain amount of assets which are assumed to be quan-
tized in units of a minimal asset. Taking this latter quan-
tity as the basic unit, the fortune of an individual is re-
stricted to the integers. The wealth of the population
evolves by the repeated interaction of random pairs of
traders. In each interaction, one unit of asset is transferred
between the trading partners. To complete the description,
we specify that if a poorest individual (with one unit of
asset) loses this last unit of asset by virtue of a “loss”,
the bankrupt individual is considered to be economically
dead and no longer participates in trading activity.

In the following subsections, we consider three spe-
cific realizations of additive asset exchange. In “random”
exchange, the direction of the exchange is independent
of the relative assets of the traders. While this rule has
little economic basis, the resulting model is completely
soluble and thus provides a helpful pedagogical starting
point. We next consider “greedy” exchange in which a
richer person takes one unit of asset from a poorer person
in a trade. Such a rule is a reasonable starting point for
describing exploitive economic activity. Finally, we con-
sider a more heartless version – “very greedy” exchange
– in which the rate of exchange is proportional to the
difference in assets between the two traders. These lat-
ter two cases can be solved by a scaling approach. The
primary result is that the scaled wealth distribution re-
sembles a finite-temperature Fermi distribution, with an
effective temperature that goes to zero in the long-time
limit.

2.1 Random exchange

In this process, one unit of asset is exchanged between
trading partners, as represented by the reaction scheme
(j, k)→ (j ± 1, k∓ 1). Let ck(t) be the density of individ-
uals with assets k. Within a mean-field description, ck(t)
evolves according to

dck(t)

dt
= N(t) [ck+1(t) + ck−1(t)− 2ck(t)] , (1)

with N(t) ≡ M0(t) =
∑∞
k=1 ck(t) the population density.

The first two terms account for the gain in ck(t) due to the
interactions (j, k+1)→ (j+1, k) and (j, k−1)→ (j−1, k),
respectively, while the last term accounts for the loss in
ck(t) due to the interactions (j, k) → (j ± 1, k ∓ 1). By
defining a modified time variable,

T =

∫ t

0

dt′N(t′), (2)

equation (1) is reduced to the discrete diffusion equation

dck(T )

dT
= ck+1(T ) + ck−1(T )− 2ck(T ). (3)

The rate equation for the poorest density has the slightly
different form, dc1/dT = c2 − 2c1, but may be written in
the same form as equation (3) if we impose the boundary
condition c0(T ) = 0.

Equation (3) may be readily solved for arbitrary initial
conditions [7]. For illustrative purposes, let us assume that
initially all individuals have one unit of asset, ck(0) = δk1.
The solution to equation (3) subject to these initial and
boundary conditions is

ck(T ) = e−2T [Ik−1(2T )− Ik+1(2T )] , (4)

where In denotes the modified Bessel function of order n
[8]. Consequently, the total density N(T ) is

N(T ) = e−2T [I0(2T ) + I1(2T )] . (5)

To re-express this exact solution in terms of the physi-
cal time t, we first invert equation (2) to obtain t(T ) =∫ T

0
dT ′/N(T ′), and then eliminate T in favor of t in the

solution for ck(T ). For simplicity and concreteness, let us
consider the long-time limit. From equation (4),

ck(T ) '
k

√
4πT 3

exp

(
−
k2

4T

)
, (6)

and from equation (5),

N(T ) ' (πT )−1/2. (7)

Equation (7) also implies t ' 2
3

√
πT 3 which gives

N(t) '

(
2

3πt

)1/3

, (8)
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and

ck(t) '
k

3t
exp

[
−
( π

144

)1/3 k2

t2/3

]
. (9)

Note that this latter expression may be written in the

scaling form ck(t) ∝ N2x e−x
2

, with the scaling variable
x ∝ kN . One can also confirm that the scaling solution
represents the basin of attraction for almost all exact so-
lutions. Indeed, for any initial condition with ck(0) decay-
ing faster than k−2, the system reaches the scaling limit

ck(t) ∝ N2x e−x
2

. On the other hand, if ck(0) ∼ k−1−α,
with 0 < α < 1, such an initial state converges to an alter-
native scaling limit which depends on α, as discussed, e.g.,
in reference [9]. These solutions exhibit a slower decay of
the total density, N ∼ t−α/(1+α), while the scaling form
of the wealth distribution is

ck(t) ∼ N2/αCα(x), x ∝ kN1/α, (10)

with the scaling function

Cα(x) = e−x
2

∫ ∞
0

du
e−u

2

sinh(2ux)

u1+α
· (11)

Evaluating the integral by the Laplace method gives an
asymptotic distribution which exhibits the same x−1−α

as the initial distribution. This anomalous scaling in the
solution to the diffusion equation is a direct consequence
of the extended initial condition. This latter case is not
economically relevant, however, since the extended initial
distribution leads to a divergent initial wealth density.

