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Whole exome sequencing reveals a broader variant spectrum
of Charcot-Marie-Tooth disease type 2
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Abstract
Charcot-Marie-Tooth disease type 2 (CMT2) is a clinically and genetically heterogeneous inherited neuropathy. Although new
causative and disease-associated genes have been identified for CMT2 in recent years, molecular diagnoses are still lacking for a
majority of patients. We here studied a cohort of 35 CMT2 patients of Chinese descent, using whole exome sequencing to
investigate gene mutations and then explored relationships among genotypes, clinical features, and mitochondrial DNA levels in
blood as assessed by droplet digital PCR.We identified pathogenic variants in 57% of CMT2 patients. The most common genetic
causes in the cohort were MFN2 mutations. Two patients with typical CMT phenotype and neuromyotonia were detected to
harbor compound heterozygous variations in theHINT1 gene. In conclusion, our work supports that the molecular diagnostic rate
of CMT2 patients can be increased via whole exome sequencing, and our data suggest that assessment of possible HINT1
mutations should be undertaken for CMT2 patients with neuromyotonia.
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Introduction

Charcot-Marie-Tooth (CMT) is a clinically and genetically het-
erogeneous group of disorders that is the most frequent form of
inherited neuropathy [1]. Median motor nerve conduction veloc-
ities (MMNCVs) are used to classify CMT into either CMT1
(MNCV < 25 m/s), CMT2 (MNCV > 45 m/s), or ICMT
(25 m/s <MNCV < 45 m/s) [2]. The contribution of CMT2 to
all CMTcases ranges from 12 to 36% [3, 4]. The clinical features

are characterized by distal muscle weakness and atrophy, mild or
no sensory loss, depressed tendon reflexes, and deformity (e.g.,
pes cavus or clawed hands) Some cases could also present atyp-
ical symptoms such as hearing loss, pyramidal features, and optic
atrophy [5].

Approximately 100 causative genes of CMT have been re-
ported to date [3, 6], amongwhich over 50 loci have been related
to CMT2 (https://neuromuscular.wustl.edu/). The most common
subtype of CMT2 is CMT2A2A (phenotype MIM number:
609260), associated with MFN2 gene mutations [7]. However,
it has been estimated that genetic diagnosis of CMT2 was still
unclear in about 75% of clinically diagnosed CMT2 individuals
[8]. Moreover, owing to the genetic diversity, clinical
manifestations and genotype–phenotype correlation of CMT2
are also heterogeneous and complex.

The CMT2 pathogenic genes such asMFN2 (MIM# 608507)
and GDAP1 (MIM# 606598) encode outer mitochondrial mem-
brane proteins and were associated with mitochondrial fusion
and fission [7, 9]. It has been reported that MFN2 mutations
might cause compensatory mitochondrial DNA proliferation,
and patients withMFN2mutations have been reported to harbor
lower levels of mitochondrial DNA (mt-DNA) [10, 11].
Moreover, because of the dependence of axonal transport on a
high metabolic rate, many CMT2-causative genes, including the
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axonal architecture regulating genes such as HSPB1 (MIM#
602195), HSPB8 (MIM# 608014), RAB7 (MIM# 602298), and
axonal transport-related cytoplasmic dynein genes KIFIB
(MIM# 605995), DYNC1H1 (MIM# 600112), and NEFH
(MIM# 162230), may also be indirectly associated with mito-
chondrial function or dynamics [12–18].

Herein, 35 patients clinically diagnosed with CMT2 were
enrolled and received a molecular diagnosis based on whole
exome sequencing. We explored the impact of genotype on
clinical heterogeneity and severity of CMT2, and assessed
associations between disease severity and levels of mt-DNA.

