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De novo missense variants in PPP2R5D are associated
with intellectual disability, macrocephaly, hypotonia, and autism
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Abstract Protein phosphatase 2A (PP2A) is a heterotrimeric
protein serine/threonine phosphatase and is involved in a
broad range of cellular processes. PPP2R5D is a regulatory
B subunit of PP2A and plays an important role in regulating
key neuronal and developmental regulation processes such as
PI3K/AKT and glycogen synthase kinase 3 beta (GSK3β)-
mediated cell growth, chromatin remodeling, and gene tran-
scriptional regulation. Using whole-exome sequencing
(WES), we identified four de novo variants in PPP2R5D in
a total of seven unrelated individuals with intellectual disabil-
ity (ID) and other shared clinical characteristics, including
autism spectrum disorder, macrocephaly, hypotonia, seizures,
and dysmorphic features. Among the four variants, two have
been previously reported and two are novel. All four amino
acids are highly conserved among the PP2A subunit family,
and all change a negatively charged acidic glutamic acid (E) to
a positively charged basic lysine (K) and are predicted to
disrupt the PP2A subunit binding and impair the dephosphor-
ylation capacity. Our data provides further support for
PPP2R5D as a genetic cause of ID.
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Introduction

Intellectual disability (ID) and autism spectrum disorder
(ASD) are common neurodevelopmental disorders that occur
in ~1 % of the general population. Identifying the etiology of
ID andASD remains challenging due to disease heterogeneity.
Whole-exome sequencing (WES) provides an effective strat-
egy to identify de novo mutations, which account for a signif-
icant portion of ID and ASD [1, 2].

Protein phosphatase 2A (PP2A) is an abundant, multifunc-
tional heterotrimeric serine/threonine-specific phosphatase,
which is involved in >90 % of all Ser/Thr phosphatase activ-
ities together with protein phosphatase 1 (PP1) [3, 4]. Protein
phosphorylation is a major mechanism for the regulation of
key processes and signaling pathways, and dysregulation of
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phosphatases has been implicated in ID and other develop-
mental disorders [5, 6]. Mutations in IGBP1 (Alpha 4), a reg-
ulatory subunit of protein phosphatase 2, 4, and 6, have been
identified in patients with agenesis of corpus callosum, ID,
and other developmental disorders [7, 8].

PPP2R5D (HGNC: 9312) encodes B56δ, a regulatory sub-
unit B of PP2A [9], which controls the involvement of PP2A
in negative regulation of the PI3K/AKT signaling pathway
and the regulation of tau phosphorylation via modulation of
cyclin-dependent kinase 5 (CDK5) and glycogen synthase
kinase 3 beta (GSK3β) activities [10] and other key ID-
associated cellular processes [11, 12]. Mutations in the
PP2A regulatory subunit B family genes PPP2R5B,
PPP2R5C, and PPP2R5D, as well as its scaffolding Aα sub-
unit PPP2R1A, have been recently reported to be associated
with developmental disorders, autism, overgrowth, and ID
[13–17]. In the present study, we performed clinical WES in
2790 individuals with ID and related neurodevelopmental dis-
orders and identified four independent, de novo, predicted
pathogenic variants in PPP2R5D in a total of seven individ-
uals. Our study underscores the importance of the protein
phosphatase family in neurodevelopmental processes and pro-
vides confirmation in a large series that PPP2R5D is a gene
associated with neurodevelopmental disorder and ID.

Materials and methods

Consent

Informed consent was obtained from all participants included
in this study, including any identifying information included.
This study was approved by the Institutional Review Board of
Columbia University.

Whole-exome sequencing

Whole-exome sequencing was performed as described previ-
ously [18]. Briefly, genomic DNA extracted fromwhole blood
was fragmented, and exomes were captured using the Agilent
SureSelect Human All Exon V4 (50 Mb) kit (Agilent
Technologies, Santa Clara, CA). The final isolated DNA prod-
ucts were sequenced using the Illumina HiSeq 2000 or 2500
sequencing system with 100-bp paired-end reads (Illumina,
San Diego, CA). DNA sequence was mapped to the human
genome reference sequence human assembly hg19/GRCh37
using Burrows-Wheeler Aligner (BWA) with the latest inter-
nally validated version at the time of sequencing, progressing
from BWA v0.5.8 through BWA-Mem v0.7.8 [19]. Targeted
coding exons and splice junctions of known protein-coding
RefSeq genes were assessed for average depth of coverage
with a minimum depth of 10× required for inclusion in down-
stream analysis. Local realignment around insertion-deletion

