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Short note

Improved information on electron screening in 7Li(p, α)α using
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Abstract. The available astrophysical S(E) factor data for the reaction 7Li(p, α)α at 10 < E < 1000 keV
exhibit an exponential increase at low energies due to the effects of electron screening. A parametrisation
of the data using a non-resonant, direct process and two subthreshold resonances reproduces the data
at energies E ≥ 100 keV, while at lower energies this calculated Sb(E) factor curve for bare nuclides
drops below the data, which in turn represent the case of electron-shielded nuclides, i.e. the electron-
shielded Ss(E) factor. The comparison between Sb(E) and Ss(E) leads to an electron-screening potential
energy Ue = 350 eV, which is much higher than the adiabatic limit of 175 eV and not understood at
present. The deduced value of Sb(0) is considerably smaller than the previously adopted value of 59 keV b,
significantly increasing the calculated abundance of 7Li in big-bang nucleosynthesis. The Trojan-horse
method was applied to the reaction 7Li(p, α)α to determine the energy dependence of the Sb(E) factor
for 10 < E < 370 keV, free from the effects of the Coulomb barrier and electron screening. The THM
results are close to the calculated Sb(E) curve and suggest that the THM may become a powerful way
to obtain improved information on low-energy cross-sections and associated electron-screening effects in a
model-independent way.

PACS. 24.10.-i Nuclear-reaction models and methods – 25.40.-h Nucleon-induced reactions – 26.35.+c
Big bang nucleosynthesis

Accurate knowledge of thermonuclear reaction rates is
important for the field of nuclear astrophysics [1,2]. Due
to the Coulomb barrier of the entrance channel, the cross-
section σ(E) of these fusion reactions drops exponentially
with decreasing center-of-mass energy E,

σ(E) = S(E)E−1 exp(−2πη), (1)

where η is the Sommerfeld parameter and S(E) is the
astrophysical S-factor. The parametrisation assumes that
the Coulomb barrier is that resulting from bare nuclei.
However, for nuclear reactions studied in the laboratory,
the target nuclei and the projectiles are usually in the
form of neutral atoms or molecules and ions, respectively.
The resulting enhancement of the electron-screened cross-
section, σs(E), over that for bare nuclei, σb(E), is de-
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scribed by the expression [3–5]

flab(E) = σs(E)/σb(E) = Ss(E)/Sb(E) =
(E/E + Ue) exp(πηUe/E), (2)

where Ue is the constant electron-screening potential en-
ergy, and Ss(E) and Sb(E) refer to the respective S-
factor for screened and bare nuclides. Note that flab(E)
increases exponentially with decreasing energy. For ratios
E/Ue > 1000, shielding effects are negligible, and labora-
tory experiments can be regarded as essentially measuring
σb(E). However, for E/Ue < 100, shielding effects become
important: even relatively small enhancements from elec-
tron screening at energy ratios E/Ue = 100 can cause
significant errors in the extrapolation of cross-sections to
lower energies, if the curve of the cross-section is forced
to follow the trend of the enhanced cross-sections, with-
out correction for the screening. Note that for a stellar
plasma the value of σb(E) must be known because the
screening in the plasma will be quite different from that in
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the laboratory nuclear-reaction studies, i.e. σplasma(E) =
fplasma(E)σb(E), and σb(E) must be explicitly included at
each energy. A good understanding of electron-screening
effects is needed to arrive at reliable Sb(E) data at low
energies, and may also help to improve the corresponding
understanding of electron screening in a stellar plasma.

The exponential enhancement has been observed in
several fusion reactions [6–14], at energies from a few keV
to a few tens of keV (in the following we refer to these
data as “standard”). However, the observed enhancements
were much larger than the adiabatic limit, i.e., the dif-
ference in electron binding energies between the colliding
atoms and the compound atom. The most pronounced
excess has been reported for the 3He(d,p)4He reaction,
Ue = 186±9 eV [9], significantly larger than the adiabatic
limit Ue = 120 eV. A solution to the larger than expected
values of Ue might be found in one or more of the fol-
lowing areas: i) the assumed energy loss predictions from
stopping-power codes at low energies (e.g., [14–17] for the
d+3He system), ii) the assumed nuclear-reaction models
at energies far below the Coulomb barrier, and iii) the as-
sumed atomic-physics models. All of these areas require
additional experimental and theoretical efforts.