Material and methods

Subjects

Thirty-five patients were enrolled in this study between 2004
and 2018. Neurological examinations were performed by two
neurologists at least at the Department of Neurology of the
First Affiliated Hospital of Fujian Medical University. The
ratio between patients with familial history and sporadic was
1:3.4 (8:27). Muscle strength was graded bilaterally from 0 to
5 according to the Medical Research Council scale (Medical
Research Council, 1976). Electrophysiological measurement
was carried out using standard techniques. CMT2 was diag-
nosed when the median motor nerve conduction velocity was
> 45 m/s and accompanied with clinical features. Compound
muscle action potential (CMAP) amplitudes were also taken
into account [19] Often, patients had decreased CMAP. The
Charcot-Marie-Tooth Neuropathy Score (CMTNS) was used
to evaluate disease severity [20]. Written informed consent
was obtained from all the patients included in this study.
This study was approved by the Ethics Committee of the
First Affiliated Hospital of Fujian Medical University.

Whole exome sequencing

Total genomic DNAwas extracted from the leucocyte fraction
of venous blood samples using standard techniques and ge-
netic analyses were performed with the whole exome
sequencing-based assay using the Illumina Hiseq2500 plat-
form (Illumina, USA). Clean reads were mapped to the human
reference genome (UCSC hg19 http://genome.ucsc.edu/) with
BWA (version 0.7.10, http://bio-bwa.sourceforge.net).
Duplicate sequence reads were removed by Picard (version
1.85; http://picard.sourceforge.net), and GATK (version 3.1,
https://software.broadinstitute.org/gatk/) was used to detect
variants. Variants were annotated by ANNOVAR software
(version 2015 Dec14, http://www.openbioinformatics.org/
annovar/), which includes functional implications and allele
frequency in several databases such as dbSNP138, 1000
Genomes (The 1000 Genomes Project Consortium; http://

browser.1000genomes.org), and ExAC (Exome Aggregation
Consortium; http://exac.broadinstitute.org/). Mutations were
predicted by SIFT (http://sift.jcvi.org/), PolyPhen-2 (http://
genetics.bwh.harvard.edu/pph2/), and MutationTaster (http://
www.mutationtaster.org/). Variants were interpreted
according to the American College of Medical Genetics and
Genomics (ACMG) recommended standards. Sanger se-
quencing was performed to validate the putative pathogenic
variants, allowing segregation analyses where possible.

Droplet digital PCR

Total genomic DNAwas extracted from whole blood samples of
35 CMT2 patients and 42 age-paired healthy controls in which
MFN2 and GDAP1 genes are expressed. The median age of
patients and normal controls were 25 and 28 years old, respec-
tively. The average cellular mitochondrial DNA content was
quantified using the QX200 Droplet Digital PCR (ddPCR™)
system (BioRad®, Hercules, CA, USA), with mitochondrial-
encoded NADH dehydrogenase 1 (MT-ND1) as the mitochon-
drial template and RPP30 as the nuclear-encoded housekeeping
template [21, 22]. For mt-DNA quantification, the primers and
probe targeting the MT-ND1 gene were as follows: forward,
CTAGCCGTTTACTCAATC; reverse, GGTGACTTCATATG
AGATTG; and Taqman probe, AGCATCAAACTCAA
ACTACGCCC attached to 5′FAM and 3′TAM fluorophores.
The primers and probe targeting ribonuclease P/MRP 30 kDa
subunit (RPP30) were synthesized as follows: forward,
GTGGTAGTGCATAGACTTTA; reverse, GTAGGAGG
ACATTTGAG; and the probe sequence was AGGCAGAC
TGACACTAGAGTTCAC with fluorescence labeling of 5′
HEX and 3′TAM. Droplet digital PCRwas performed according
to manufacturer’s instructions. Briefly, after PCR on a thermal
cycler, droplets from each sample were analyzed individually on
the QX200 droplet reader, where PCR-positive droplets were
read as mitochondrial DNA (MT-ND1 gene) or chromosomal
housekeeping genes (RPP30 gene) by issuing specific fluores-
cence signals (FAM for the ND1 gene and HEX for the RPP30
gene). Then, PCR-positive and PCR-negative droplets were
counted to provide absolute quantification of target DNA accord-
ing to Poisson’s algorithm and mt-DNA copy numbers of each
cell were quantified as the ratios ofMT-ND1/RPP30*2 [21, 23].

