
ORIGINAL ARTICLE

Received: 14 April 2015 /Accepted: 10 May 2015 /Published online: 23 May 2015
# Springer-Verlag Berlin Heidelberg 2015

Abstract Nasu-Hakola disease (NHD) is a form of presenile
dementia associated with sclerosing leukoencephalopathy and
polycystic lipomembranous osteodysplasia. This extremely
rare inherited disease is caused by mutations in either
DAP12 or TREM2. The present study was designed to assess
the relationship between DAP12/TREM2 genotype, mRNA
and protein expression levels by both Western blotting and
immunohistochemistry, and the tissue distribution and
pathomorphological phenotype of the microglia. Molecular
genetic testing performed in three NHD cases confirmed that
two cases had mutations inDAP12 and that one case carried a
mutation in TREM2. Protein levels were analyzed in four
cases. Interestingly, significant DAP12 expression was found
in numerous microglia in one NHD case with a homozygous

DAP12 single-base substitution, and both real-time PCR and
Western blotting confirmed the finding. In contrast, levels of
both DAP12 and TREM2, respectively, were much lower in
the other cases. Immunohistochemistry using established
microglial markers revealed consistently mild activation of
microglia in the cerebral white matter although there was no
or only little expression of DAP12 in three of the NHD cases.
The highly different expression of DAP12 represents the first
description of such variable expressivity in NHD microglia. It
raises important questions regarding the mechanisms underly-
ing dementia and white matter damage in NHD.

Keywords DAP12 .Macrophage .Microglia . Nasu-Hakola
disease . PLOSL . TREM2

Introduction

Nasu-Hakola disease (NHD), also known as polycystic
l ipomembranous osteodysplas ia wi th sc leros ing
leukoencephalopathy (PLOSL), was first reported separately
by Nasu and Hakola in Japan and Finland, respectively, in the
1970s [1, 2]. The disease is distributed worldwide but is ex-
tremely rare. Approximately 160 cases have been reported
globally [3], including more than 30 autopsy cases from Japan
[4]. NHD is an autosomal recessively inherited disease char-
acterized by multiple bone cysts and early-onset progressive
frontal-type dementia. Neurologic symptoms sometimes pre-
cede the osseous ones and patients with NHD usually die
during the fifth decade of life. The molecular causes of
NHD are mutations in either one of two genes, DAP12
(DNAX-activation protein 12), also known as TYROBP (TY-
RO protein tyrosine kinase-binding protein), and TREM2
(triggering receptor expressed onmyeloid cells 2). The disease
phenotype appears to be identical irrespective of the affected
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gene. At the level of individual brain cells, DAP12 is exclu-
sively expressed in microglia both in mouse and in human
tissue, and colocalization of DAP12/TREM2 with microglia/
macrophage markers has been previously reported in mouse
brain [5, 6].

Microglia are the resident macrophages and main media-
tors of inflammation in the CNS, and they function as special-
ized scavengers that eliminate pathogens and supply neurons
with trophic factors [7, 8]. On the other hand, microglial
overactivation may lead to exacerbated generation of neuro-
toxic molecules, such as reactive oxygen species and proin-
flammatory cytokines [9]. At present, Iba1 (ionized calcium-
binding adapter molecule 1) is the most versatile marker for
mammalian microglia (it works on paraffin sections and
across species, and a polyclonal antibody allows double label-
ings), but a single specific microglia marker that does not label
other myeloid cell types in the body has not yet been identified
[10]. Further microglia markers available for routine paraffin
sections include antibodies GLUT5 (directed against glucose
transporter 5), CD68 (a pan-macrophage marker that recog-
nizes lysosomes), HLA-DR, CD163, and CD204 (scavenger
receptor class A) [7, 11–13]. Microglial phagocytosis appears
to be adapted to the brain environment for remodeling tasks
such as engulfment of synapses (“synaptic stripping”), axonal
and myelin debris, or clearance of proteins such as amyloid
beta protein. Comparatively little is still known about
the specific molecules involved in microglial phagocy-
tosis although different types of receptors that enable
microglia to recognize uptake targets include TREM2
and DAP12 [14]. Detailed comparative data on DAP12
at the DNA, RNA, and protein levels in diseased human
brains are currently not available.

