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Abstract In the last two decades, migraine research has greatly
advanced our current knowledge of the genetic contributions
and the pathophysiology of this common and debilitating dis-
order. Nonetheless, this knowledge still needs to grow further
and to translate into more effective treatments. To date, several
genes involved in syndromic and monogenic forms of migraine
have been identified, allowing the generation of animal models
which have significantly contributed to current knowledge of
the mechanisms underlying these rare forms of migraine.
Common forms of migraine are instead posing a greater chal-
lenge, as they may most often stem from complex interactions
betweenmultiple common genetic variants, with environmental
triggers. This paper reviews our current understanding of mi-
graine genetics, moving from syndromic and monogenic forms
to oligogenic/polygenicmigrainesmost recently addressedwith
some success through genome-wide association studies.
Methodological issues in study design and future perspectives
opened by biomarker research will also be briefly addressed.
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Introduction

Migraine is a complex neurological disorder, characterized by
recurrent and severe attacks of headache, lasting from 4 to 72 h,
with associated sensory and dysautonomic symptoms, such as

nausea and vomiting, photophobia and phonophobia. Transient,
focal neurological symptoms mostly involving the visual system
occur prior to or during migraine attacks, a phenomenon known
as “aura” affecting approximately 15–30 % of cases. Migraine is
thus subdivided into two major categories, namely “migraine
with aura” (MA) and “migraine without aura” (MO), in accor-
dance with the classification criteria of the International
Headache Society listed in Box 1 [1]. However, often a single
patient suffers from both types of headache or switches from one
category to the other during the course of the illness [1]. The
prevalence of migraine is estimated at a striking 18 % in females
and 6 % in males, making it one of the most common and
frequently invalidating human disorders [2, 3]. Its peak incidence
occurs between 25 and 55 years of age [2, 3].

Box 1: diagnostic criteria for headache disorders [1].

Migraine with aura (MA) Migraine without aura (MO)

A. At least two attacks fulfilling
criteria B and C

B. One or more of the following fully
reversible aura symptoms:

1. Visual
2. Sensory
3. Speech and/or language
4. Motor
5. Brainstem
6. Retinal
C. At least two of the following four
characteristics:

1. At least one aura symptom
spreads gradually over ≥5 min,
and/or two or more symptoms
occur in succession

2. Each individual aura symptom
lasts 5–60 min

3. At least one aura symptom
is unilateral

4. The aura is accompanied, or
followed within 60 min,
by headache

D. Not better accounted for by
another ICHD-3 diagnosis, and
transient ischaemic attack has been
excluded

A. At least five attacks fulfilling
criteria B–D

B. Headache attacks lasting
4–72 h (untreated or
unsuccessfully treated)

C. Headache has at least two of
the following four
characteristics:

1. Unilateral location
2. Pulsating quality
3. Moderate or severe pain
intensity

4. Aggravation by or causing
avoidance of routine physical
activity (e.g., walking or
climbing stairs)

D. During headache at least one
of the following:

1. Nausea and/or vomiting
2. Photophobia and
phonophobia

E. Not better accounted for by
another ICHD-3 diagnosis
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Migraine is viewed as a neurovascular disease caused by a
primary brain dysfunction, leading to activation and sensiti-
zation of the trigeminovascular system and to the release of
vasoactive neuropeptides. Cortical spreading depression
(CSD), originating in the occipital region, is thought to repre-
sent the neurobiological underpinning of visual aura [4]. In
animal models, CSD indeed activates the trigeminovascular
system, triggering a series of cortical, meningeal, and
brainstem events consistent with current knowledge about
the pathophysiology of migraine attacks [4, 5].

