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Side wall effects in Rayleigh Bénard experiments
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Abstract. In Rayleigh Bénard experiments, the side wall conductivity is traditionally taken into account
by subtracting the empty cell heat conductivity from the measured one. We present a model showing that
the correction to apply could be considerably larger. We compare to experiments and find good agreement.
One of the consequences is that the Nusselt behavior for Ra < 1010 could be closer to Nu ∝ Ra1/3 than
currently assumed. Also, the wall effect can appear as a continuous change in the γ exponent Nu ∝ Raγ.

PACS. 47.27.Te Convection and heat transfer – 44.25.+f Natural convection – 67.90.+z Other topics in
quantum fluids and solids; liquid and solid helium

1 Introduction

Understanding high Rayleigh number turbulent convec-
tion is a long standing challenge. Experimental efforts in
the few past decades were oriented towards large ranges
in Rayleigh numbers Ra for evidencing the asymptotic
regimes predicted by the various models [1,2]. Recently [3],
an experimental study with classical fluids succeeded in
increasing the precision on the Nusselt numbers by nearly
one decade, allowing some test of the theories within a lim-
ited range of Ra. Obviously, one then needs to consider
spurious effects previously neglected, as their incidence on
the Nusselt number Nu was estimated to be smaller than
the precision.

The influence of lateral wall conduction is one of these.
One consequence is that part of the heat power supplied
at the bottom plate is absorbed by the lateral wall. This
is traditionally taken into account by measuring the heat
conductivity of the empty cell, and subtracting it from the
observed effective heat conductivity. It is equivalent to as-
sume that the temperature gradient in the wall remains
linear whatever the fluid state is. However, the fluid tem-
perature is nearly uniform, equal to the average tempera-
ture between the plates, except close to them, in the ther-
mal boundary layer of depth h/2Nu (h being the height
of the cell). As will be shown in the next section, the ther-
mal contact between the wall and the fluid increases the
temperature gradient in the wall close to the plates and
thus the heat flux in it.
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2 The model

Assuming that the fluid close to the lateral wall is nearly
uniform in temperature, makes easy to estimate the tem-
perature profile in the wall and the heat flux in it. How-
ever, the correction to apply to the heat supplied at the
bottom plate is not simply equal to this spurious heat
flux [4]. The heated wall warms up the adjacent fluid and
reduces the heat flux from the plate by thickening the
thermal boundary layer. On the other hand, the presence
of the heated wall could enhance the convection and thus
the heat exchange on the whole plate.

Such an intricated situation can be made clearer
through a slightly different point of view. Due to its con-
ductivity, the lateral wall close to the bottom plate is
warmer than the average fluid temperature on a height
λ which we estimate soon. This part of the wall acts as
an additional heat exchange area, a vertical one indeed.
Experimental studies [5,6] show that the Nusselt number,
when high enough, poorly depends on the angle between
the plate and horizontal. It is also poorly dependent on
the cell aspect ratio. Thus considering the height λ of the
wall as an additional heat exchange area allows to take
into account most of the aspects mentioned above. The
heat power Qcor passing through the plates boundary lay-
ers differs from the applied one Qmea to the bottom plate
as:

Qcor =
πR2

πR2 + 2πRλ
Qmea =

Qmea

1 + 2λ/R

for a cylindrical cell of radius R. Now to estimate λ, we
have to estimate the temperature profile T (z) in the wall.
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Fig. 1. Heat balance in the wall.

For a wall unit horizontal length, the heat balance of
a vertical height dz can be evaluated as (see Fig. 1):

χWe∂
2T/∂z2 − χf (T − To)/δ = 0

where χf (resp. χW) is the intrinsic heat conductivity of
the fluid (resp. wall material), e is the wall thickness, δ is
the wall thermal boundary layer width, and To the middle
fluid temperature [7]. This gives an exponential tempera-
ture profile and a characteristic length:

(χWeδ/χf )
1/2.

We have considered δ as constant with z which certainly is
an approximation. However, we simply need a character-
istic length. Let us assume that, constant or not, δ scales
with the thermal boundary layer on the plates: h/2Nu.
Then λ has to be proportional to:

(χWeh/2χfNu)1/2.

The empty cell heat conductivity is χWe2πR/h while the
quiescent fluid heat conductivity is χfπR

2/h. Their ratio
defines the wall number:

W = 2χWe/χfR

and we can write:

2λ/R = 2A
(

1
2Nu

2χWe

χfR

h

2R

)1/2

= A
√

2
(

W

ΓNu

)1/2

where Γ = 2R/h is the cell aspect ratio and A a constant
of order unity which may slightly vary with the aspect
ratio Γ .

Defining the measured Nusselt Numea as the one based
on the measured power supplied to the hot plate, Qmea,
the corrected Nusselt, Nucor, should be:

Nucor = Numea/(1 +A
√

2(
W

ΓNucor
)1/2).

This must be compared to the value generally pub-
lished Nupub:

Nupub = Numea −W.
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Fig. 2. Dependence of Nusselt with the wall number W .
×: 2 cm cell; squares: 20 cm cell, thick wall; circle: 20 cm
cell, thin wall; dashed line: traditional correction; full line: high
WΓNu limit of the present model.