Therefore, in order to obtain a more complete picture of
microglia and macrophages in NHD and to characterize the
relationship between DAP12/TREM2 mutations and
microglial pathology, we investigated the expression of sever-
al microglial activation markers as well as DAP12 messenger
RNA (mRNA) and protein levels in NHD brains and controls.

Materials and methods

Patient samples

We examined four Japanese autopsy cases of NHD. Clinical
and pathological features of all NHD cases are summarized in
Table 1. All NHD patients had died during the fifth decade of
life. There was no family history in the NHD patients with the
exception of NHD case 4 whose parents were first cousins and
her elder sister had died of NHD at the age of 37 [15]. Clin-
ically, all NHD cases showed neurological symptoms, includ-
ing presenile dementia, and the duration of dementia was be-
tween 6 and 10 years. Osseous lesions, such as bone fracture

and/or bone cysts, as well as characteristic lipomembranous
lesions of the bone and adipose tissues, were present in all of
the cases. There was no evidence of sepsis in any of them.

Neuropathologically, all NHD cases showed severe brain
atrophy (mean brain weight 882.5 g). There was diffuse loss
of myelin and axons from the white matter with accentuation
in the frontal lobe while subcortical arcuate fibers were rela-
tively spared. A small number of fat granule cells were ob-
served around blood vessels in all cases but within brain tissue
(in the occipital lobe) only in NHD case 1. The cerebral neo-
cortex was well preserved in NHD cases 2–4. In contrast,
NHD case 1 showed moderate to mild neuronal loss in the
frontal, temporal, and parietal lobes.

DAP12 gene mutations in two of the cases have been re-
ported previously, i.e., a point mutation (T to C) in the start
codon of exon 1 in case 1 and as a single-base deletion of exon
3 in case 2 [16].

Three control brains were included for Western blot analy-
sis: control 1, female, aged 49 years at death, clinicopatholog-
ical diagnosis of Crow-Fukase syndrome; control 2, female,
aged 49 years at death, clinicopathological diagnosis of dia-
betic nephropathy; and control 3, male, aged 51 years at death,
clinicopathological diagnosis of panperitonitis. For our
immunohistochemical studies, two individuals without
neurological disease (a 59-year-old female with liver
cirrhosis and a 34-year-old male with sleep apnea syn-
drome) and two autopsy cases of adrenoleukodystrophy
(a 58-year-old male and a 54-year-old male) served as normal
and disease-specific controls, respectively. All human samples
were obtained and accessed in accordance with institutional
research ethics guidelines.

Laboratory techniques

Sequencing of DAP12 and TREM2

DAP12 and/or TREM2 were analyzed in three cases of NHD
patients (cases 1, 2, and 4), according to the methodology
described in the previous papers [17, 18]. We were unable to
perform genetic and protein analyses for NHD case 3, since no
frozen brain tissue was available. Briefly, genomic DNAwas
extracted from frozen frontal lobe tissue using the Gentra
Puregene Blood Kit (Qiagen), and all exons of each gene were
amplified by PCR and subjected to direct sequencing. For
complementary DNA (cDNA) analysis, total RNA was ex-
tracted from autopsied brain tissues from the above three pa-
tients, and cDNAwas synthesized using a Transcription First
Strand cDNA Synthesis Kit (Roche Diagnostics, Mann-
heim, Germany) and amplified by PCR using gene-
specific primers. The cDNA products were then subcloned
into pTAC-2 vector (ByoDynamics Laboratory, Tokyo, Japan)
and the purified plasmid DNAwas sequenced with M13 for-
ward and reverse primers.
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Real-time PCR

One microgram of total RNAwas reverse-transcribed using a
Transcription First Strand cDNA Synthesis Kit (Roche Diag-
nostics, Mannheim, Germany) according to the manufac-
turer’s instructions. The levels of mRNA were quantified
using fluorescent dye SYBRGreen-based assay (Roche Diag-
nostics, Mannheim, Germany). Real-time PCR was per-
formed in a final volume of 10 μl with gene-specific primers
(0.25 μM each) for β-actin,DAP12, and TREM2 (Takara Bio,
Otsu, Japan) on a StepOnePlus™ Real-Time PCR system
(Applied Biosystems, Foster City, CA, USA). Thermal cy-
cling conditions were 10 min at 95 °C, then 40 cycles each
of 15 s at 95 °C and 1 min at 60 °C. RNA quantity was
normalized to its respective beta-actin mRNA quantity.