2.2 Greedy exchange

In greedy exchange, when two individuals meet, the richer
person takes one unit of asset from the poorer person, as
represented by the reaction scheme (j, k)→ (j + 1, k− 1)
for j ≥ k. In the rate equations, the densities ck(t) now
evolve according to

dck
dt

= ck−1

k−1∑
j=1

cj + ck+1

∞∑
j=k+1

cj − ckN − c
2
k. (12)

The first two terms account for the gain in ck(t) due to
the interaction between pairs of individuals with assets
(j, k−1), with j < k and (j, k+1) with j > k, respectively.
The last two terms correspondingly account for the loss
of ck(t). One can check that the wealth density M1 ≡∑∞
k=1 k ck(t) is conserved and that the population density

obeys

dN

dt
= −c1N. (13)

Equations (12) are conceptually similar to the Smolu-
chowski equations for aggregation with a constant reac-
tion rate [10]. Mathematically, however, they appear to
be more complex and we have been unable to solve them

analytically. Fortunately, equation (12) is amenable to a
scaling solution [11]. For this purpose, we first re-write
equation (12) as

dck
dt

= − ck(ck + ck+1) +N(ck−1 − ck)

+ (ck+1 − ck−1)
∞∑
j=k

cj . (14)

Taking the continuum limit and substituting the scaling
ansatz

ck(t) ' N2C(x), with x = kN, (15)

transforms equations (13) and (14) to

dN

dt
= −C(0)N3, (16)

and

C(0)[2C + xC′] = 2C2 + C′
[
1− 2

∫ ∞
x

dyC(y)

]
, (17)

where C′ = dC/dx. Note also that the scaling function
must obey the integral relations∫ ∞

0

dx C(x) = 1, and

∫ ∞
0

dxx C(x) = 1. (18)

The former follows from the definition of the density, N =∑
ck(t) ' N

∫
dx C(x), while the latter follows if we set,

without loss of generality, the (conserved) wealth density
equal to unity,

∑
k kck(t) = 1.

Introducing B(x) =
∫ x

0
dy C(y) recasts equation (17)

into C(0)[2B′+xB′′] = 2B′2 +B′′[2B−1]. Integrating twice
gives [C(0)x−B][B−1] = 0, with solution B(x) = C(0)x for
x < xf and B(x) = 1 for x ≥ xf , from which we conclude
that the scaled wealth distribution C(x) = B′(x) coincides
with the zero-temperature Fermi distribution,

C(x) =

{
C(0), x < xf ;

0, x ≥ xf .
(19)

Hence the scaled profile has a sharp front at x = xf , with
xf = 1/C(0) found by matching the two branches of the
solution for B(x). Making use of the second integral rela-
tion (18) gives C(0) = 1/2 and thereby closes the solution.
Thus the unscaled wealth distribution ck(t) reads

ck(t) =

{
1/(2t), k < 2

√
t;

0, k ≥ 2
√
t;

(20)

and the total density is N(t) = t−1/2.
We checked these predictions by numerical simulations

(Fig. 1). In the simulation, two individuals are randomly
chosen to undergo greedy exchange and this process is re-
peated. When an individual reaches zero assets, he is elim-
inated from the system, and the number of active traders
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Fig. 1. Simulation results for the wealth distribution in greedy
additive exchange based on 2500 configurations for 106 traders.
Shown are the scaled distributions C(x) versus x = kN for
t = 1.5n, with n = 18, 24, 30, and 36; these steepen with
increasing time. Each data set has been averaged over a range
of ≈ 3% of the data points to reduce fluctuations.

is reduced by one. After each reaction, the time is incre-
mented by the inverse of the number of active traders.
While the mean-field predictions are substantially cor-
roborated, the scaled wealth distribution for finite time
actually resembles a finite-temperature Fermi distribu-
tion (Fig. 1). As time increases, the wealth distribution
becomes sharper and approaches equation (20). In anal-
ogy with the Fermi distribution, the relative width of the
front may be viewed as an effective temperature. Thus the
wealth distribution is characterized by two scales; one of
order

√
t characterizes the typical wealth of active traders

and a second, smaller scale which characterizes the width
of the front [12].