Family and twin studies of migraine

The common observation that migraine tends to recur in
families has long suggested that genetic factors may play a
significant role in the disease. The existence and “relative
weight” of genetic contributions to a complex disorder can
be assessed using classical approaches, including family, twin,
and adoption studies. To our knowledge, no adoption study of
migraine has been published to this date. On the other hand,
family and twin studies indicate that at least 50 % of patients
have a first-degree relative affected by a similar condition
[6–11]. Comparing familial recurrence rates with the above-
mentioned incidence in the general population yields a relative
risk (RR) estimated at 4.0 and 1.4 for MA and MO, respec-
tively [10, 11]. Finally, several population-based twin studies
have contrasted concordance rates for migraine between
monozygotic (MZ) and dizygotic (DZ) twins to produce her-
itability estimates [6–8]. Mulder et al. [6] studied the preva-
lence and heritability of migraine in 29.717 twin pairs from six
countries enrolled in Genome EUtwin Project [12]. This study
did not distinguish between MA and MO, which were ana-
lyzed collectively [6]. The prevalence of migraine was highest
(32–34 %) in Danish and Dutch women, and lowest (10–
13 %) in Finland, a result compatible with shared environ-
mental factors explaining a large proportion of variance. MZ
concordance rates were 1.5–2.0 times higher than those re-
corded in DZ twins, with heritability estimated at 34–57% (on
average 50 %). Hence, both family and twin studies collec-
tively support sizable genetic contributions to migraine
pathogenesis.

The quest for single genes in migraine genetics research

Genetic contributions to any human disease can range from
monogenic or oligogenic forms, due to rare or even “private”
genetic variants endowed with high penetrance (i.e., pheno-
typic expression), to polygenic and multifactorial conditions
stemming from complex epistatic interactions between multi-
ple common genetic variants with low penetrance and small
effect size, as well as from gene-environment interactions. In

the latter framework, environmental factors can trigger the
onset and progression of the disease by influencing epigenetic
profiles directly regulating the expression of relevant genes,
further increasing heterogeneity [13, 14]. In the case of mi-
graine, higher RR rates and heritability estimates, as well as
the results of molecular studies (see below), generally support
greater contributions by rare variants to MA, whereas MO
more frequently stems from multifactorial and polygenic
mechanisms. Within the framework of gene-environment in-
teractions, a significant role has been reliably demonstrated
for several environmental factors, including female sex hor-
mones, early and recent stress (such as low maternal care and
short-lasting, intense stressful periods, respectively), de-
creased sensory thresholds for visual, auditory, and olfactory
stimuli [13, 14]. Instead, a more controversial role has been
hypothesized for weather and climate conditions, electromag-
netic fields, smoking, pollution, and molds [13, 14]. An addi-
tional layer of complexity is conferred by the frequent associ-
ation of migraine with other disorders, including anxiety,
depression, ADHD, sleep disorders, epilepsy, as well as atopic
and cardiovascular diseases [15, 16]. These comorbidities can
conceivably stem from shared genetic and/or environmental
underpinnings to a different extent in different patients [17,
18].

To this date, several approaches have been used to identify
genetic variants either causing migraine or conferring vulner-
ability to the disease. The recent advent of array-based tech-
nologies and second-generation DNA sequencing has provid-
ed novel powerful tools to genetic analysis. In general, rare
variants are sought by DNA sequencing in multigenerational
families with many affected individuals. These studies were
previously performed using a linkage approach, followed by
refinement of the linkage region and targeted Sanger sequenc-
ing of candidate genes.While these approaches remain viable,
whole-exome sequencing (WES) and whole-genome se-
quencing (WGS) can now significantly hasten the discovery
of rare pathogenic variants with high penetrance. On the other
hand, common variants have been typically sought using
case–control or family-based association. SNP arrays now
allow an unbiased search of common variants conferring
disease vulnerability in large samples of cases and controls
through genome-wide association studies (GWAS). Applying
“classical” approaches, several forms of MA, such as familial
hemiplegic migraine (FHM), have now been elucidated, with
well-defined underlying causal variants identified and func-
tionally tested. On the other hand, common forms of migraine
are still less well understood at the genetic level.