Western blot analysis

Proteins were extracted from frozen tissue of the cerebral cor-
tex (occipital lobe) of three patients with NHD (cases 1, 2, and
4) as previously described [19]. Frozen brain tissues were
homogenized in buffer (10 mmol Tris–HCl, pH 7.5, 1 mmol
EGTA, 1 mmol dithiothreitol, 10% sucrose, 1 mmol Na3VO4,
5 mmol NaF with protease inhibitor cocktail) and centrifuged
at 25,000×g for 30 min at 4 °C. The resulting pellets were
subsequently extracted in homogenization buffer containing
1 % Triton X-100 and 0.5 % SDS. After centrifugation at 180,
000×g for 30 min at 4 °C, the soluble fractions were subjected
to Tris-Tricine SDS-polyacrylamide gel electrophoresis
(PAGE) followed by immunoblotting. A rabbit polyclonal an-
ti-DAP12 antibody that recognizes amino acids 1–113 of hu-
man DAP12 (FL113, Santa Cruz Biotechnology) was used for
the detection of DAP12. Actin was visualized using an anti-
actin antibody (I-19, Santa Cruz Biotechnology) as the load-
ing control.

Immunohistochemistry (IHC)

After formalin fixation, brains were sectioned, processed rou-
tinely, and embedded in paraffin. Immunohistochemistry was
performed on 5-μm-thick section taken from the frontal lobe
(containing the middle frontal gyrus), temporal tip, hippocam-
pus, precentral gyrus (motor cortex), occipital lobe (contain-
ing the striate area), thalamus, lenticular nuclei, cerebellum,
medulla oblongata, and spinal cord using the biotin-
streptavidin (B-SA) immunoperoxidase method (Nichirei, To-
kyo, Japan) with the following antibodies (abs): Iba1 (rabbit
polyclonal ab; 1:500 dilution, Wako, Japan), Glut5 (rabbit
polyclonal ab against glucose transporter 5; 1:100, IBL, Ja-
pan), CR3/43 (mouse monoclonal ab against human MHC
class II antigen; 1:50, Dako, Denmark), PG.M1 (mouse
monoclonal ab against CD68, 1:100, Dako, Denmark),
SRA-E5 (mouse monoclonal ab against CD204, 1:25,

TransGenic Inc., Japan), 10D6 (monoclonal ab against
CD163; 1:100, Novocastra, UK), and GFAP (rabbit polyclonal
ab against glial fibrillary acidic protein; our own, 1:5000). For
staining of paraffin sections with the antibodies except anti-
GFAP and anti-MHC class II, antigen retrieval was performed
by autoclaving (121 °C, 10 min, citrate buffer). The sections
were incubated with each of the primary antibodies overnight at
4 °C, incubated with the appropriate secondary antibody at
room temperature (RT) for 30 min, and then reacted with
peroxidase-labeled streptavidin at RT for 30 min. The immu-
noreaction was visualized with diaminobenzidine (DAB) and
briefly counterstained with hematoxylin.

For the primary ab against DAP12 of human origin, we
used a rabbit polyclonal antibody against amino acid 1–113
full-length DAP12 (FL113, sc-20783, 1:500, Santa Cruz Bio-
technology, CA, USA). Immunoreactivity was visualizedwith
EnVision™ FLEX (Link) (Dako). Antigen retrieval for
DAP12 was performed by autoclaving (121 °C, 5 min, citrate
buffer, pH 6.0).