3 Comparison with experiments

To test this model we used cryogenic helium gas cells with
aspect ratio Γ = 1/2. The walls are stainless steel tubes.
One cell is 2 cm high and the others are 20 cm high. One
of the 20 cm high cells has thicker walls than the others
to make its wall number comparable to the 2 cm high cell.
Plates are of high conductivity copper and much care has
been taken to ensure that the wall thickness is constant
along the whole height of the cell. Complete description
of the apparatus is given in reference [7].

We compared measurements in the range 109 < Ra <
5 × 109. According to most authors [1], the Nusselt de-
pendence on Ra can be fitted in this range by a power
law: Nu ∝ Raγ , with γ close to 0.3. All reasonable values
of γ give 5(γ−0.3) equal to 1 within 2% which means that
Nu/Ra0.3 should be constant in the considered range of
Ra with the same accuracy.

Figure 2 shows Numea/Ra
0.3 versus x =

√
W . The val-

ues cannot be considered as constant. Yet, the traditional
correction is too small (Nucor = Numea−W ) to account
for the observed variation.

The model discussed in the preceding section can be
fitted with the observed variation with A = 0.8. How-
ever, it is valid only when λ � δ which can be written
WΓNu � 1. For the lowest values of Nu and small val-
ues of W , this condition could not be satisfied. On the
other hand, when the wall conduction is poor, its tem-
perature is imposed by the fluid, and the correction then
corresponds to:

Numea = Nucor(1 +W ).

One can see that the formula:

Numea = Nucor(1 + f(W ))

with

f(W ) =
A2

ΓNu

(√
1 +

2WΓNu

A2
− 1

)
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Fig. 3. Data for four helium cells. Uncorrected: + Small cell
(2 cm). Corrected: N Small cell (W ' 3), � Large cell thick
walls (20 cm, W ' 3), o Large cells thin walls (W ' 0.6).

interpolates between f(W ) = W (small WΓNu) and
f(W ) = A

√
2( W
ΓNucor

)1/2 (large WΓNu). We propose it
as a general correction formula.

Figure 3 compares the corrected data of four different
cells as Nu/Ra0.3 versus Ra. All these cells have 1/2 as-
pect ratio and work with low temperature gaseous helium.
One is 2 cm high, and has W ' 1.5− 4. Uncorrected data
for this cell are also shown. The others are 20 cm high.
One of them has W ' 3.3. The two others have W ' 0.6.
The comparison shows that all these results nearly agree
after the correction.

4 Concluding remarks

The present analysis has numerous consequences. First,
it can explain some surprising results and discrepancies.
For instance, published experiments seem to show that,
for Ra = 109, the Nusselt number is constant if not
slightly increasing when the aspect ratio decreases, down
to Γ = 1/2. Introducing crossed insulating walls in a 1
aspect ratio cell can turn it into four 1/2 aspect ratio
cells. The preceding result means that doing so, the total
heat flux does not decrease, which is surprising. Indeed,
f(W ) increases when Γ decreases, which can explain this
spurious result. In addition, the discrepancies between he-
lium and water results on the Nusselt value for Ra = 109

is intriguing. The helium values are systematically higher
than the water one (Γ = 1;Nu ' 60; [10–13]), the highest
being the one reported by the Chicago group for Γ = 1
(Nu = 80 [8]). Indeed, the wall number for this experi-
ment was 3.5, which gives f(W ) = 0.27 while the standard
value of W = 0.6 for other (Γ = 1/2) helium cells [8,9,14]
gives f(W ) = 0.14. On the other hand, the high thermal
conductivity of water makes W to be generally small.

Second, going back to Figure 3, one can observe that
beyond the soft-hard turbulence regime (Ra > 108 for
Γ = 0.5, according to [15]) the corrected data are fitted
with a γ exponent Nu ∝ Raγ , γ ' 0.31 > 0.3, while the

Fig. 4. Influence of the wall effect on the observed effective
exponent: W = 0.65, 1.15, and 3.5.

uncorrected data give γ < 0.3. Indeed, and this is the most
important point in the present debate about high Rayleigh
numbers convection, a pure power law Nucor ∝ Ra0.31

gives a non linear log-log plot for Numea versus Ra. This
is important, as such non linear plots are presented [3] as
decisive arguments supporting a recent theory [2].

In Figure 4, we present the effective exponent

γeff =
dlnNumea

dlnRa

versus the Rayleigh number, assumingNucor = 0.1Ra0.31,
for various wall numbers W . This shows how controlling
the wall effect is important.

It should be noted that the corrected data are compat-
ible with recent numerical simulations (W=0) [16]. How-
ever, experiments exist, claiming a 2/7 value for γ, in
which the wall conduction cannot be incriminated (direct
measurement of the thermal layer). This point needs a
clarification [17,18] .

In summary, we propose a simple model for a realistic
estimate of the wall effect in Rayleigh-Bénard convection.
When the wall material is more conductive than the fluid,
this wall effect is controlled by the wall number W de-
fined as the ratio of the empty cell conduction to that of
the quiescent fluid. We find good agreement between the
predictions of the model and the controlled experiments
we made. It appears that the spurious effect of the wall
can explain some surprising accepted results. It can also
appear as a crossover between two scaling laws, spoiling
the experimental check of recent theories. Finally, it sug-
gests that the logarithmic slope of Nu versus Ra is closer
to 1/3 than often admitted.

We acknowledge correspondence with G. Ahlers and K.
Sreenivasan, and interesting discussions with R. Verzicco and
J. Niemela.
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