We hereby review current molecular genetic evidence for
MA and MO. The present work does not represent a system-
atic review but rather aims to (a) provide thorough coverage of
this area of investigation, spanning syndromic migraines, rare
monogenic forms, up to more recent GWAS data on common
predisposing variants; (b) discuss methodological issues on
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experimental design, as pertaining to migraine genetics re-
search; and (c) outline possible links between genetic findings
and the underlying pathophysiology of migraine.

Syndromic migraines

Migraine can be part of known genetic disorders, displaying
multiple manifestations and often involving various organs.
The genetic syndromes most frequently associated with mi-
graine are listed in Table 1. These disorders, though rare, may
lead to a better comprehension of the mechanisms underlying
more common forms of idiopathic migraine.

Cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy

Cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL) is a genetic
Mendelian disorder associated with strokes in adulthood.
The onset of the disease is ambiguous and often characterized
by migraine episodes associated with neurological symptoms
or transient ischemic attacks (TIA), which anticipate strokes.
The progression of the disease is a subcortical multi-infartual
dementia. CADASIL is caused by mutations in NOTCH3, a
highly conserved gene located in human chromosome 19q12,
encoding for a transmembrane receptor expressed in the
smooth muscle cells of small brain vessels [19]. This receptor
protein consists in 2321 amino acids with an extracellular
domain encompassing 34 EGF-like repeats hosting the vast
majority (95 %) of CADASIL mutations described to date
[19–24]. The prevalence of NOTCH3 mutations is approxi-
mately 4 per 100,000 adults and is probably underestimated
[25, 26]. Mutations lead to a dysfunction of the signaling
pathway that physiologically regulates vascular development
during embryogenesis and maintains the structural/functional
stability of blood vessels in adults [27, 28]. CADASILmay be
caused by a vascular dysfunction resulting in increased
pressure-induced vascular tone and a relative deficit in vaso-
dilation. A specific characteristic of CADASIL is the accu-
mulation of the NOTCH3 receptor due to its slow clearance,
resulting in the formation of granular osmiophilic deposits: the
effect on small vessels is decreased cell adhesion, cell loss,
deposits, degeneration of smooth muscle cells in the middle
layer, and fibrosis [29]. CADASIL migraine occurs typically
with aura and its prevalence ranges between 0 and 40 % in
studies performed to date [30]. The onset of migraine attacks
in CADASIL typically occurs before 26 years of age; it is
either concomitant to or can anticipate brain lesions, and
females display an earlier onset of MA compared to males
[31].

Mitochondrial encephalopathy, lactic acidosis, and stroke-like
episodes

Mitochondrial encephalopathy, lactic acidosis, and stroke-like
episodes (MELAS) is a disease caused by mutations in several
mitochondrial genes, most frequently MTTL1 encoding for the
mitochondrial tRNA for leucine (A to G transition at nucleotide
3243), and is characterized by epileptic seizures, stroke-like epi-
sodes, and lactic acidosis [32]. In particular, the typical presenta-
tion of MELAS includes epileptic seizures with radiologic evi-
dence of cortical infarcts, often associated with migraine-like
headaches; other clinical features include hemiparesis,
hemianopsia, cortical blindness, episodic vomiting, and short
stature. Systemic manifestations can include cardiac, renal, endo-
crine, gastrointestinal, and endothelial signs and symptoms.
Ragged-red fibers are common, while a symptomatic myopathy
is rare. It has been postulated that decreased brain oxidative
metabolism may play an important role in the pathogenesis of
migraine associated with MELAS [33].