The 7Li(p, α)α reaction was studied—in the standard
way—using a proton beam and a 7Li solid target as well
as a 7Li beam and a H2 gas target ([7,18] and references
therein), where the resulting data are displayed in fig. 1.
A theoretical analysis of the data is missing, although
it was suggested [19] that such an analysis may have
to include a non-resonant, direct process as well as two
Jπ = 2+ subthreshold resonances at ER1 = −0.62MeV
and ER2 = −0.33MeV with total widths ΓR1 = 108 keV
and ΓR2 = 74 keV (8Be states at 16.63 and 16.92MeV
excitation energy). We have followed this suggestion in
a simple parametrisation of the data. Firstly, the reac-
tion can only proceed via p-waves in the entrance chan-
nel. For a non-resonant, direct process (DP) alone, the
p-wave centrifugal barrier leads to an S(E) factor falling
much steeper than the data (dotted curve in fig. 1). We
included thus the two p-wave subthreshold resonances and
the associated interference terms:

Sb(E) = SDP(E) + SR1(E) + SR2(E)

±2(SR1(E)SR2(E)
)1/2 cosΦR1,R2

±2(IRSDP(E)SR1(E)
)1/2 cosΦDP,R1

±2(IRSDP(E)SR2(E)
)1/2 cosΦDP,R2,

where the non-resonant, direct process is described by
SDP(E) = NPl=1(E)/Pl=0(E) (Pl(E) = penetrability for
s- and p-waves; N= free parameter) and the high-energy
tail of each subthreshold resonance is parametrised by
a Breit-Wigner expression [2], with the reduced proton
width θ2

l=1 taken as free parameter. The resonance phase
is described by ΦRi(E) = arctan(0.5ΓRi(E)/(E − ERi)),
where the energy dependence of the total width includes
the contributions of both the proton- and alpha-channels,
leading to ΦDP,Ri = ΦRi and ΦR1,R2 = ΦR1 − ΦR2. Fi-
nally, the factor IR = 5/16 represents a statistical fac-
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Fig. 1. Astrophysical S-factor of shielded nuclides, Ss(E), for
the reaction 7Li(p, α)α as obtained by standard measurements
(standard data = open circles). The dotted curve represents
the S-factor Sb(E) (bare nuclides) for a p-wave non-resonant,
direct process alone. The dashed curve is the Sb(E)-result of
a fit to the standard data at E ≥ 100 keV using the non-
resonant, direct process and two subthreshold resonances. The
solid curve is the S-factor for screened nuclei derived from
eq. (2) with Ue = 350 eV together with the Sb(E) dashed curve.
The data obtained by the Trojan-horse method (filled circles)
support the trend in the energy dependence of the calculated
Sb(E) curve.

tor between the Jπ = 2+ resonances and the possi-
ble angular momenta of the non-resonant, direct process
(Jπ = 0+ to 3+). A fit to the data at energies E ≥ 100 keV
(i.e., no significant effects of electron screening expected)
leads to the dashed curve in fig. 1, for the parameters
N = 0.55, θ2

l=1(R1) = 1.04, θ2
l=1(R2) = 0.13, and the

sign-combination −−+ of the 3 interference terms. At zero
energy one finds Sb(0) ≈ 40 keV b, which may be com-
pared with the adopted value Sb(0) = 59 keV b [7,18]. An
improved analysis is highly desirable since the present low
Sb(0) value leads to a higher calculated 7Li abundance in
big-bang nucleosynthesis [1,2] influencing the conclusions
on the universal baryon density. Assuming the validity of
the calculated Sb(E) curve, a comparison with the stan-
dard data at E ≤ 100 keV leads to Ue = 350 eV (solid
curve in fig. 1). This value is substantially higher than the
adiabatic limit (175 eV) and is not understood at present.
Since the standard measurements have also been carried
out in inverted kinematics with nearly identical results [7],
it is unlikely that the data are heavily influenced by in-
correct energy-loss values.