To quantify the spreading of the front, let us include
the next corrections in the continuum limit of the rate
equations (14). This gives,

∂c

∂t
= 2

∂

∂k

[
c

∫ ∞
k

dj c(j)

]
− c

∂c

∂k
−N

∂c

∂k
+
N

2

∂2c

∂k2
·

(21)

Here the second and fourth terms on the right-hand side
represent the next corrections. Since the “convective”
(third) term determines the location of the front to be at
kf = 2

√
t, it is natural to expect that the (diffusive) fourth

term describes the spreading of the front. The term c ∂c∂k
turns out to be negligible in comparison to the diffusive
spreading term and is henceforth neglected.

The dominant convective term can be removed by
transforming to a frame of reference which moves with
the front, namely, k → K = k − 2

√
t. Among the remain-

ing terms in the transformed rate equation, the width of
the front region W can now be determined by demanding
that the diffusion term has the same order of magnitude

as the reactive terms, that is, N ∂2c
∂k2 ∼ c2. This implies

W ∼
√
N/c. Combining this with N = t−1/2 and c ∼ t−1

gives W ∼ t1/4, or a relative width w = W/kf ∼ t−1/4.
This suggests the appropriate scaling ansatz for the front
region is

ck(t) =
1

t
X(ξ), ξ =

k − 2
√
t

t1/4
· (22)

Substituting this ansatz into equation (21) gives a non-
linear single variable integro-differential equation for the
scaling function X(ξ). Together with the appropriate
boundary conditions, this represents, in principle, a more
complete solution to the wealth distribution. However, the
essential scaling behavior of the finite-time spreading of
the front is already described by equation (22), so that
solving for X(ξ) itself does not provide additional scaling
information. Analysis of our data by several rudimentary
approaches gives w ∼ t−α with α ≈ 1/5. We attribute
this discrepancy to the fact that w is obtained by differ-
entiating C(x), an operation which generally leads to an
increase in numerical errors.

2.3 Very greedy exchange

We now consider the variation in which trading occurs
at a rate equal to the difference in the assets of the two
traders. That is, an individual is more likely to take assets
from a much poorer person rather than from someone of
slightly less wealth. For this “very greedy” exchange, the
corresponding rate equations are

dck
dt

= ck−1

k−1∑
j=1

(k − 1− j)cj + ck+1

∞∑
j=k+1

(j − k − 1)cj

−ck

∞∑
j=1

|k − j|cj , (23)

while the total density obeys

dN

dt
= −c1(1−N), (24)

under the assumption that the (conserved) total wealth
density is set equal to one,

∑
kck = 1.

These rate equations can again be solved by applying
scaling. For this purpose, it is first expedient to rewrite
the rate equations as

dck
dt

= (ck−1 − ck)
k−1∑
j=1

(k − j)cj − ck−1

k−1∑
j=1

cj (25)

+(ck+1 − ck)
∞∑

j=k+1

(j − k)cj − ck+1

∞∑
j=k+1

cj .

Taking the continuum limit gives

∂c

∂t
=
∂c

∂k
−N

∂

∂k
(kc). (26)
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We now substitute the scaling ansatz, equation (15), to
yield

C(0)[2C + xC′] = (x− 1)C′ + C, (27)

and

dN

dt
= −C(0)N2. (28)

Solving the above equations gives N ' [C(0)t]−1 and

C(x) = (1 + µ)(1 + µx)−2−1/µ, (29)

with µ = C(0)− 1. It may readily be verified that this ex-
pression for C(x) satisfies both integral relations of equa-
tion (18). The scaling approach has thus found a family
of solutions which are parameterized by µ, and additional
information is needed to determine which of these solu-
tions is appropriate for our system. For this purpose, note
that equation (29) exhibits different behaviors depending
on the sign of µ. When µ > 0, there is an extended non-
universal power-law distribution, while for µ = 0 the solu-
tion is the pure exponential, C(x) = e−x. These solutions
may be rejected because the wealth distribution cannot
extend over an unbounded domain if the initial wealth
extends over a finite range.