Retinal vasculopathy and cerebral leukodystrophy

Retinal vasculopathy and cerebral leukodystrophy (RVCL) con-
solidates into a single autosomal dominant disease three
neurovascular syndromes previously named hereditary vascular
retinopathy (HVR), cerebroretinal vasculopathy (CRV), and
hereditary endotheliopathy with retinopathy, nephropathy, and
stroke (HERNS) [34]. These syndromes are all caused by
mutations in the TREX1 gene, located on human chromosome
3p21, encoding for former DNase III (i.e., three prime repair
exonuclease), an autonomous non-processive 3′–5′ DNA-
specific exonuclease [35]. This enzyme, localized in the
perinuclear region of the cell, plays a fundamental role in
granzyme A-mediated cell death and, when mutated, in indi-
rectly activating autoimmunity against undigested dsDNA from
dying cells. RVCL-producing TREX1 mutations delete its car-
b o x y l - t e rm i n u s , l e a d i n g t o l o s s o f c e l l u l a r
compartimentalization and widespread enzyme distribution in
the presence of preserved exonuclease activity [36]. TREX1
mutations can also cause other disorders including Aicardi-
Goutières syndrome, systemic lupus erythematosus, and famil-
ial chilblain lupus, through abnormal immunemechanisms [34].

Clinically, HVR is characterized by retinal microangiopathy,
with microaneurysms and telangiectatic capillaries [37]. Its
onset is typically in early adulthood, with disease progression
yielding occlusion of large retinal arteries, proliferative
arteriopathy, and avascular areas in the retinal periphery.
Migraine is present in 70 % of HVR cases [37, 38]. CRV
involves both the retina and the brain [34, 35]. Neuroimaging
shows pseudo-tumors appearing as progressive subcortical
contrast-enhancing lesions. Progressive visual loss is accompa-
nied by neurological deficits, psychiatric symptoms, migraine,
stroke, and death within 10 years of disease onset [34]. Instead,
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HERNS is a multi-infartual condition characterized by retinop-
athy, strokes, and nephropathy [39]. Capillary subendothelial
basal membranes display a distinctive multilamination in brain,
kidney, gastrointestinal tract, and other tissues [39]. Similarities
between CRVandHERNS include pseudo-tumors, retinopathy,
migraine-like headaches and neurological complications which
may lead to death, while additional features may include psy-
chiatric symptoms, dysarthria, hemiparesis, and apraxia [34,
39]. Finally, also the systemic variant of RVCL, hereditary
systemic angiopathy, which shares with the RVCL spectrum
many clinical features, including migraine-like headache, pro-
gressive neurological signs, and visual disturbances, has recent-
ly been shown to stem from TREX1 mutations, causing a C-
terminal frameshift [40, 41].

COL4A1-related syndromes

COL4A1, located on human chromosome 13q34, encodes for
the collagen type IValpha-1 subunit. Mutations in this 52 exon-
long gene can result in several autosomal dominant disorders
with overlapping features, including perinatal hemorrhage with
porencephaly [42–45] and a small vessel disease leading to
hemorrhage and hemiparesis with infantile or adult onset [46].
The association of COLA4A1 mutations with migraine is not
entirely certain. Although 10 of 52 COLA4A1 mutation carriers
reportedmigrainewith or without aura [45], the association is not
entirely certain and could still represent a coincidental finding.

Familial anticipated sleep phase syndrome

Familial anticipated sleep phase syndrome (FASPS) is an
autosomal dominant disorder characterized by persistent early
evening sleep onset and early awakening [47]. Abnormal

circadian rhythmicity results from a mutation in the circadian
hPER2 gene (human period 2, on chromosome 2q37.3), with-
in the casein kinase 1 (CK1)-binding domain of the hPer2
protein [48]. Furthermore, screening two families with MA
and FASPS, Brennan et al. [49] have recently identified two
missense mutations (T44A and H46R) in the gene encoding
casein kinase 1δ (CK1δ), resulting in decreased enzyme ac-
tivity. In addition to playing a pivotal role in the biology of
circadian rhythms [50], in vivo and in vitro studies suggest
that CK1δ may contribute to the pathogenesis of migraine.
Mice carrying the CK1δ T44A mutation have a reduced
threshold for cortical spreading depression accompanied by
increased spontaneous and evoked calcium signaling in astro-
cytes [50].

