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Abstract. The probability P (∆∆) to find the ∆∆ component inside the deuteron, where ∆ stands for the
∆(1232) resonance, is calculated in the Nambu-Jona-Lasinio model of light nuclei. We obtain P (∆∆) =
0.3%. This prediction agrees well with the experimental estimate P (∆∆) < 0.4% at 90% of CL (D. Allasia
et al., Phys. Lett. B 174, 450 (1986)).

PACS. 11.10.Ef Lagrangian and Hamiltonian approach – 13.75.Cs Nucleon-nucleon interactions (including
antinucleons, deuterons, etc.) – 14.20.Dh Protons and neutrons – 21.30.Fe Forces in hadronic systems and
effective interactions

1 Introduction

As has been stated in ref. [1], nowadays there is a consen-
sus concerning the existence of non-nucleonic degrees of
freedom in nuclei. The non-nucleonic degrees of freedom
can be described either within QCD in terms of quarks
and gluons [2] or in terms of mesons and nucleon reso-
nances [3].

In this letter we investigate the non-nucleonic degrees
of freedom in terms of the ∆(1232) resonance and cal-
culate the contribution of the ∆∆ component to the
deuteron in the Nambu-Jona-Lasinio model of light nuclei
or differently the nuclear Nambu-Jona-Lasinio (NNJL)
model [4,5]. As has been shown in ref. [4] the NNJL
model is motivated by QCD. The deuteron appears in
the nuclear phase of QCD as a neutron-proton collec-
tive excitation, the Cooper np-pair, induced by a phe-
nomenological local four-nucleon interaction. The NNJL
model describes low-energy nuclear forces in terms of one-
nucleon loop exchanges providing a minimal transfer of
nucleon flavours from initial to final nuclear states and
accounting for contributions of nucleon-loop anomalies
which are completely determined by one-nucleon loop di-
agrams. The dominance of contributions of nucleon-loop
anomalies to effective Lagrangians of low-energy nuclear
interactions is justified in the large NC expansion, where
NC is the number of quark colours [4]. As has been shown
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in ref. [5] the NNJL model describes well low-energy nu-
clear forces for electromagnetic and weak nuclear reac-
tions with the deuteron of astrophysical interest such as
the neutron-proton radiative capture n + p → D + γ, the
solar proton burning p+p → D+e++νe, the pep-process
p + e− + p → D + νe and reactions of the disintegration
of the deuteron by neutrinos and antineutrinos caused by
charged νe + D → e− + p + p, ν̄e + D → e+ + n + n and
neutral νe(ν̄e) + D → νe(ν̄e) + n + p weak currents.

A phenomenological Lagrangian of the npD interaction
is defined by [4]

LnpD(x) = −igV[p̄(x)γµnc(x)n̄(x)γµpc(x)]Dµ(x), (1.1)

where Dµ(x), n(x) and p(x) are the interpolating fields
of the deuteron, the neutron and the proton. The phe-
nomenological coupling constant gV is related to the elec-
tric quadrupole moment of the deuteron QD = 0.286 fm:
g2
V = 2π2QDM

2
N [4], where MN = 940MeV is the nucleon

mass. In the isotopically invariant form the phenomeno-
logical interaction equation (1.1) can be written as

LnpD(x) = gVN̄(x)γµτ2N
c(x)Dµ(x), (1.2)

where τ2 is the Pauli isotopical matrix and N(x) is a
doublet of a nucleon field with components N(x) =
(p(x), n(x)), N c(x) = CN̄T(x) and N̄ c(x) = NT(x)C,
where C is a charge conjugation matrix and T is a trans-
position.