sites was performed using the Genome Analysis Toolkit v1.6
[20]. Variant calls were generated simultaneously on all se-
quenced family members using SAMtools v0.1.18 [19]. All
coding exons and surrounding intron/exon boundaries were
analyzed. Whole-exome sequence data for all sequenced fam-
ily members was analyzed using GeneDx’s XomeAnalyzer (a
variant annotation, filtering, and viewing interface for WES
data), and variants were filtered based on inheritance patterns,
gene lists of interest, phenotype, and population frequencies,
as appropriate with resources listed previously [18]. The gen-
eral assertion criteria for variant classification are publicly
available on the GeneDx ClinVar submission page (http://
www.ncbi.nlm.nih.gov/clinvar/submitters/26957/).
Additional searches were performed using specific gene lists
related to the probands’ clinical features. Identified PPP2R5D
variants were confirmed in all family members with a new
DNA preparation by di-deoxy Sanger sequencing using an
ABI3730 (Life Technologies, Carlsbad, CA).

Protein structure analysis

Homology modeling of PPP2R5D was carried out using the
program MODELLER [21] based on the structure of
PPP2R5C and using an alignment generated by the program
HHblits [22]. Modeling of the E420K variant was carried out
with the program SCAP [23]. Calculation of the electrostatic
potential and its visualization on the protein surface were car-
ried out using the program GRASP2 [24].

Results

Exome sequencing was performed in 2790 probands with
developmental delay and/or ID, with or without additional
clinical features. Seven individuals (0.25 %) were found to
have de novo pathogenic variants in PPP2R5D and produced
an average of ~11 GB of sequence per sample. Mean coverage
of captured regions was ~130× per sample, with >97 % cov-
ered with at least 10× coverage, an average of 90 % of base
call quality of Q30 or greater, and an overall average mean
quality score of >Q35. Common single nucleotide polymor-
phisms (SNPs) (>10 % frequency present in 1000 Genomes
database and subsequently further curated for alleles with
<1 % frequency) were filtered out and remaining data ana-
lyzed for de novo and inherited rare variants. We evaluated
152 genes (169 unique sequence changes) of interest in these
seven cases with an average of 24 variants per case.

Seven unrelated probands from seven families were
identified with four de novo variants in PPP2R5D.
None of the four variants are present in ExAC database,
the Database of Single Nucleotide Polymorphisms
(dbSNP, http://www.ncbi.nlm.nih.gov/SNP/), 1000
Genomes (http://www.1000genomes.org/), Exome
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Variant Server (ESP), or in a local database of over
15,000 control exomes. All four variants change a
highly conserved negatively charged glutamic acid (E)
residue to positively charged lysine (K) and are predict-
ed to have a pathogenic effect by various algorithms
(Table 1). Two of the variants we identified, E198K
and E200K, have been reported in previous studies of
developmental disorders, overgrowth, autism, and intel-
lectual disability [13, 15–17]. The E197K and the recur-
rent E420K variant have not been previously reported.

Clinically, these seven individuals with de novo PPP2R5D
variants range in age from 22 months to 15 years, and all have
some degree of developmental delay and/or ID (Table 2). All
individuals demonstrated delayed walking as well as signifi-
cantly delayed speech, with the majority being non-verbal or
speaking only single words. Developmental quotient (DQ)/
intelligence quotient (IQ) ranges from Bmild^ to Bsevere^
(DQ<50 to IQ of 54). Hypotonia was a consistent feature in
all seven individuals, and all but one of the individual also had
macrocephaly (occipital frontal circumference >97th percen-
tile for age). Five out of six individuals old enough to be
diagnosed were affected with ASD. Four children had unusual
habits or behavioral issues including stereotypic behavior,
trouble adjusting to new situations, tantrums, aggressiveness,
and problems with impulse control. Less commonly observed
features were ophthalmologic abnormalities (5/7), brain ab-
normalities (4/6), ataxia or unsteady gait (2/7), scoliosis
(2/7), and seizures (1/7).Mild dysmorphic features were noted
in six individuals and included a long face, plagiocephaly, and
downslanting palpebral fissures (Fig. 1). Some individuals
also had birth defects, including one individual with a submu-
cosal cleft palate and two individuals with congenital heart
defects (atrial and ventricular septal defect, bicuspid aortic
valve). Individual 2 also had a de novo variant in the SOS1
gene, which is associated with Noonan syndrome 4 [25].
Individual 3 also had a de novo variant in the DCAF7 gene,
which has not been associated with a phenotype in humans. It