Collectively, genetic studies of syndromic forms of migraine
provide interesting leads toward the definition of the pathoge-
netic chain of events leading to the more common non-
syndromic forms. In particular, CADASIL and RVCL provide
further evidence supporting brain vascular tone dysregulation
as an important contributor to the pathophysiology of migraine
attacks, regardless of whether intrinsically generated or im-
mune-mediated. Instead MELAS and FASPS point toward
insufficient oxidative metabolism and abnormal circadian var-
iation in cortical excitability, respectively, as possibly playing a
role in specific subgroups of non-syndromic patients.

Monogenic forms of migraine

Familial hemiplegic migraine (FHM), is a rare monogenic
subtype of migraine with motor aura (see Box 1 for general

Table 1 Syndromic migraines in Mendelian disorders

Syndrome Gene Chr. region Gene product Mutation effects Migraine subtype Refs

CADASIL NOTCH3 19p13.12 Notch homologue
protein 3

Damage and apoptosis
of vascular smooth
muscle cells

MA/MO in 40 % of
CADASIL patients

[19–31]

MELAS MTTL1 and others mt-DNA Mitochondrially
encoded tRNA
leucine 1 (UUA/G)

Impaired mitochondrial
functions

MA and other neurological
features

[32, 33]

RVCL (HERNS,
CRV, HVR)

TREX1 3p21.3 3′-repair exonuclease 1 Brain, skin, and blood
vessel damage, due
to autoimmunity

MA/MO in up to 70 %
of patients

[34–41]

COL4A1-related
syndromes

COL4A1 13q34 Collagen type IV,
alpha-1 subunit

Small vessel damage MO in 1 case with
porencephaly

[42–46]

FASPS CSNK1D 17q25 Casein kinase I delta Reduced CSD threshold,
increased spontaneous
and evoked calcium
signaling in astrocytes

Migraine in 2 families [47–50]

CADASIL cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, COL4A1 retinal arteriolar tortuosity and
leukoencephalopathy, CRV cerebroretinal vasculopathy, CSD cortical spreading depression, FASPS familial anticipated sleep phase syndrome, HERNS
hereditary endotheliopathy with retinopathy, nephropathy, and stroke, HVR hereditary vascular retinopathy,MAmigraine with aura,MELAS mitochon-
drial encephalomyopathy, lactic acidosis, stroke-like episodes, MO migraine without aura, RVCL retinal vasculopathy and cerebral leukodystrophy
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diagnostic criteria) displaying strong familiality compatible
with an autosomal dominant transmission [51]. The overlap
between FHM and common idiopathic migraine has thus
suggested that the two forms may share common neurobio-
logical underpinnings [52]. Despite its low incidence, FHM
may thus represent an important genetic model to understand
the molecular pathophysiology of common migraine.
Mutation screening has revealed numerous genetic variants
able to cause FHM (Table 2). Mutations in two ion channel
genes,CACNA1A and SCN1A, as well as inATP1A2 encoding
the alpha2 subunit of the Na-K ATPase, cause FHM type 1, 3,
and 2, respectively. De novomutations affecting especially the
latter two genes have also been reported in sporadic forms,
devoid of a positive family history but clinically superimpos-
able to FHM [53]. Furthermore, the pleiotropic effects espe-
cially of SCN1A mutations result in a variety of clinical
phenotypes, including various forms of epilepsy, autism, and
MA/MO without typical FHM-type aura, raising further inter-
est in the pathophysiological overlap between FHM and spo-
radic forms of migraine [63–65]. Cellular and animal studies
have revealed that mutated FHM genes are associated with
altered ion homeostasis, cellular excitability, and neurotrans-
mitter release; these abnormalities then predispose to the onset
of cortical spreading depression (CSD), the electrophysiolog-
ical underpinning of aura symptoms paving the path to mi-
graine headache [4].