In the NNJL model [5] the ∆(1232) resonance is
the Rarita-Schwinger field [6] ∆a

µ(x), the isotopical in-
dex a runs over a = 1, 2, 3, having the following free La-
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grangian [7,8]:

L∆
kin(x) = ∆̄a

µ(x)
[
− (iγα∂α −M∆)gµν

+
1
4
γµγβ(iγα∂α −M∆)γβγ

ν

]
∆a

ν(x), (1.3)

where M∆ = 1232MeV is the mass of the ∆(1232) reso-
nance field ∆a

µ(x). In terms of the eigenstates of the elec-
tric charge operator the fields ∆a

µ(x) are given by [7,8]

∆1
µ(x) =

1√
2

(
∆++

µ (x)−∆0
µ(x)/

√
3

∆+
µ (x)/

√
3−∆−

µ (x)

)
,

∆2
µ(x) =

i√
2

(
∆++

µ (x) +∆0
µ(x)/

√
3

∆+
µ (x)/

√
3 +∆−

µ (x)

)
,

∆3
µ(x) = −

√
2
3

(
∆+

µ (x)

∆0
µ(x)

)
. (1.4)

The fields ∆a
µ(x) obey the subsidiary constraints:

∂µ∆a
µ(x) = γµ∆a

µ(x) = 0 [7–9]. The Green function of
the free ∆-field is determined by〈

0|T(∆µ(x1)∆̄ν(x2))|0
〉
= −iSµν(x1 − x2). (1.5)

In the momentum representation Sµν(x) reads [5–8]

Sµν(p) =
1

M∆ − p̂

(
− gµν +

1
3
γµγν

+
1
3
γµpν − γνpµ

M∆
+

2
3
pµpν

M2
∆

)
. (1.6)

The most general form of the πN∆ interaction compatible
with the requirements of chiral symmetry reads [7]:

LπN∆(x) =
gπN∆

2MN
∆̄a

ω(x)Θ
ωϕN(x)∂ϕπ

a(x) + h.c.

=
gπN∆√
6MN

[
1√
2
∆̄+

ω (x)Θωϕn(x)∂ϕπ
+(x)

− 1√
2
∆̄0

ω(x)Θ
ωϕp(x)∂ϕπ

−(x)

−∆̄+
ω (x)Θωϕp(x)∂ϕπ

0(x)

−∆̄0
ω(x)Θ

ωϕp(x)∂ϕπ
0(x) + · · ·

]
, (1.7)

where πa(x) is the pion field with the components π1(x) =
(π−(x) + π+(x))/

√
2, π2(x) = (π−(x) − π+(x))/i

√
2 and

π3(x) = π0(x). The tensor Θωϕ is given in ref. [7]:
Θωϕ = gωϕ − (Z + 1/2)γωγϕ, where the parameter Z
is arbitrary. The parameter Z defines the πN∆ coupling
off-mass shell of the ∆(1232)-resonance. There is no con-
sensus on the exact value of Z. From the theoretical point
of view Z = 1/2 is preferred [7]. Phenomenological studies

give only the bound |Z| ≤ 1/2 [9]. The value of the cou-
pling constant gπN∆ relative to the coupling constant gπNN

is gπN∆ = 2gπNN [10]. As has been shown in ref. [5] for the
description of the experimental value of the cross-section
for the neutron-proton radiative capture for thermal neu-
trons, the parameter Z should be equal to Z = 0.473.
This agrees with the experimental bound [9]. At Z = 1/2
we get the result agreeing with the experimental value of
the cross-section for the neutron-proton radiative capture
with accuracy about 3% [5].

For the subsequent calculations of the ∆∆ component
of the deuteron it is useful to have the Lagrangian of the
πN∆ interaction taken in the equivalent form

LπN∆(x) =
gπN∆

2MN
∂ϕπ

a(x)N̄ c(x)

×Θϕω∆a
ω(x)

c + h.c., (1.8)

where ∆a
ω(x)

c = C∆̄a
ω(x)

T. Now we can proceed to the
evaluation of the ∆∆ component of the deuteron.

2 Effective ∆∆D interaction

In the NNJL model we can understand the existence of the
∆∆ component of the deuteron in terms of the coupling
constants of the effective ∆∆D interaction.