Statistical analysis

Comparisons of levels of mt-DNA between different groups
were performed using two-tailed paired Student’s t tests, un-
paired t tests, or one-way ANOVA. Linear regression and the
Pearson correlation analysis were performed between
CMTNS and levels of mt-DNA. Statistical analyses were per-
formed using GraphPad Prism 7 (USA, GraphPad Software).
p < 0.05 was considered as statistically significant.
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Results

Clinical features

Based on clinical features and electrophysiological measure-
ments, 35 patients were enrolled in this study. The ratio of
males (23/35; 34.3%) to females (12/35; 65.7%) was 1.9:1.
The median age of onset was 13 years (ranging from 1 to 62).
Most patients (71.4%; 25/35) developed initial symptoms in
their childhood or adolescence (Fig. 1a).

Among the 35 patients, 91.4% (32/35) cases devel-
oped muscle weakness in lower limbs, of which 10
(28.6%) patients also had weakness in the upper limbs.
Other signs included distal muscle atrophy (60%),
hyporeflexia (71.4%), foot deformity (37.1%), and sen-
sory disturbance (20%). In addition to these common
symptoms, atypical manifestations also appeared in sev-
eral cases: two patients revealed difficulties in flexing
their fists after a strong voluntary hand contraction, dat-
ing back from childhood, which is a clinical presenta-
tion of neuromyotonia; three patients experienced differ-
ent degrees of hearing loss.

CMTNSwas applied to evaluate severity of disease. Linear
regression and the Pearson correlation analysis were used to

analyze the correlation between CMTNS and disease dura-
tion. The result indicated a positive correlation (r = 0.3846;
p = 0.0297, Fig. 1b), meaning that participants with a longer
course tended to have a higher CMTNS score. Among pa-
tients whose course of disease was more than 20 years, the
median score of CMTNS was 12.

Genetic findings

We detected pathogenic variants in 20 cases (57%)
(Fig. 2a). Three of these patients had genetic causes pre-
viously reported for CMT2, including HSPB1 (MIM#
602195) (NM_001540: c.539C > T (p.Thr180Ile)), GARS
( M IM # 6 0 0 2 8 7 ) ( NM _ 0 0 2 0 4 7 : c . 7 6 7 A > G
(p .H i s256Arg ) ) , a nd GDAP1 (MIM# 606598 )
(NM_018972: c.1415A > G (p.His472Arg)). YARS
(M IM# 6 0 3 6 2 3 ) ( NM_0 0 3 6 8 0 : c . 1 0 7 9C > A
(p.Pro360Gln)) which was classified as variants with un-
certain significant pathogenicity according to ACMG was
also identified in one patient (Table 1). The most common
genetic causes in this group were in MFN2; these
accounted for 42.9% of all patients in our cohort (15/
35). In total, 86.6% (13/15) of the MFN2 variants were
located in the GTPase domain (exon 4 to exon 8). The
most frequent var iant , c .280C > T (p.Arg94Trp)
(NM_014874), was detected in exon 4 (Fig. 2b). Four
patients shared this variant and three of them were from
the same family. Among the patients with variants identi-
fied in MFN2 gene, seven cases have familial history. The
next most common causative gene after MFN2 was
HINT1; two patients were identified with compound het-
erozygous mutations in the HINT1 gene (MIM# 600112)
( N M _ 0 0 5 3 4 0 . 6 : p . G l y 9 3 A s p & Va l 9 7 M e t ;
p.Gly93Asp&Cys38Arg). In addition to the 20 aforemen-
tioned molecularly diagnosed CMT2 cases, fifteen cases
have not yet been associated with disease-causative genes.