The accessible solutions therefore correspond to −1 <
µ < 0, where the distribution is compact and finite, with
C(x) ≡ 0 for x ≥ xf = −µ−1. To determine the true so-
lution, let us re-examine the continuum form of the rate
equation (26). From naive power counting, the first two
terms are asymptotically dominant and they give a prop-
agating front with kf exactly equal to t. Consequently, the
scaled location of the front is given by xf = Nkf . Now the
result N ' [C(0)t]−1 gives xf = 1/C(0). Comparing this
expression with the corresponding value from the scaling
approach, xf = [1− C(0)]−1, selects the value C(0) = 1/2.
Remarkably, this scaling solution coincides with the Fermi
distribution that found for the case of constant interaction
rate. Finally, in terms of the unscaled variables k and t,
the wealth distribution is

ck(t) =

{
4/t2, k < t;

0, k ≥ t.
(30)

Following the same reasoning as the previous section, the
discontinuity in the vicinity of the front is smoothed out
by diffusive spreading.

Another interesting feature is that if the interaction
rate is sufficiently greedy, “gelation” occurs [13], whereby
a finite fraction of the total assets are possessed by a sin-
gle individual. For interaction rates, or kernels K(j, k)
between individuals with assets j and k which do not
give rise to gelation, the total density typically varies
as a power law in time, while for gelling kernels N(t)
goes to zero at some finite time. At the border between
these regimes N(t) typically decays exponentially in time
[11,13]. We seek a similar transition in behavior for the
asset exchange model by considering the rate equation for

the density

dN

dt
= −c1

∞∑
k=1

K(1, k)ck. (31)

For the family of kernels with K(1, k) ∼ kν as

k → ∞, substitution of the scaling ansatz gives Ṅ ∼
−N3−ν. Thus N(t) exhibits a power-law behavior N ∼
t1/(2−ν) for ν < 2 and an exponential behavior for
ν = 2. Thus gelation should arise for ν > 2.

3 Multiplicative asset exchange

We have thus far focused on additive processes in which
the amount of assets exchanged in a two-body interaction
is fixed. This leads to the unrealistic feature of a vanish-
ing density of active traders in the long time limit, as an
individual who possesses the minimal amount of wealth
loses all assets in an unfavorable trade. In many economic
transactions, however, the amount of assets exchanged is
a finite fraction of the initial assets of one of the par-
ticipants. This observation motivates us to consider asset
exchange models with exactly this multiplicative property.
A simple realization which preserves both the number of
participants and the total assets is the reaction scheme
(x, y) → (x − αx, y + αx). Here 0 < α < 1 represents
the fraction of loser’s assets which are gained by the win-
ner. In this process, the assets of any individual remains
non-zero, although it can become vanishingly small.

In the following, we consider the cases of random ex-
change, where the winner may equally likely be the richer
or the poorer of the two traders, and greedy exchange,
where only the richer individual profits in the trade. The
former system quickly reaches a steady state, while the lat-
ter gives rise to a continuously-evolving power-law wealth
distribution.

3.1 Random exchange

To determine the rate equation for random multiplicative
exchange, it is expedient to first write an integral form of
the equation, for which the origin of the various terms is
clear. This rate equation is

∂c(x)

∂t
=

1

2

∫ ∫
dy dz c(y)c(z)× [−δ(x− z)− δ(x− y)

+δ(y(1− α)− x) + δ(z + αy − x)]. (32)

The first two terms account for the loss of c(x) due to
the interaction of an individual of assets x. The next
term accounts for the gain in c(x) by the losing inter-
action (x/(1−α), y)→ (x, y+αx/(1−α)). The last term
also accounts for gain in c(x) by the profitable interaction
(y, x− αy)→ (y(1− α), x). By integrating over the delta
functions, this rate equation reduces to

∂c(x)

∂t
= −c(x) +

1

2(1− α)
c

(
x

1− α

)
+

1

2α

∫ x

0

dy c(y) c

(
x− y

α

)
, (33)
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where the total density is set equal to one. In this form,
the rate equation describes a diffusive-like process on a
logarithmic scale, except that the third term, which cor-
responds hopping to the right, is non-local and two-body
in character.

To help understand the nature of the resulting wealth
distribution, let us first consider the moments, Mn(t) ≡∫∞

0 dxxnc(x, t). From equation (33) one can straightfor-
wardly verify that the first two moments, M0 and M1,
the population and wealth densities, respectively, are con-
served. Without loss of generality, we choose M0 = 1 and
M1 = M . The equation of motion for the second moment
is

dM2(t)

dt
= −α(1− α)M2(t) + αM2 (34)

with solution

M2(t) =
M2

1− α
+

[
M2(0)−

M2

1− α

]
e−α(1−α)t. (35)

Similarly, higher moments also exhibit exponential conver-
gence to constant values, so that the wealth distribution
approaches a steady state. The mechanism for this steady
state is simply that the typical size of a profitable inter-
action is likely to be much smaller than an unprofitable
interaction for a rich individual, while the opposite holds
for a poor individual. This bias prevents the unlimited
spread of the wealth distribution and stabilizes a steady
state.