has been suggested in the literature that this gene may be
involved with left-right asymmetry [26], but this individual
does not exhibit any asymmetry. Individual 4 also had a de
novo variant in the CACNA1H gene. Evidence has shown that
the susceptibility to childhood absence epilepsy-6 [27] and
idiopathic generalized epilepsy-6 can be conferred by varia-
tion in the CACNA1H gene [28]. These candidate genes were
excluded as disease causative in these individuals based on
gene functions and lack of phenotypic correlation.

Based on the functional studies of Houge et al., E198K and
E200K disrupt the PP2A holoenzyme subunit binding and im-
pair the dephosphorylation of specific substrates [17]. One of the
new variants we identified, E197K, is also located in the highly
conserved acidic B56δ loop, which is essential for holoenzyme
formation. Based on the biochemical data for E198K and
E200K, A-C binding could be disturbed by the E197K variant,
with the substitution of a positively charged lysine (K) for the
negatively charged glutamic acid (E) in the acidic B56δ loop.

Among the seven cases, three of the patients have a de
novo E420K variant, which has not been reported in previous
cohorts. E420 is located outside of the A-C binding loop but is
positioned near the active site of the catalytic subunit and is on
the surface (Fig. 2) implying that mutation to lysine could be
accommodated with little disruption of the structure of the
regulatory subunit itself, similar to the other variants.
However, as shown in the figure, the charge reversal dramat-
ically changes the electrostatic character of the protein-protein
surface near the active site of the holoenzyme, suggesting that
the functional effects are also similar, either disrupting holo-
enzyme formation or substrate recognition.

Discussion

We have identified PPP2R5D as a gene associated with
ID and ASD. We identified four de novo missense

Table 1 Predicted pathogenicity and allele frequencies of PPP2R5D variants

Mutation Position SIFT PROVEAN Polyphen
(HDIV
score)

Mutation
taster

MetaSVM CADD
phred

ExAC
allele
frequency

1000
Genomes
allele
frequency

EVS
allele
frequency

XomeDx
allele
frequency

p.E197K Chr6:42975000G>A Damaging
(0.001)

Deleterious
(−3.77)

Damaging
(0.999)

Disease
causing
(1)

Deleterious
(0.3599)

22.5 0 0 0 0

p.E198K Chr6:42975003G>A Damaging
(0)

Deleterious
(−3.82)

Damaging
(1)

Disease
causing
(1)

Deleterious
(0.4031)

22.5 0 0 0 0

p.E200K Chr6:42975009G>A Damaging
(0.001)

Deleterious
(−3.82)

Damaging
(0.991)

Disease
causing
(1)

Deleterious
(0.1505)

22.5 0 0 0 0

p.E420K Chr6:42977066G>A Damaging
(0.004)

Deleterious
(−3.94)

Damaging
(0.999)

Disease
causing
(1)

Deleterious
(0.6314)

22.6 0 0 0 0
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variants in PPP2R5D in 7 of 2790 individuals with ID
and neurodevelopmental disorders (0.25 %). All of the
individuals with a PPP2R5D pathogenic variant
displayed moderate to severe global developmental de-
lay, ID, and hypotonia. Additionally, ASD was observed
in five of the seven individuals. Macrocephaly is a spe-
cific feature of this condition observed in six of the
seven individuals. Mild dysmorphic features and addi-
tional neurological, ophthalmological, and congenital ab-
normalities were also described in this cohort.