FHM type 1 is caused by missense mutations in the CACN
A1A gene on chromosome 19p13 [54]. To date, at least 70
different causal missense mutations have been detected in this
gene. Nonsense or missense mutations in CACNA1A are
typically associated with episodic ataxia type 2 and FHM1,
whereas a CAG triplet repeat expansion affecting the C-
terminus causes spinocerebellar ataxia type 6, but rare cases
with both FHM1 and cerebellar ataxia have also been reported
[66, 67]. CACNA1A encodes the α1A subunit of the Cav2.1
(P/Q type) voltage-gated neuronal calcium channel, expressed
throughout the central nervous system with highest density in
the cerebellum [68, 69]. This subunit is involved in voltage
sensitivity and mutations lead to increased Ca2+ influx into the

neuron in response to smaller depolarizations. This, in turn,
enhances the release of the excitatory neurotransmitter gluta-
mate, because this channel is predominantly expressed pre-
synaptically, where it couples membrane depolarization with
neurotransmitter release [70]. Ultimately, transgenic mice har-
boring the human FHM1 R192Q or S218L (KI) mutation
exhibit a lower threshold for CSD generation, increased
CSD propagation velocity, and CSD extension into subcorti-
cal regions [71, 72]. Interestingly, female knock-in mice har-
boring these human mutations show significantly greater sus-
ceptibility to CSD compared to male carriers, which disap-
pears after ovariectomy [73]. The regional distribution and
functional role of this subunit explains why some FHM1
patients may also display cerebellar signs and episodic loss
of consciousness.

FHM type 2 (FHM2) is associated with mutations in the
ATP1A2 gene, located in human chromosome 1q21-q23
(Table 2). This gene encodes the α2 subunit of the Na+-K+

pump. FHM2 mutations blunt Na+-K+ ATPase activity and
lower CSD threshold by (a) enhancing extracellular K+ con-
centrations and (b) reducing the electrochemical Na+ gradient
required to drive astrocytic glutamate transporters, ultimately
slowing the removal of extracellular glutamate and enhancing
its concentration [51]. ATP1A2mutations have also been very
rarely encountered in basilar migraine and in common mi-
graine, as well as in other neurological diseases, such as
idiopathic cerebellar syndromes, benign familial infantile con-
vulsions, epilepsy, alternating hemiplegia of childhood, and
intellectual disability [55, 56].

FHM3 mutations are localized in the SCN1A gene, on
human chromosome 2q24 [57]. This gene encodes for the
α1 subunit of the neuronal voltage-gated sodium (Nav1.1)
channel, which is primarily expressed in cortical neurons,
where it plays an important role in the generation and propa-
gation of action potentials. SCN1Amutations typically lead to
hypersynchronous neuronal discharges resulting in seizures,
autism, or migraine attacks, with either typical FHM course or
appearing as sporadic MA or MO [63–65]. Data derived from
a Nav1.1-knockout mouse model show that a loss of one allele

Table 2 Familial hemiplegic migraine (FHM)

FHM Gene Chr. region Protein product N. of mutations Refs

FHM 1 CACNA1A 19p13 Voltage-dependent (P/Q) Cav 2.1
channel, α1A subunit

Over 70 missense mutations
with “gain of function” effect

[53, 54]

FHM 2 ATP1A2 1q21-23 Na+-K+ ATPase, α2 subunit Over 50 mutations with “loss
of function” effect

[53, 55, 56]

FHM3 SCN1A 2q24 Neuronal type I voltage-dependent
Na+ channel, A1 subunit

5 missense mutations [57, 58]

– PRRT2 16p11 Axonal proline-rich transmembrane
protein 2 involved in exocytosis

Four family members with
the same 649dupC mutation

[59]

– SLC4A4 4q21 Electrogenic Na+-HCO3−

cotransporter NBCe1
1 homozygous deletion in 2 sisters [60]

– SLC1A3 5p13 Glial glutamate transporter EAAT1 1 mutation [61, 62]
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predominantly decreased activity of GABAergic inhibitory
interneurons, without affecting excitatory pyramidal neurons
[74]. Indeed, several mutations in the SCN1A gene have also
been associated with severe childhood epilepsy, such as gen-
eralized epilepsy with febrile seizures plus (GEFS+) and
Dravet syndrome [75]. In contrast, mutations producing mi-
graine only, such as Q1489K, display ambivalent effects
whereby not only the rate of recovery from inactivation is
accelerated, as in epileptogenic mutations, but also the transi-
tion from closed to the inactivated state of the channel,
preventing neuronal discharges from becoming epileptogenic
[58].