A possible way to test the calculated Sb(E) curve (i.e.
area ii) from above) is the so-called Trojan-horse method
(THM), which allows one to measure the energy depen-
dence Sb(E) down to the relevant low energies, free of
the effects of the Coulomb barrier and electron screening.
The principle of the THM has been discussed previously
([20] and references therein). Briefly, a particle a strikes a
nucleus A, where A is described by a wave function with
a large amplitude for a s-b cluster configuration. Under
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appropriate kinematic conditions the particle a then in-
teracts only with the part b of the target nucleus A, while
the other part s behaves as a spectator to the process
a + b(+s) → c+ d(+s). In order to completely determine
the kinematic properties of the spectator s, the energies
Ec and Ed of the two particles c and d must be measured
in coincidence at specific angles θc and θd, respectively.
In the plane-wave impulse approximation the three-body
cross-section may be expressed as

d3σ/dEc dΩc dΩd ∝ (KF)|Φ(ps)|2 dσN/dΩ, (3)

where KF is a kinematic factor containing the final-state
phase-space factor, |Φ(ps)|2 is the momentum distribution
of the spectator s inside the nucleus A, and dσN/dΩ is the
differential nuclear cross-section for the reaction a + b →
c + d. With the known terms KF and |Φ(ps)|2 one can
derive dσN/dΩ from a measurement of d3σ/dEc dΩc dΩd,
whereby integration over the solid angle leads finally to
the total cross-section σN(E). Furthermore, if the bom-
barding energy is chosen to be above the Coulomb barrier
in the incident channel of the reaction a+A → c+ d+ s,
the particle b can be brought into the nuclear interac-
tion zone to induce the reaction a + b → c + d. If the
Fermi motion of particle b inside A compensates at least
in part for the initial projectile velocity va, the reaction
a + b → c + d can be induced at a low relative energy
between a and b, relevant to nuclear astrophysics. Note
that the deduced reaction cross-section σN(E) is the nu-
clear part alone, since the Coulomb barrier has already
been overcome in the entrance channel. The correspond-
ing astrophysical SN(E) factor is then derived from the
relation SN(E) = EσN(E) [20], where SN(E) represents
the S-factor for bare nuclides, since the projectile energy is
above the height of the Coulomb barrier for the entrance
channel. Since S(E) as defined by eq. (1) contains the
term exp(2πη) representing approximately the tunneling
through the Coulomb barrier (for s-waves), a comparison
of SN(E) with the S(E) factor data from standard mea-
surements requires the introduction of the term exp(2πη)
and the actual transmission factor Tl=0(E),

Sb(E) = SN(E)Tl=0(E) exp(2πη). (4)

The absolute scale for Sb(E) is obtained by normalisation
of the THM data to the standard data at energies where
the effects of electron screening are negligible. Thus, the
energy dependence of Sb(E) should be identical to that
derived by the standard measurements, except at low en-
ergies, where the two data sets should differ due to the
effects of electron screening. In turn, the value of Ue can
then be obtained in a model-independent way by compar-
ing the two data sets.

The 7Li(p, α)α reaction was studied with THM, i.e.
using the reaction 2H(7Li,αα)n (A ≡ p-n cluster, s ≡
n = spectator) [20–22]. The observed energy dependence
of the broad resonance structures for 1 < E < 7MeV [18]
was well reproduced by the corresponding THM data [21].
The present THM data (fig. 1) differ somewhat from those
reported previously [20,22]: new data with higher statis-
tical accuracy have been obtained and the normalisation

to the direct data has been carried out in the energy re-
gion E = 100 to 370 keV. At energies above E = 100 keV
the standard and THM data agree within errors (after
normalising), supporting the validity of the THM (see
[21] for E ≥ 1MeV), while at lower energies the THM
data appear to support the trend in energy dependence
of the calculated Sb(E) curve for bare nuclides. It should
be noted that the THM data were obtained assuming a
dominant p-wave contribution, which needs to be verified
experimentally (such as done in the case of the reaction
6Li(d, α)α [23]).

Although it is not yet clear that all relevant compo-
nents of the THM have been included in current analyses,
the present work demonstrates how well the THM and
standard measurements complement one another in de-
termining both low-energy cross-sections and associated
electron-screening effects. Further work on the theoreti-
cal aspects of the THM and on comparisons with low-
energy data, as well as improved experimental data on
low-energy energy loss, are urgently needed before one
can have complete confidence in applying the THM to the
problem of determining astrophysically important nuclear
reaction cross-sections.

The authors thank C.A. Barnes for comments on the
manuscript, and G. Baur, H.H. Wolter, and S. Typel for con-
tinuous support on the theoretical analyses.
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