For immunofluorescence, sections of a control case (a 59-
year-old female without neurological disease) were double-
labeled with DAP12 and CD68 abs. Briefly, the sections were
incubated in 0.01M citrate buffer, pH 6.0, at 90 °C for 15 min
for antigen retrieval. Subsequently, the sections were incubat-
ed with DAP12 ab followed by incubation with biotinylated
anti-rabbit IgG (Nichirei) and streptavidin-Cy3 conjugate
(Sigma-Aldrich, St. Louis, MO, USA). This was followed
by incubation with CD68 antibody and fluorescein isothiocy-
anate (FITC)-conjugated goat anti-mouse IgG (H + L) (Ther-
mo Fisher, Rockford, IL, USA).

Quantification of immunoreactivity

For the evaluation of microglial activation, both quantification
of Iba1 immunoreactivity and semiquantitative analysis of the
other activation markers were performed. Morphometric anal-
ysis of microglial cells was carried out on Iba1-
immunostained sections. Images were obtained using a Nikon
or Olympus microscope with a ×20 objective connected to a
color video camera (Fujix, 3CCD, HC-2500) and analyzed
using the computer-based image analysis system WinROOF
(version 6.4, Mitani Corporation, Fukui, Japan) or Image
Scope (Aperio, Vista, CA, USA). We determined the cross-
sectional tissue area taken by cell processes and somata of
Iba1-labeled microglial cells across the entire thickness of
the cerebral cortex and the adjacent white matter. Manual
editing was used to exclude preparation artifacts. For determi-
nation of the relative tissue area occupied by Iba1-positive
microglia/macrophages, all stained cellular profiles were
counted and high-contrast pseudocoloring was generated
(green for the measurements). Statistical analysis was per-
formed using the Mann-Whitney U test. Differences demon-
strating a p value <0.05 were considered significant.
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Results

Analyses of DAP12 and TREM2 genes

We reconfirmed that NHD case 1 had a homozygous single-
base substitution (c.2T>C) in the start codon ofDAP12 exon 1
(Fig. 1a), as previously reported [16]. Amplification by RT-
PCR using various primer sets specific for DAP12 exons
clearly generated products of the predicted sizes, each of
which corresponded to the DAP12 sequence (Fig. 2).

Sequencing of 21 cDNA clones, however, showed several
alternatively spliced transcripts. All the transcripts had a
c.2T>C substitution at the original translation initiation site.
Eleven clones had this point mutation only, but eight clones
lacked the last 5 nucleotides of exon 1 (AAGTG) and the first
2 nucleotides of exon 2 (GT), in addition to the c.2T>C sub-
stitution. In NHD case 2, a homozygous single-base deletion
(c.141delG) was found in exon 3 ofDAP12 (Fig. 1b), presum-
ably resulting in the appearance of the early termination codon
(p.M48WfxX6). NHD case 4 did not carry aDAP12mutation,
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Fig. 1 Sequencing
electropherograms of amplified
genomic DNA from NHD
patients. a Homozygous single-
base substitution (c.2T>C) of
DAP12 exon 1 in NHD case 1, b
homozygous single-base deletion
(c.141delG) of DAP 12 exon 3 in
NHD case 2, and c homozygous
mutation (c.197C>T) in TREM2
in NHD case 4. The predicted
amino acid sequences followed
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markedly in the cerebral cortex of NHD case 1. They were significantly

decreased both in the cerebral cortex and white matter in NHD case 4
compared with normal controls (cont 1–3). Cases 1, 2, and 4 correspond
to NHD cases 1, 2, and 4, respectively

270 Neurogenetics (2015) 16:265–276



but showed a homozygous mutation in TREM2, c.197C>T
(p.T66M) (Fig. 1c).

Real-time PCR and Western blot

As revealed by real-time quantitative PCR analysis, levels of
both DAP12 and TREM2 mRNA in the cerebral cortex were
considerably higher in NHD case 1 than in the controls and
slightly and considerably lower in NHD cases 2 and 4, respec-
tively, than in the controls (Fig. 3). There was no significant
difference of β-actin expression between NHD and control
cases (data not shown).