The association between the levels of mt-DNA
and CMT1 severity

We quantified levels of mt-DNA from all 35 axonal CMT
patients and age-paired healthy controls and compared
them, but no significant difference was observed
(Fig. 3a). To explore the possible influence of MFN2
and GDAP1 gene mutations on the levels of mt-DNA,
data from patients with pathogenic variants in MFN2
and GDAP1 were compared with normal controls.
However, there was no significant difference. Similarly,
there was no significant difference in mt-DNA levels be-
tween patients with other causative genes and normal con-
trols (Fig. 3b). To further explore the association between
the levels of mt-DNA and disease severity, the correlation
between CMTNS of CMT2 patients and levels of mt-

Fig. 1 Clinical characteristics of patients with axonal CMT. a The
distribution of onset ages. b The correlation between disease courses
and CMTNS
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Fig. 2 The distribution of pathogenic variants. a Results of genetic findings of axonal CMT. b Variants identified in theMFN2 gene. GTPase, GTPase
domain; Cc1, coiled-coil domain 1; TM, transmembrane domain; Cc2, coiled-coil domain 2

Table 1 The distribution of variants in CMT2 patients

Patient Inheritance Gene Nucleotide
mutation

Protein
alteration

HGMD ClinVar ExAC MutationTaster PolyPhen ACMG Evidence of
pathogenicity

P1 AD MFN2 c.134A >G p.Gln45Arg Yes No 0 D B P 1*PS, 2*PM, 3*PP

P2 AD MFN2 c.281G >A p.Arg94Glin Yes Yes 0 D D P 1*PS, 2*PM, 3*PP

P3 AD MFN2 c.280C > T p.Arg94Trp Yes Yes 0 D D P 1*PS, 2*PM, 3*PP

P4 AD MFN2 c.280C > T p.Arg94Trp Yes Yes 0 D D P 1*PS, 1*PM, 4*PP

P5 AD MFN2 c.280C > T p.Arg94Trp Yes Yes 0 D D P 1*PS, 1*PM, 4*PP

P6 AD MFN2 c.280C > T p.Arg94Trp Yes Yes 0 D D P 1*PS, 1*PM, 4*PP

P7 AD MFN2 c.614T > C p.Val205Ala No No 0 D B P 1*PS, 2*PM, 3*PP

P8 AD MFN2 c.776G >A p.Arg259His Yes Yes 1 D PD P 1*PS, 1*PM, 4*PP

P9 AD MFN2 c.827A >G p.Gln276Arg Yes Yes 0 D D P 1*PS, 1*PM, 4*PP

P10 AD MFN2 c.827A >G p.Gln276Arg Yes Yes 0 D D P 1*PS, 1*PM, 4*PP

P11 AD MFN2 c.839G >A p.Arg280His Yes Yes 1 D D P 1*PS, 2*PM, 3*PP

P12 AD MFN2 c.839G >A p.Arg280His Yes Yes 1 D D P 1*PS, 2*PM, 3*PP

P13 AD MFN2 c.1090C > T p.Arg364Trp No Yes 0 D D P 1*PS, 2*PM, 3*PP

P14 AD MFN2 c.1090C > T p.Arg364Trp No Yes 0 D D P 1*PS, 2*PM, 3*PP

P15 AD MFN2 c.776G >A p.Arg259His Yes Yes 1 D D P 1*PS, 2*PM, 3*PP

P16 AR HINT1 c.278G >A p.Gly93Asp Yes Yes 3 D D P 1*PS, 2*PM, 3*PP

c.289G >A p.Val97Met No Yes 0 D D P 1*PS, 2*PM, 3*PP

P17 AR HINT1 c.278G >A p.Gly93Asp Yes Yes 3 D D P 1*PS, 2*PM, 3*PP

c.112T > C p.Cys38Arg No Yes 1 D D P 1*PS, 2*PM, 3*PP

P18 AD HSPB1 c.539C > T p.Thr180Ile Yes Yes 0 D B P 1*PS, 2*PM, 3*PP

P19 AD YARS c.1079C >A p.Pro360Gln No No 7 D B VUS 1*PS, 1*PP

P20 AR GDAP1 c.767A >G p.His256Arg Yes No 0 D D P 1*PS, 2*PM, 3*PP

P21 AD GARS c.1415A>G p.His472Arg Yes Yes 0 D D P 1*PS, 2*PM, 3*PP

Arabic numeral before “*” means the number of corresponding pathogenic criterion

AD, autosomal dominant inheritance; AR, autosomal recessive inheritance; Yes, reported; No, not reported;D, damage; B, benign; PD, possible damage;
P, pathogenic; LP, likely pathogenic; VUS, variants of uncertain significance; PS, pathogenic criterion weighted as strong; PM, pathogenic criterion