To determine the steady state wealth distribution,
we substitute simple “test” solutions into the rate equa-
tions. By this approach, we find that the exponential form
c(x) = Be−bx satisfies the steady-state version of the
rate equation (33), iff α = 1

2 and B = b. Thus when
the winner receives one half the assets of the loser, the
exact steady wealth distribution is a simple exponential
c(x) = M−1 exp(−x/M). For general 0 < α < 1, the
large-α tail is again an exponential, c(x) ' 2b(1−α)e−bx.
However, for x � 1, we find, by substitution and apply-
ing dominant balance, that c(x) ∼ xλ is the asymptotic
solution, with exponent λ = −1− ln 2/ ln(1− α).

Interestingly, λ is positive when α < 1/2, so that the
density of the poor is vanishingly small. A heuristic jus-
tification for this phenomenon is that for α < 1/2 an un-
favorable interaction leads to a relatively small asset loss,
and this loss is more than compensated for by favorable
interactions so that a poor individual has the possibility of
climbing out of poverty. In the opposite case of α > 1/2,
unprofitable interactions are sufficiently devastating that
a large and persistent underclass is formed, with a power-
law divergence in the number of poor in the limit of van-
ishing wealth.

Our simulations substantially confirm these results
(Figure 2). The scope of the simulations is less than that
in additive processes, since the number of traders remains
fixed, so that CPU time scales linearly in the simulation
time. In contrast, for additive exchange, the CPU time

scale as
∫ t

dt′N(t′), which can be much smaller than t.

0.0 1.0 2.0 3.0 4.0
x

0.0

0.2

0.4

0.6

0.8

1.0

c(
x)

Fig. 2. Representative results for the wealth distribution in
random multiplicative exchange for the case α = 0.25 based on
simulation of 10 configurations of 105 traders. Shown are the
steady-state wealth distributions c(x) as a function of wealth
x for t = 1.5n, with n = 6, 8, 10, and 12. The various curves
are indistinguishable. The predicted x1.409... small-x tail is not
resolvable because of the coarseness of the data binning.

Numerically, we find that the moments Mn(t) quickly con-
verge to equilibrium values. The resulting wealth distribu-
tion is clearly a simple exponential for α = 1/2 and ex-
hibits either a power-law divergence or a power-law zero as
x→ 0 for α > 1/2 and α < 1/2, respectively, in agreement
with our analytical results.

3.2 Greedy exchange

Parallel to our discussion of additive processes, we now
investigate greedy multiplicative exchange, where only
the richer trader profits, as represented by the reaction
(x, y) → (x − αx, y + αx) for x < y. Following the same
reasoning as that used in the previous subsection, the rate
equation for greedy multiplicative exchange is

∂c(x)

∂t
= −c(x) +

1

1− α
c

(
x

1− α

)
N

(
x

1− α

)
+

1

α

∫ x

x/(1+α)

dy c(y) c

(
x− y

α

)
, (36)

where N(x) =
∫∞
x

dz c(z) is the population density whose
wealth exceeds x.

Numerical simulations of this system show that the
wealth distribution evolves ad infinitum and that the
most of the population eventually becomes impoverished
(Fig.3). Note that the discreteness of our linear data bin-
ning lumps the poorest into a single bin at the origin
which is not visible on the double logarithmic scale. The
pervasive impoverishment arises because greedy exchange
causes the poor to become poorer and the rich to become
richer, but wealth conservation implies that there must
be many more poor than rich individuals. In the long-
time limit therefore, a small fraction of the population
possesses most of the wealth.
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Fig. 3. The unnormalized wealth distribution in greedy mul-
tiplicative exchange for the case α = 0.5 based on simulation
of 10 configurations of 105 traders. Shown on a double loga-
rithmic scale are the wealth distributions c(x) as a function of
wealth x for t = 1.5n, with n = 7, 10, 13, and 16.

To understand these features analytically, first con-
sider the extreme case of α = 1 which reduces to classi-
cal constant kernel aggregation [10], except for the added
feature that individuals of zero wealth are now included
in the distribution. Consequently, the scaling form of the
wealth distribution in the long time limit is

c(x, t) ' t−2e−x/t + (1− t−1)δ(x). (37)

The first term is just the scaling solution to constant-
kernel aggregation [10], so that the delta function term
represents the population with zero wealth.