We examined the protein expression of DAP12 using brain
homogenates from NHD cases 1, 2, and 4. Western blot anal-
ysis using the anti-DAP12 antibody (FL113) revealed a band
migrating at ~12 kDa in the brains from control subjects
(Fig. 4). As expected, no DAP12 expression was observed
in case 2 with a frameshift mutation of DAP12, which is pre-
dicted to cause nonsense-mediated mRNA decay. Notably,
increased expression of DAP12 was observed in case 1 with
the p.M1T mutation of DAP12 by Western blot analysis
(Fig. 4), although this mutation occurring at the initiation co-
don would be predicted to abolish the translation of DAP12.

The expression of DAP12 in case 4 with the TREM2mutation
was comparable to that of the control subjects.

DAP12 immunohistochemistry on brain tissue

DAP12 immunolabeling demonstrated that microglial cells
were positive at various intensities in the control cases (data
not shown). The DAP12 antigen was diffusely distributed in
the cytoplasm of resting/activated microglia and macro-
phages. Both astrocytes and oligodendroglia were negative,
and positivity was observed rarely in occasional neurons.
We confirmed the expression of DAP12 by microglia using
double immunofluorescence (data not shown). In the brains of
the NHD cases, one (case 1) exhibited intense positivity for
DAP12 in microglial cells in both the cerebral cortex and the
white matter (Fig. 5a–c). Two cases (cases 2 and 3) and one
case (case 4) showed no or little immunoreactivity for DAP12,
respectively (Fig. 5d–f).

Microglial morphology and microglial marker expression
in NHD cases

Microglial cells and macrophages that were labeled with an-
tibodies against Iba1, MHC class II, CD68, CD204, and
CD163 were observed in the cerebral white matter of all
NHD cases (Supplementary Fig. 1). The cell density of la-
beled (activated) microglial cells was not high, except in the
perivascular area. In case 1, a cluster of lipid-laden macro-
phages was seen only in the occipital white matter.

With respect to gray matter, Iba1-positive microglial cells
with activated morphology were observed in the thalamus (all
four cases) and basal ganglia (three of four cases). In the cor-
tex, most of the Iba1-positive and Glut5-positive cells were
morphologically compatible with resting ramified microglia
and some with activated microglia with short stout processes
(Fig. 6). The reactivity of activation markers (MHC class
II, CD68, CD204, CD163) was variable (Supplementary
Table 1). NHD case 2 demonstrated rod cells with intense
reactivity to Iba1, Glut5, and MHC class II (Fig. 6). In the
morphometric analysis of Iba1-immunostained sections of the
frontal lobes in four NHD cases and two nonneurological
control cases, the percentage tissue area occupied by
microglial cell bodies and processes in the white matter was
not significantly different between NHD cases and controls,
and the percentages of three NHD cases (cases 1, 3, and 4)
were slightly lower than those of the control cases (2.723% in
NHD cases; 3.22% in control cases). By contrast, the percent-
age tissue area occupied bymicroglial cell bodies and process-
es in the frontal cortex was significantly higher (p<0.0001) in
two cases (cases 1 and 2) of NHD (8.42 %) than in the control
cases (2.145 %) (Supplementary Fig. 2).

Concerning anatomic correlation with microglial activation
within the same NHD patients (cases 1 and 2), the percentage
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Fig. 4 Western blotting. Immunoblot analysis of DAP12 using anti-
DAP12 antibody (FL113) in detergent-soluble fraction from occipital
cortex of three autopsied cases and three control subjects without
neurological disorders. The immunoreactive band migrating at ~12 kDa
is visualized in the brains from control subjects. Note that no DAP12
expression is observed in case 2 with the frameshift mutation of DAP12
and that increased expression of DAP12 is detected in case 1 with the
p.M1T missense mutation of DAP12. Molecular weights (kDa) are
indicated on the left. Equivalency of protein loading is shown in the
actin blot (bottom)
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tissue area occupied by Iba1-positive microglia did not show
any significant difference in the white matter, while the per-
centage cortical tissue area taken up by microglia labeled with
Iba1 was highest in the frontal lobe (data not shown).