Other forms of typical FHM due to mutations in novel
FHM candidate genes have been recently described
(Table 2). Mutations resulting in an FHM phenotype have
been identified in the PRRT2 (proline-rich transmembrane

protein 2) gene, located on human chromosome 16p11 and
encoding for an axonal protein associated with the exocytosis
protein complex [59]. A mutation in the SLC4A4 gene,
encoding for the Na+-HCO3

− cotransporter NBCe1, has been
identified in two sisters with an FHM phenotype, renal tubular
acidosis, and ocular abnormalities [60]. Finally, missense
mutations located in the SLC1A3 gene, encoding the glial
glutamate cotransporter EAAT1, have been found to cause
episodic ataxia, migraine, seizures, and alternating hemiplegia
[61, 62].

In conclusion, familial forms of MA, and in particular
FHM, are due to rare inherited or sporadic genetic variants
endowed with high penetrance. These mutations disrupt neu-
ronal excitability by affecting the transmembrane electro-
chemical gradient and/or by enhancing extracellular glutamate
concentrations. Each mutation is rare or even private: locus

Table 3 Positive association findings with neurological candidate genes

Gene Locus Cases Controls Ethnicity n. SNPs analyzed Associated SNPs/VNTRs P value Refs

5-HT-related genes

DDC 7p12.2 528 (308 MO, 220 MA) 528 Spanish 15 rs2329340
rs11974297
rs2044859
rs11761683

0.0019 (MA) [77]

MAOA Xp11.3 528 523 Spanish 2 rs3027400G
rs2072743C

0.006 (MO) [77]

HTR2B 2q37.1 528 523 Spanish 23 rs16827801
rs10194776

0.0017 (MO) [77]

91 119 Japanese 1 rs6323 <0.05 [78]

SLC6A4 17q11.2 154 (92MO, 52MA) 105 Italian – 5-HTTLPR S/S <0.05 (MA) [79]

251 192 German 2 rs1979572 <0.05 (MA) [80]

Dopamine-related genes

DBH 9q34 177 182 Australian 1 rs7239728 0.019 [81]

275 275 Australian 2 rs7239728 0.003 (MA) [82]

200
300

200
300

Australian 2 rs1611115
rs1611115

0.012
0.031

[83]

650 2937 German/Br 1 rs2097629 5.57×10−8 [84]

263 274 Spanish 11 rs1611131 0.04 [85]

301 (99MA, 202MO) 202 Indian 1 rs72393728 0.027 [86]

208, 127 (II) 200 Indian 2 rs7239728 <0.05 [87]

SLC6A3 5p15.3 650 2937 German/Br 1 rs40184 6.36×10−7 [84]

DRD2 11q23 650 650 German 1 rs7131056 0.034 [84]

DRD3 3q13.3 263 274 Spanish 10 rs12363125 0.03 [85]

DRD4 11p15.5 194 (93MA, 101MO) 117 Italian 1 rs22832265 0.008 [88]

Glutamate receptors

GRIA1 5q31.1 250 260 Italian 6 rs2195450 0.00002 (MA) [89]

GRIA3 Xq25 250 260 Italian 8 rs548294
rs3761555

0.0003 (MO)
0.0001 (MA)

[89]

472 472 Australian 1 rs3761555 0.008 (MA) [90]