For general 0 < α < 1 a qualitatively related distribu-
tion can be anticipated which consists of a large impov-
erished class of negligible wealth and a much smaller and
widely distributed population of wealthy. To determine
this distribution, it is expedient to re-write equation (36)
as

∂c(x)

∂t
=

∫ x/(1+α)

0

dz c(z) [c(x− αz)− c(x)] (38)

−c(x)N

(
x

1 + α

)
+

1

1− α
c

(
x

1− α

)
N

(
x

1− α

)
.

Since Figure 3 indicates that the wealth distribution is a
power law, we substitute such a form in equation (38) and
find that

c(x, t) =
A

xt
, A = −

1

ln(1− α)
(39)

is an exact formal solution. A pathology of equation (39),
however, is that all moments, Mn(t), diverge. Note also
that the last two terms on the right-hand side of equa-
tion (38) are divergent (although their difference is regu-

larized to the finite value A2

xt2
ln 1+α

1−α). These observations

suggest that a solution to equation (38), which arises from
any initial condition, converges to equation (39) only in

the scaling region x1(t) < x < x2(t). Outside this domain
such a solution has not yet had time to become estab-
lished.

To estimate these cutoffs for the scaling region, we
evaluate the moments based on equation (39)

M0(t) ∼

∫ x2

x1

dx c(x, t) ∼
A ln(x2/x1)

t

M1(t) ∼

∫ x2

x1

dxxc(x, t) ∼
Ax2

t
· (40)

Since M0 = 1 and M1 = M are constant, we obtain

x1(t) ∼ e−t/A = (1− α)t, x2(t) ∝ t. (41)

The factor x1(t) clearly gives the wealth of the poorest
at time t. Since a losing interaction leads to a reduction
in assets by a factor (1 − α), the poorest individual at
time t will have assets (1 − α)t for the monodisperse ini-
tial wealth distribution, c0(x) = δ(x− 1), and a constant
reaction rate. To understand the significance of the up-
per cutoff, suppose that x � t. In this case, the last two
terms on the right-hand side of (38) are negligible. In the
remaining term, the expression in the square brackets may

be replaced by αz ∂c(x,t)
∂x

, so that the resulting integral is
simply equal to M . With these simplifications, the rate
equation reduces to ct+αMcx = 0. This linear wave equa-
tion admits the general solution c(x, t) = c0(x−αMt) and
suggests the upper cutoff x2(t) ' αMt, consistent with
equation (41).

Note, however, that there is inconsistency in our rea-
soning, as starting with the assumption x� t leads to an
upper cutoff of order t. In spite of this logical shortcom-
ing, we have verified many of the resulting quantitative
characteristics. For example, numerical simulation clearly
yields the 1/x power-law tail of the wealth distribution.
Furthermore, if one defines the wealthy as those whose
assets exceeds some threshold ε, then equations (39) and
(41) give the density of wealthy proportional to ln(t/ε)/t.
It is in this sense that we can view the wealth distribu-
tion as consisting of two components: the wealthy den-
sity which is proportional to ln(t/ε)/t and a complemen-
tary density of the poor. Using equation (39) one can
also readily determine the behavior of the moments to

be Mn(t) ∼ t−1
∫ t

0 dxxn−1 ∼ tn−1/n, for n > 1, or equiv-

alently (nMn)1/(n−1) should grow linearly with time with
the same amplitude, as is observed in our simulations (Fig-
ure 4). Least-square fits to the data with the first few data
points deleted clearly indicate a growth rate which is very
nearly linear.

4 Summary and discussion

We have investigated the dynamical evolution of wealth
distributions in idealized asset exchange models. These
models are motivated by the hypothesis that the wealth
distribution of an economically active population is
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Fig. 4. The reduced moments (nMn)1/(n−1) for n = 2 (◦), 3
(+), and 4 (∆) versus time for greedy multiplicative exchange
for the case α = 0.5 based on simulation of 10 configurations of
105 traders. These reduced moments are predicted to increase
linearly in time (see text).

the result of repeated exchanges of assets between
randomly-selected trading partners. In spite of the ob-
vious shortcomings associated with considering just one
mechanism – asset exchange – among the myriad of fac-
tors that influence individual wealth, our models provide
realistic wealth distributions for specific exchange rules.