weighted as moderate; PP, pathogenic criterion weighted as supporting
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DNA was evaluated. The results showed trend of negative
correlation between CMTNS scores and levels of mt-
DNA (r = − 0.1611; p = 0.3705) (Fig. 3c).

Discussion

In this study, whole exome sequencing identified known
casual mutations in the MFN2, HINT1, HSPB1, GDAP1,
and GARS genes in a cohort of 35 CMT2 patients with
a total mutation detection rate of 57% (20/35).

According to previous research, the mutation detection
rate in our study was similar to the CMT cohorts re-
ported in Spain (62.6%) and higher than other CMT
groups in Japan (22.9%), Korea (13.3%), and the UK
(25.2%) (Table 2) [24–30]. In our data, mutations in the
MFN2 gene were the most common genetic cause; this
frequency was higher than that reported in other co-
horts, where the frequency was reported to be in the
range of 17–23%. The higher mutation rate for MFN2
may be due to our strict control of the enrollment of
CMT2 patients, which was based on their clinical fea-
tures and electrophysiology (MMNCV > 45 m/s instead
of > 38 m/s), which excluded intermediate CMT accord-
ing to Berciano et al. who provided a proposed algo-
rithm of the electrophysiological approach when inves-
tigating a patient with presumptive intermediate CMT
[19]. About half of the patients with MFN2 gene muta-
tion have familial history. For the reason that most of
the patients were from the same province, there may be
some particular founder effect that cause the higher mu-
tation. But our sample size was limited, it lacks suffi-
cient clue to evaluate the probability. However, GDAP1
was the most frequent causative gene in Spain and sim-
ilarly for MPZ in Korea and GJB1 in Germany and
Italy [31–34]. We identified GDAP1-related CMT2 with
a mutation frequency of 2.9%, and no variants were
identified in the MPZ or GJB1 genes. This may be
related to our exclusion of cases with MNCV lower
than 45 m/s, whereas other cohorts included patients
with MNCV > 38 m/s.

Our findings highlight that that the distribution of
CMT2-associated genes can be highly heterogeneous in
different populations. In general, five genes, MFN2,
GDAP1, MPZ, GJB1, and HSPB1, were the leading rea-
sons for CMT2 in most cohorts and GDAP1 mutations
may be more commonly distributed in European popu-
lations in Italy (14.5%) and Spain (25.8%) than in
China [26, 35]. Moreover, mutations in the HINT1 gene
were identified as the second most prevalent genetic
cause for CMT2 in our study, yet mutations in this gene
were rarely reported among other CMT2 cohorts.

We found that most CMT2 cases present with the
typical CMT phenotype, and noted the presence of sev-
eral mutation-specific phenotypic clues that may be use-
ful for clinicians in directing future diagnosis [2, 5].
Specifically, the four CMT2A2A patients with MFN2
mutations experienced severe weakness of the distal
muscles, extending to the upper limbs. But in previous
studies, in addition to the typical CMT phenotype,
CMT2A2A presents with atypical manifestations such
as pyramidal features [5], optic atrophy [36], or retinitis
pigmentosa; these manifestations were not present in our
CMT2A2A patients.