In order to evaluate the Lagrangian of the effective
∆∆D interaction L∆∆D

eff (x), we have to obtain, first, the
effective Lagrangian of the transition N+N → ∆+∆. We
define this effective Lagrangian in the one-pion exchange
approximation [5,11]∫

d4xLNN→∆∆
eff (x) =

− g2
πN∆

8M2
N

∫ ∫
d4x1 d4x2

[
∆̄a

α(x1)ΘαβN(x1)
]

× ∂

∂xβ
1

∂

∂xϕ
1

[
δab∆(x1 − x2)

][
N̄ c(x2)Θϕω∆b

ω(x2)c
]
, (2.1)

where ∆(x1 − x2) is the Green function of π-mesons. In
terms of the Lagrangians of the npD interaction and the
N+N → ∆+∆ transition the Lagrangian of the effective
∆∆D interaction can be defined by∫

d4xL∆∆D
eff (x) =

− igV
g2

πN∆

4M2
N

∫
d4xd4x1d4x2Dµ(x)

× [
∆̄a

α(x1)ΘαβSF(x− x1)γµτ2S
c
F(x− x2)

×Θϕω∆a
ω(x2)c

] ∂

∂xβ
1

∂

∂xϕ
1

∆(x1 − x2), (2.2)

where SF(x− x1) and Sc
F(x− x2) are the Green functions

of the free nucleon and anti-nucleon fields, respectively.
Such a definition of the contribution of the ∆∆ com-

ponent to the deuteron is in agreement with that given
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L∆∆D
eff (x) = g∆∆D

[
∆̄a

α(x)Θ
αβγµΘβ

ωτ2∆
a
ω(x)

c
]
Dµ(x) + ḡ∆∆D

[
∆̄a

α(x)(Θ
αβγβΘ

µω +ΘαµγϕΘ
ϕω)τ2∆a

ω(x)
c
]
Dµ(x)

= −ig∆∆D

[
∆̄−

α (x)ΘαβγµΘβ
ω∆++

ω (x)c − ∆̄++
α (x)ΘαβγµΘβ

ω∆−
ω (x)c

+ ∆̄+
α (x)ΘαβγµΘβ

ω∆0
ω(x)

c − ∆̄0
α(x)Θ

αβγµΘβ
ω∆+

ω (x)c
]
Dµ(x)

− iḡ∆∆D

[
∆̄−

α (x)
(
ΘαβγβΘ

µω +ΘαµγϕΘ
ϕω

)
∆++

ω (x)c − ∆̄++
α (x)

(
ΘαβγβΘ

µω +ΘαµγϕΘ
ϕω

)
∆−

ω (x)c

+ ∆̄+
α (x)

(
ΘαβγβΘ

µω +ΘαµγϕΘ
ϕω

)
∆0

ω(x)
c − ∆̄0

α(x)
(
ΘαβγβΘ

µω +ΘαµγϕΘ
ϕω

)
∆+

ω (x)c
]
, (2.7)

by Niephaus et al. [12] in the potential model approach
(PMA).

For the evaluation of the effective Lagrangian
L∆∆D

eff (x) we would follow the large NC expansion ap-
proach to non-perturbative QCD [4]. In the large NC

approach to non-perturbative QCD with SU(NC) gauge
group at NC → ∞ the nucleon mass is proportional to
the number of quark colour degrees of freedom, MN ∼ NC

[13]. It is well-known that for the evaluation of effective
Lagrangians all momenta of interacting particles should
be kept off-mass shell. This implies that at leading or-
der in the large NC expansion corresponding to the 1/MN

expansion of the momentum integral defining the effec-
tive Lagrangian L∆∆D

eff (x) one can neglect the momenta
of interacting particles with respect to the mass of virtual
nucleons. As a result the effective Lagrangian L∆∆D

eff (x)
reduces to the local form and reads

L∆∆D
eff (x) =

gV
16π2

g2
πN∆

4M2
N

[
∆̄a

α(x)Θ
αµωτ2∆

a
ω(x)

c
]
Dµ(x), (2.3)

where the structure function Θαµω is given by the momen-
tum integral

Θαµω =
∫

d4k

π2i

1
M2

π − k2

×Θαβkβ
1

MN − k̂
γµ 1

MN + k̂
kϕΘ

ϕω. (2.4)

Integrating over k we obtain

Θαµω =
1
3

[
I1(MN)− 5

2
M2

NI2(MN)
]
ΘαβγµΘβ

ω

− 1
12

[
I1(MN)−M2

NI2(MN)
]