For additive processes, a fixed amount of asset is ex-
changed in any transaction, with the sense of the exchange
being either random – “random” exchange – or favoring
the rich – “greedy” exchange. The former leads to a Gaus-
sian wealth distribution, while the latter gives a Fermi-
like wealth distribution in the scaling limit. In both cases,
the number of economically viable individuals decays as
a power law in time and their average wealth correspond-
ingly increases. A “very greedy” process was also intro-
duced in which the trading rate between two individuals
is an increasing function of their asset difference. This also
leads to a Fermi-like wealth distribution, but with a faster
decay in the density of active traders and a concomitant
faster growth in their wealth.

There are several potentially fruitful generalizations of
additive models. It would be interesting to investigate the
analog of gelation [13], in which one individual acquires
a finite fraction of the total assets in a finite time. This
might be achieved by even more greedy versions of ad-
ditive exchange. Mathematically, this “gelation” should
manifest itself in the violation of wealth conservation,
where the loss of wealth in the population of finitely
wealthy individuals signals the appearance of an infinitely
rich individual. Economically, this singularity may be re-
flected by the existence of monopolies or oligopolies.

The features of trading a fixed amount of asset and
elimination of individuals with no wealth are unrealistic
aspects of additive exchange. This motivated our consider-
ation of multiplicative processes, (x, y)→ (x−αx, y+αx),
where a fraction of the total wealth of one individual
is traded in a transaction. Such a multiplicative rule,

particularly for small α, seems to underlie many real
economic transactions. Multiplicative exchange leads to
non-local rate equations which we have been unable to
solve in closed form. Nevertheless, considerable insight
was gained by analysis of the moments and the asymp-
totics of the wealth distribution. For random exchange,
individuals with extreme wealth or extreme poverty tend
to move towards the center of the distribution and a steady
state is quickly reached. For greedy exchange, a continu-
ously evolving power law wealth distribution arises, with
c(x, t) ∝ 1/(xt), for wealth in the range (1− α)t < x < t.
These cutoffs correspond to the poorest and richest indi-
viduals, respectively. We also find that a vanishing fraction
of people, of order ln t/t, possess an overwhelming amount,
of order t/ ln t, of the total wealth. At least qualitatively,
this corresponds to our naive view of how the wealth dis-
tribution evolves in developing countries. For sufficiently
greedy exchange, there also seems to be the possibility of
the analog of the “shattering” transition in fragmentation
processes [21], where “dust” phase arises, which consists
of a finite fraction of all individuals who possess no wealth.

A power law wealth distribution is relatively common
in modern societies, but with the exponent of the power
law typically around 2.5 (see, e.g., [14] and references
therein). Various empirical models, which are generally
based on an underlying multiplicative process, have been
invoked to explain this power law [15–20]. In contrast
to these empirical approaches, greedy multiplicative ex-
change is microscopic (a feature also shared by [20]), and
it would be worthwhile to understand if suitable general-
izations of our model, which incorporate additional real-
istic economic features, can quantitatively reproduce the
observed data. One such example is the incorporation of
wealth redistribution by taxation or welfare. Another real-
istic aspect is heterogeneity, where the amount exchanged
is either different for each individual or depends on some
other aspect of the trading event. It would be particularly
interesting if the wealth distributions were universal with
respect to such heterogeneity.

A final interesting possibility is variable greediness,
e.g., the process (x, y) → (x − αx, y + αx) occurs at a
specified rate K(x, y). For example, K(x, y) = 1/2 cor-
responds to random exchange, K(x, y) = Θ(y − x) (with
Θ(x) the Heaviside step function) to greedy exchange, and
K(x, y) = y/(x + y) to a less greedy “proportional” ex-
change. The latter proportional model can be solved using
essentially the same approaches as in the previous section
and gives the same scaled wealth distribution as greedy ex-
change. Perhaps other exchange rules may provide a way
to control the exponent of the power law.

Our focus on conserved assets in a trade is also defi-
cient because there is no mechanism for wealth growth.
Perhaps this can be bypassed by viewing our models as
being in a co-moving reference frame of the average in-
terest rate. One could also allow interactions which in-
crease the assets of the two traders, on average. A sim-
ple realization is random asset growth, (j, k)→ (j + 1, k)
or (j, k + 1). The rate equations for this model are
readily solved and give ck(t) ∼ t−1/2 exp[−(t − k)2/2t].
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This gives an (economically) fair society in which the rel-

ative fluctuation
√
〈(∆k)2〉/〈k〉 decreases as t−1/2, albeit

with an unrealistic linear, rather than exponential, growth
of the average wealth. However, exponential growth can be
achieved by an interaction rate which equals the sum of as-
sets of the traders, K(i, j) = i+j, so that the total wealth