Discussion

The adaptor protein of 12 kDa known as DAP12 is a member
of a transmembrane adaptor protein family containing
immunoreceptor tyrosine-based activation motifs (ITAMs)
as docking sites for protein kinases [20, 21]. DAP12 plays
an important role in myeloid cells and natural killer (NK) cell
activation and thus in triggering and amplifying inflammatory
responses [22]. In the murine CNS, DAP12 expression is lo-
calized in microglia [5, 6, 23, 24]. DAP12 mutant mice show
dysfunction of osteoclasts and microglia, as well as bone and
brain abnormalities [25]. In the human CNS, DAP12 is
expressed in microglia as confirmed by this study.

Previous reports on DAP12 gene alterations in NHD dem-
onstrated five Japanese patients with 141delG, including a

case of the present study (NHD case 2), and two Japanese
patients with a c.2T>C transition in exon 1, including our
NHD case 1 [4, 16]. Surprisingly, Kondo et al. did not detect
a band corresponding to DAP12 in brain tissue lysates of our
NHD case 1 by Western blot analysis, suggesting that this
mutation results in a lack of DAP12 protein [16]. However,
in our study, this case (NHD case 1) showed numerous acti-
vated microglia labeled with the DAP12 antibody, and RT-
PCR and Western blot analyses confirmed significant expres-
sion of DAP12 mRNA and protein, respectively. The reason
for the negative result of Kondo et al. is unclear, but it has been
shown that an ACG codon is able to initiate translation al-
though with lower efficiency [26]. It is further noteworthy that
a T-C transition polymorphism at the translation initiation co-
don of the human vitamin D receptor gene appears to modu-
late bone mineral density in Japanese women [27]. Thus, our
findings illustrate that some DAP12 mutations can lead to
overproduction of DAP12 transcript and protein in microglia.
While clinically similar to the other NHD cases, NHD case 1
also showed marked microglial activation in the cortical gray
matter and high expression of TREM2 mRNA.

a

b

c

d

e

f

Fig. 5 DAP12
immunohistochemistry. Note the
strong expression of DAP12 in
microglial cells in the cortex (a, b)
and white (c) matter of NHD case
1, but no expression in two
NHD cases (cases 2 and 3) (d, e)
and weak expression in one
NHD case (case 4) (f).
Primary magnification—×40
(a), ×10 (b–f)
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DAP12 mutations as the cause of NHD predominate in
Finland and Japan, while TREM2 mutations are more widely
distributed. At the time of this study, NHD patients with 11
different TREM2 mutations and with 7 different DAP12 mu-
tations had been reported worldwide [18]. NHD case 4 of the
present study is the second Japanese NHD case with a TREM2
mutation, and the mutation is novel. There have been three
reported cases of TREM2mutations in patients who manifest-
ed symptoms of dementia without bone lesions [28, 29]. In the
present study, the NHD case with the TREM2 mutation did
however show clinicopathological findings, including bone
lesion, similar to the other NHD cases. In addition, in the
present study, microglial activation was mild and DAP12 ex-
pression was low in the case with the TREM2mutation at both

mRNA and protein levels. Further studies are needed to ex-
amine whether this pattern of microglial activation is charac-
teristic of NHD caused by a TREM2 mutation.

The NHD cases analyzed in this study were very similar
with regard to their clinical and gross neuropathological find-
ings, which is consistent with previous reports [1, 2, 30–32].
Neuropathological examinations of all of our cases revealed
generalized cerebral atrophy, particularly in frontal areas, and
advanced sclerosing leukoencephalopathy with marked
gliosis, loss of myelin, and axonal spheroids in the white mat-
ter. Our histopathological findings, showing microglia/
macrophages labeled with many microglial activation
markers, such as Iba1, Glut5, CD68, MHC class II, CD163,
and CD204, suggest that microglia/macrophages are not only

HE HE 
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CD204 MHC II 
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Fig. 6 Microglial morphology
and expression of microglial
markers in the frontal cortex of
NHD brains. Case 1 showed mild
neuronal loss histologically and
an increased number of activated
microglia labeled with antibodies
against Iba1 (b), CD163 (c), and
CD204 (d),
immunohistochemically. NHD
case 2 revealed rod cells with
intense reactivity for Iba1 (f),
Glut5 (g), and MHC class II (h).
a, f HE stain. Primary
magnification—×20
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well-preserved but immunophenotypically and morphologi-
cally activated in NHD brains. This fits with previous reports
[33] and the observation that macrophages from DAP12-
deficient mice express wild-type levels of most common
markers of differentiation [34].