× (ΘαβγβΘ
µω +ΘαµγϕΘ

ϕω), (2.5)

where the quadratically, I1(MN), and logarithmically,
I2(MN), divergent integrals are determined by [4]

I1(MN) =
∫

d4k

π2i

1
M2

N − k2
=

2

[
Λ

√
M2

N + Λ2 −M2
Nln

(
Λ

MN
+

√
1 +

Λ2

M2
N

)]
,

I2(MN) =
∫

d4k

π2i

1
(M2

N − k2)2
=

2

[
ln

(
Λ

MN
+

√
1 +

Λ2

M2
N

)
− Λ√

M2
N + Λ2

]
. (2.6)

The cut-off Λ restricts from above 3-momenta of fluctuat-
ing nucleon fields. Since we have no closed nucleon loops,
the cut-off Λ cannot be determined by the scale of the
deuteron size rD ∼ 1/ΛD [4]. The natural value of Λ
is the scale of the Compton wavelength of the nucleon
�λN = 1/MN = 0.21 fm, i.e. Λ = MN.

We obtain the Lagrangian L∆∆D
eff (x) of the effective

∆∆D interaction in the form

see equation (2.7) above

where the effective coupling constants g∆∆D and ḡ∆∆D

read

g∆∆D = gV
7g2

πN∆

384π2

[
Λ√

M2
N + Λ2

(
1 +

2
7
Λ2

M2
N

)

− ln

(
Λ

MN
+

√
1 +

Λ2

M2
N

)]
,

ḡ∆∆D = −gV g2
πN∆

192π2

[
Λ√

M2
N + Λ2

(
1 +

1
2
Λ2

M2
N

)

− ln

(
Λ

MN
+

√
1 +

Λ2

M2
N

)]
. (2.8)

On-mass shell of the ∆(1232) resonance, i.e. in the case
of the PMA [1,12], the contribution of the parameter Z
vanishes and the effective ∆∆D interaction acquires the
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dΓ
(
D(P ) → ∆(p1)∆(p2)

)
= 8g2

∆∆D

dΦ∆∆(p1, p2)
6
√
s

(
− gµν +

PµPν

s

)

× tr

{
(M∆ + p̂1)

(
− gαβ +

1
3
γαγβ +

1
3
γαp1β − γβp1α

M∆
+

2
3
p1αp1β

M2
∆

)
γµ

×
(

− gαβ +
1
3
γβγα +

1
3
γβpα

2 − γαpβ
2

M∆
+

2
3
pβ
2p

α
2

M2
∆

)
(−M∆ + p̂2)γν

}
,

dΓ
(
D(P ) → n(p1)p(p2)

)
= 4g2

V

dΦnp(p1, p2)
6
√
s

(
− gµν +

PµPν

s

)
tr

{
(MN + p̂1)γµ(−MN + p̂2)γν

}
. (2.11)

form

L∆∆D
eff (x) = g∆∆Dg

αβ
[
∆̄a

α(x)γ
µτ2∆

a
β(x)

c
]
Dµ(x)

= −ig∆∆Dg
αβ

[
∆̄−

α (x)γµ∆++
β (x)c

− ∆̄++
α (x)γµ∆−

β (x)c + ∆̄+
α (x)γµ∆0

β(x)
c

− ∆̄0
α(x)γ

µ∆+
β (x)c

]
Dµ(x). (2.9)

We determine the total probability P (∆∆) to find the∆∆
component inside the deuteron as follows:

P (∆∆) =
dΓ (D → ∆∆)
dΓ (D → np)

, (2.10)

where dΓ (D → ∆∆) and dΓ (D → np) are the differen-
tial rates of the transitions D → ∆ +∆ and D → n + p,
respectively, defined by

see equation (2.11) above

We have denoted as P = p1 + p2 and P 2 = s the
4-momentum and the invariant squared mass of
the deuteron, respectively. Then, dΦ∆∆(p1, p2) and
dΦnp(p1, p2) are the phase volumes of the ∆∆ and np
states. The two-particle phase volume is equal to

dΦ(p1, p2) = (2π)4(P − p1 − p2)