PP2A consists of three subunits: a 65 kDa structural
A subunit and a 36 kDa catalytic C subunit, which

together form the core enzyme, and the third regulatory
B subunit [29]. PPP2R5D (NP_006236.1) belongs to the
largest PP2A B′ (B56) subunit family, comprised of at
least eight members which have 71–88 % protein se-
quence identity over a 400-amino acid conserved region.
PPP2R5D (B56δ) codes a 602 amino acid protein. The
four variant amino acid residues in our study individ-
uals—E197, E198, E200, and E420—are all highly con-
served across the B56 family [30].

Variants in the PP2A regulatory subunit B family
genes, including PPP2R5B, PPP2R5C, and PPP2R5D,
as well as its scaffolding Aα subunit PPP2R1A, have
recently been reported in association with developmental
disorders, ASD, human overgrowth, and intellectual dis-
ability [13–17]. The two variants we identified, E198K
and E200K, were also previously identified in individ-
uals with clinical features including overgrowth, ID, hy-
pospadias and Parkinsonism [15], and severe, undiag-
nosed developmental disorders [13], which are also ob-
served in some of the individuals in our study
(Table 2). One characteristic clinical feature in our se-
ries is macrocephaly, suggesting abnormal cell prolifer-
ation and overgrowth.

Consistent with the previous report [17], we also ob-
served less severe ID in our patient with the E200K
mutation. This mild phenotype suggests that within the
acidic pocket formed by the glutamic acid (E) residues
197, 198, and 200, E198 is the core for subunit inter-
actions, while E197 and E200 may not cause severe
effects on subunit binding. We also note that all three

Fig. 1 Facial characteristics of individuals with PPP2R5D variants: a individual 1, b individual 3, and c individual 7

Fig. 2 Effects of E420K mutation in PPP2R5D. Both panels show the
molecular surfaces of the regulatory and catalytic subunit of PPP2R5D,
calculated from homology models (see Materials and methods). The
surface of the catalytic subunit is colored green. The surface of the
regulatory subunit is colored according to electrostatic potential with
red regions indicating electronegative regions and blue indicating
electropositive regions. a The surface of the wild-type regulatory
subunit. b The surface of the E420K mutant. The active site cavity of
the catalytic subunit is labeled with a BC^

Neurogenetics (2016) 17:43–49 47



patients who carry the E420K variant show severe ID.
As discussed above, the position of the E420 is similar
to these other variants with respect to the active site
(Fig. 2), so it is reasonable to expect that mutation to
lysine will have similar effects, but functional studies
will be needed to clarify the effect of this mutation on
the holoenzyme assembly as well as catalytic capacity
on the substrates.

PPP2R5D is highly expressed in the developing hu-
man and mouse brain and is expressed at lower levels
in heart and skeletal muscle [9, 31]. PPP2R5D plays an
important role in regulating PI3K/AKT and GSK3β-
mediated growth control and tau phosphorylation [10,
32]. PPP2R5D is also involved in other cellular process-
es that are associated with ID such as chromatin remod-
eling and transcriptional regulation. PPP2R5D directly
interacts with alteration/deficiency in activation 3
(ADA3), which is a conserved component of several
transcriptional adaptor and histone acetyltransferase
complexes [11]. PPP2R5D binds and stimulates the nu-
clear translocation of Cacnb4 (voltage-gated calcium
channel, β4 subunit), an important channel in the brain
[33]. Disruption of the Cacnb4/Ppp2r5d/PP2A complex
by the R482X mutation in β4 is associated with juve-
nile epilepsy [12]. PPP2R5D was detected to localize
with human shugoshin (SGOL1) at centromeres and is
required for centromeric cohesion protection during mi-
tosis and meiosis [34]. PPP2R5D plays a key role in
regulation of Cdc25C and Cdk1, controlling exit from
mitosis [35]. PPP2R5D also regulates the dephosphory-
lation of dopamine- and cAMP-regulated phosphopro-
tein, 32-kD (DARPP-32; PPP1R1B), thereby regulating
the dopaminergic neurotransmission in neurons [36].

In this study, we provide further evidence supporting the
role for PPP2R5D in ID and ASD. The four de novomissense
variants we identified all alter electrostatic potential and are
located at highly conserved amino acids within key functional
domains. The de novo variants in PPP2R5D are associated
with neurodevelopmental disorders and macrocephaly, most
likely through a dominant-negative mechanism [13, 17].
Further functional studies are needed to characterize the new
mutations we have identified to better understand the disease
mechanism.
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