Fig. 3 Mitochondrial DNA copy number analysis in different groups. a
Comparison between normal controls and patients with CMT2. b
Comparison of normal controls and the groups with identified variants
in MFN2 and GDAP1 genes and other disease-causing genes. c The
correlation between CMTNS of CMT2 patients and levels of mt-DNA

Neurogenetics (2020) 21:79–86 83



In addition, two patients with compound heterozygous mu-
tations in the HINT1 gene both experienced neuromyotonia at
early ages. To date, only 81 CMT2 patients (including our
study) with HINT1 mutations have been reported globally,
and the frequency of these mutations was higher in our cohort
than in European cohorts [37–45] (Supplementary Table 1).
About 71.6% of the patients with HINT1 mutations exhibited
neuromyotonia, a striking clinical and electrophysiological
hallmark that can help to distinguish this disease and guide
diagnostic screening [46]. Thus, it is recommended that for
patients with difficulties flexing their fists or muscle stiffness,
testing for HINT1 mutations should be an early diagnostic
choice. Notably, we did not identify causal mutations for three
of the CMT2 patients with hearing loss, and it is conceivable
that they may share a common but as-yet-undiscovered path-
ogenic mechanism.

CMT2 is known to frequently feature abnormal mitochon-
dria, including continuous changes in the position, size, shape,
and levels of mt-DNAwithin cells [10, 11, 47, 48]. Our results
indicated that in CMT2 patients with increased disease sever-
ity based on CMTNS, the levels of mt-DNA may decrease.
Many CMT2-causative genes are directly or indirectly physi-
ologically involved in mitochondrial function or dynamics.
For example, the MFN2 and GDAP1 proteins are localized to
the mitochondrial outer membrane. Results from Sitarz et al.
(2012) indicated that CMT2A2A patients (n = 58) withMFN2
mutations exhibited compensatory mitochondrial DNA prolif-
eration in blood [10]. Here, we used ddPCR to quantify levels
of mt-DNA; however, we found no significant differences be-
tween normal controls and (i) the CMT2 patients generally or
(ii) CMT2 patients with MFN2 and GDAP1 mutations. This
may relate to the relatively small size of our CMT2 patient

cohort. However, it could be possible that lower mt-DNA in
blood could correlate with severity not only in MFN2 and
GDAP1 cases but also with other CMT2 patients in a larger
cohort. Thus, any influence of CMT2-causative genes and mt-
DNA levels will require further exploration.

In conclusion, the molecular diagnostic rate of CMT2 pa-
tients increased with the use of whole exome sequencing in
our data, and we suggest that HINT1 mutations should be
assessed for CMT2 patients with neuromyotonia. Moreover,
we found that levels of mt-DNA may be associated with
CMT2 severity, which requires further exploration.
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Table 2 The distribution of mutations in CMT2 patients

Origin Asia Europe

Ref Our study
(n = 35)

Japan, 2019
(n = 682)

Japan, 2011
(n = 127)

Korea, 2016
(n = 30)

UK, 2012
(n = 115)

German, 2013
(n = 151)

Norway, 2013
(n = 193)

Spain, 2013
(n = 163)

Italy, 2014
(n = 55)

MFN2 42.8% 8.5% 11.0% 3.3% 10.4% 7.9% 5.7% 2.5% 3.6%

HINT1 5.7% – – – – – – – –

HSPB1 2.9% 1.9% – – 1.7% – – 4.3% 1.8%

GARS 2.9% 0.3% 0.8% – – 1.3% – 0.6% –

GDAP1 2.9% 1.2% 0.8% – 0.8% – – 25.8% 14.5%

MPZ – 2.1% 4.0% 6.6% 0.8% 1.3% 1.0% 6.1% 5.4%

GJB1 – 1.8% 4.7% – 7.0% 10.6% 1.5% 19% 18%

NEFL – 0.4% – – – – 0.5% 1.8% –

Others – 6.7% – 3.4% 4.5% 11.9% – 2.5% 3.9%

Total 57.2% 22.9% 21.3% 13.3% 25.2% 33% 8.7% 62.6% 47.2%

–, no available information; n, numbers of CMT2 patients
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