We were also able to confirm the presence of activated
microglia in white matter lesions of NHD brains [31, 33].
However, our morphometric study using Iba1 immunohisto-
chemistry suggests that the number of microglial cells in white
matter may decrease at late stages of the disease.

Interestingly, in the present study, two of the four NHD
cases showed clear microglial activation in the frontal cortex.
The overall frequency of microglial activation in NHD cortex
is unclear since no systematic analysis of microglial activation
in that brain region has been performed in previous studies.
Axonal destruction in the white matter could be among the
possible causes of cortical microglial activation in NHD, but
some activated microglia also exhibited a rod-like shape. Cor-
tical rod cells are typically found in acutely dementing pro-
cesses, e.g., subacute sclerosing panencephalitis or quaternary
syphilis (general paralysis of the insane). They can align with
dendrites and have been shown to interfere with their normal
synaptic covering [35]. Such rod cells have not been previ-
ously reported in the literature on NHD. Furthermore, Aoki
et al. [36] have shown that the gray matter is commonly af-
fected by neuronal loss and gliosis in NHD, particularly in the
thalamus, striatum, and substantia nigra. In this study, neuro-
nal loss and microglial activation were also observed in the
thalamus and basal ganglia. Thus, gray matter pathology may
well be responsible for some of the clinical manifestations of
the disease, including dementia.

The results of the present study do not exclude the possi-
bility that activated microglia, in spite of expressing various
activation markers in NHD, could still be dysfunctional due to
lack of the normal DAP12/TREM2 signaling pathway. How-
ever, at present, very little is known about the specific mole-
cules involved in DAP12/TREM2-dependent microglial
phagocytosis as the ligand of TREM2 remains elusive. It is
of interest to note that TREM2 is a risk factor for the most
common dementias, Alzheimer’s disease (AD), and
frontotemporal dementia [37]. For instance, heterozygous car-
riers of a TREM2 polymorphism are known to be at increased
risk for late-onset AD [38]. TREM2 and DAP12 protein levels
are significantly elevated in AD [39]. Neurodegeneration in
both NHD and AD could be driven by dysfunction in
microglial phagocytosis [40]. Phagocytosis is not only per-
formed by ameboid, activated microglia, but also by ramified,
resting microglia [34, 41] including synaptic material.

Transgenic mice lacking DAP12 have enhanced pairing-
induced hippocampal long-term potentiation [5]. In addition,
DAP12-deficient mice show a degenerated synapse and accu-
mulated synaptic vesicles [42]. Microglia serve important
physiologic functions in learning and memory by producing

brain-derived neurotrophic factor and other mediators that af-
fect synaptic function [43]. In the two different micemodels of
neuronal ceroid lipofuscinosis, which is the most frequent
autosomal-recessive neurodegenerative disease of childhood,
synapses and axons are important early pathological targets,
and modified expression levels of two distinct proteins,
voltage-dependent anion-selective channel 1 (VDAC1) and
Pttg1, occur during the pre-/early-symptomatic stages of the
disease [44]. Interestingly, VDAC1 is one of 21 altered pro-
teins in proteomic analysis of lymphoblastoid cells fromNHD
patients [45]. Thus, it is tempting to speculate that microglial
dysfunction in synaptic regulation (plasticity) is a primary
disease-causing mechanism in NHD. This is not too surprising
as there are other known disease-causing mutations affecting
microglia, which result in behavioral disturbances [46] and
leukoencephalopathy [47].

In conclusion, NHD is a primary microgliopathy, the exact
pathogenesis of which deserves further scrutiny. The present
study highlights the need for more neuropathological exami-
nations in NHD that include molecular analyses of DAP12
and TREM2 at the DNA, mRNA, and protein levels.
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