M =
∑
kck obeys Ṁ = 2NM . This “ideal” model is also

“fair”, as the relative fluctuation decreases as
√
te−Nt. For

an interaction rate which increases even more rapidly with
wealth, there is a pathology analogous to gelation – infinite
prosperity in a finite time. For example, for K(i, j) = ij,
the wealth distribution for a monodisperse initial condi-
tion is ck(t) = (1 − t)tk−1. Related exponential growth
occurs in the multiplicative process (x, y) → (x, y + αx),
where for α = 1, we obtain ck(t) ∼ e−t exp(−xe−t). In-
terestingly, the ideal case lies on the boundary between
algebraic wealth growth and the pathological finite-time
wealth divergence, a feature similar to the “life on the edge
of chaos” advocated by Kauffman as a generic property of
complex systems [3].
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Appendix A: Arbitrary spatial dimension

The rate equation description applies for perfectly mixed
traders, a feature which should be appropriate for a highly
interconnected modern economy. However, in a primi-
tive society with limited communication, one could envi-
sion economic transactions occurring in a low dimensional
space, with diffusion being the transport mechanism which
brings trading partners together. For example, if economic
activity were confined to a one-dimensional road, it would
be appropriate to consider the spatial dimension d = 1,
while for perfect mixing the effective dimension would be
d = ∞. From general experience about reaction kinetics,
one expects deviations from the rate equation predictions
when d is below an upper critical dimension dc. In this
spirit, we now consider the role of spatial dimensionality
on the evolution of the wealth distribution in our additive
and multiplicative exchange models.

First consider additive exchange. In arbitrary spatial
dimension, an interaction occurs whenever two diffusing
individuals meet. We make the simplifying (and likely un-
realistic) assumption that the diffusivity is independent of
an individual’s assets. Accordingly, an interaction occurs
when N · N ≈ 1, where N (τ) is the average number of
distinct sites visited by a random walk in a time interval

τ . This quantity scales as [7]

N (τ) ∼


τd/2, d < 2;

τ/ ln τ, d = 2;

τ, d > 2;

(A.1)

as τ → ∞ and thus gives the following estimates for the
density dependence of the time interval between events

τ ∼


N−2/d, d < 2;

N−1 ln(1/N), d = 2;

N−1, d > 2.

(A.2)

Since the total density decreases only in events which in-
volve the poorest individuals, we have

dN

dt
∼ −

c1

τ
· (A.3)

Since we already know how the collision time τ depends
on N , we need to express c1 on N to solve equation (A.3)
and complete the solution.

For random additive exchange in d < 2, rate equa-
tions similar to equation (1) should apply, except for the
obvious change of the collision rate N by the dimension-
dependent rate τ−1 from equation (A.2). Thus introducing
the modified time variable

T =

∫ t

0

dt′

τ(t′)
(A.4)

reduces the governing equations to the pure diffusion equa-
tion, as in Section 2. Combining equations (7), (A.2), and
(A.4), we find

N(t) ∼


t−d/2(d+1), d < 2;

(t/ ln t)−1/3, d = 2;

t−1/3, d > 2.

(A.5)

The wealth distribution is thus ck(t) ∼ N2xe−x
2

with
N(t) given by equation (A.5). In particular, the density of
the poorest individuals is proportional to N3.

For greedy additive exchange in d < 2, we assume that
the scaling ansatz, equation (15), still applies, but with
the slightly stronger addition condition C(0) > 0. This
immediately gives c1 ∼ N2. Using this result, together
with equation (A.2) in equation (A.3), gives

N ∼


t−d/(d+2), d < 2;

(t/ ln t)−1/2, d = 2;

t−1/2, d > 2.

(A.6)

Our results for N(t) given in equations (A.5) and (A.6)
also indicate that dc = 2 is the upper critical dimension
for additive asset exchange, since it demarcates dimension-
independent and dimension-dependent kinetics.
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Finally, we consider greedy multiplicative exchange for
arbitrary spatial dimension. Because the volume explored
by a diffusing individual in time t varies as td/2, it is
straightforward to infer that the upper and lower cutoffs in
equation (41) are proportional to x1(t) ∝ exp(−td/2) and
x2(t) ∝ td/2, respectively. To then satisfy the constraints
thatM0 andM1 are both constant, we find that the wealth
distribution should have the form c(x, t) ∝ 1/(xtd/2). It is
intriguing that the exponent of the power law for greedy
multiplicative exchange is dimension independent.
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