× d3p1

(2π)32E1

d3p2

(2π)32E2
. (2.12)

At leading order in the large NC expansion, when we
can neglect the mass difference between the ∆(1232) res-
onance and the nucleon, the phase volumes dΦ∆∆(p1, p2)
and dΦnp(p1, p2) are equal

dΦ∆∆(p1, p2) = dΦnp(p1, p2) = dΦ(p1, p2). (2.13)

The differential rates dΓ (D(P ) → ∆(p1)∆(p2)) and
dΓ (D(P ) → n(p1)p(p2)) calculated at leading order in
the large NC expansion are given by

dΓ (D(P ) →∆(p1)∆(p2)) =
10
9

× 8× g2
∆∆D ×√

sdΦ(p1, p2),

dΓ (D(P ) →n(p1)p(p2)) =

4× g2
V ×√

s dΦ(p1, p2). (2.14)

Hence, the probability P (∆∆) to find the ∆∆ component
inside the deuteron amounts to

P (∆∆) =
10
9

× 2g2
∆∆D

g2
V

= 0.3%, (2.15)

where the numerical value is obtained at Λ = MN.
Our theoretical prediction agrees well with recent ex-

perimental estimate of the upper limit P (∆∆) < 0.4% at
90% of CL [14] quoted by Dymarz and Khanna [1].

3 Conclusion

The theoretical estimate of the contribution of the ∆∆
component to the deuteron obtained in the NNJL model
agrees well with the experimental upper limit. Indeed,
for the ∆(1232) resonance on-mass shell [1,12] we pre-
dict P (∆∆) = 0.3%, whereas experimentally P (∆∆) is
restricted by P (∆∆) < 0.4% at 90% of CL [14].

Off-mass shell of the ∆(1232)-resonance, where the pa-
rameter Z should contribute, our prediction for P (∆∆)
can be changed, of course. Moreover, due to Z dependence,
the contributions of the ∆∆ component to amplitudes of
different low-energy nuclear reactions and physical quan-
tities could differ from each other. However, we would like
to emphasize that in the NNJL model by using the ef-
fective ∆∆D interaction determined by eq. (2.7) one can
calculate the contribution of the ∆∆ component of the
deuteron to the amplitude of any low-energy nuclear re-
action with the deuteron in the initial or final state.

In our approach we do not distinguish contributions
of the ∆∆-pair with a definite orbital momentum 3S∆∆

1 ,
3D∆∆

1 and so on to the effective∆∆D interaction eq. (2.7).
The obtained value of the probability P (∆∆) should be
considered as a sum of all possible states with a certain
orbital momentum.

Our prediction P (∆∆) = 0.3% agrees reasonably well
with the result obtained by Dymarz and Khanna in the
PMA [1]: P (∆∆) � 0.4÷ 0.5%. Unlike our approach Dy-
marz and Khanna have given a percentage of the proba-
bilities of different states 3S∆∆

1 , 3D∆∆
1 and so to the wave

function of the deuteron. In our approach the deuteron
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couples to itself and other particles through the one-
baryon loop exchanges. The effective Lagrangian L∆∆D

eff (x)
of the ∆∆D interaction given by eq. (2.7) defines com-
pletely the contribution of the ∆∆ intermediate states to
baryon-loop exchanges. The decomposition of the effec-
tive ∆∆D interaction in terms of the ∆∆ states with a
certain orbital momentum should violate Lorentz invari-
ance for the evaluation of the contribution of every state
to either the amplitude of a low-energy nuclear reaction
or a low-energy physical quantity. In the NNJL model this
can lead to incorrect results. The relativistically covariant
procedure of the decomposition of the interactions like the
∆∆D one in terms of the states with a certain orbital mo-
menta is now in progress in the NNJL model. However,
the smallness of the contribution of the ∆∆ component
to the deuteron obtained in the NNJL model makes such
a decomposition applied to the ∆∆D interaction mean-
ingless to some extent due to impossibility to measure the
terms separately.

We are grateful to Prof. W. Plessas for discussions which stim-
ulated this investigation.
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