DBH dopamine beta-hydroxylase, DDC dopa decarboxylase, DRD2 dopamine receptor D2, DRD3 dopamine receptor D3, DRD4 dopamine receptor
D4, GRIA1 glutamate receptor, ionotropic AMPA 1,GRIA3 glutamate receptor, ionotropic AMPA 3, HTR2B 5-hydroxytryptamine (serotonin) receptor
2B, 5-HTTLPR functional serotonin transporter gene promoter, MAOA monoamine oxidase A, SLC6A3 solute carrier family 6 (neurotransmitter
transporter dopamine), SLC6A4 solute carrier family 6 (neurotransmitter transporter), member 4, II replication cohort
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and allelic heterogeneity is clearly supported by current evi-
dence and further heterogeneity can be anticipated.
Importantly, studies investigating the role of FHM genes in
common forms of MO have uncovered only few instances
where mutations in FHM genes produce familial MO [56, 63].
This leads to conclude that genetic variants in FHM genes do
not play widespread causative roles in common forms of MO,
seemingly displaying more complex genetic underpinnings
[76].

Oligogenic/polygenic forms of migraine

Candidate gene studies

Candidate gene approaches have been widely used to study
migraine genetics. Replication studies have been performed
with conflicting or inconclusive results for a significant num-
ber of these genes. This can be due to several reasons, such as
low statistical power, interethnic differences in linkage dis-
equilibrium, genetic, and phenotypic heterogeneity between

independent case–control cohorts. Nonetheless, candidate
gene studies remain of interest, as they can unveil the contri-
bution of common genetic variants to a complex phenotype in
specific ethnic groups and especially in genetic isolates (see
“Methodological Issues in Migraine Genetics Research” be-
low). Within this framework, positive findings are bound not
to be replicated in all ethnic groups but are nonetheless rele-
vant if at least some replications occur and functional allelic
dimorphism is proven in vitro and/or in vivo. Candidate genes
have been previously clustered around four functional gene
families, namely neurological, vascular, hormonal, and in-
flammatory genes [76]. Tables 3, 4, 5, and 6 list positive
case–control studies supporting the association between mi-
graine and candidate genes yielding positive results in at least
two independent studies. Negative studies are not listed.

(I) Neurological genes. This category broadly includes can-
didate genes encoding: (a) ion channels (calcium channel,
voltage-dependent, P/Q type, alpha 1A subunit [CACN
A1A], voltage-potassium intermediate/small conduc-
tance calcium-activated channel, subfamily N, member

Table 4 Positive association findings with vascular candidate genes

Gene Locus Cases Controls Ethnicity n. SNPs analyzed Associated
SNPs/polymorphisms

P value Refs

ACE 17q23.3 191 201 Italian 1 rs4646994 <0.05 [91]

176 248 Japanese 1 rs4646994 <0.01 (MA) [92]

150 150 Indian 1 rs4646994 0.04 (MA) [93]

MTHFR 1p36.3 74 261 Japanese 1 rs1801133 <0.01 [94]

102 136 Turkish 2 rs1801133 0.015 [95]

78MA,152MO 204 Spanish 1 rs1801133 0.006 (MAvs MO) [96]

270 270 Australian 1 rs1801133 0.017 (MA) [97]

91 119 Japanese 1 rs1801133 <0.05 [78]

124 1725 British 1 rs1801133 <0.05 (MA) [98]

151 137 Chinese 1 rs1801133 0.003 (MO) [99]

150 107 Turkish 1 rs1801133 <0.001 [100]

NOTCH3 19p13.12 97
275
300 (II)

97
275
300 (II)

German
Australian

2
2
2

rs1043994
rs3815188
rs1043994
rs3815188
rs1043994

0.005
0.002 (MO)
0.001 (MA)
0.06 (MO)
0.003 (MA)

[101]
[102]

EDNRA 4q31.22 850 890 Finnish 13 rs2048894 0.015 (MA) [103]

648 (II) 651 (II) German 1 rs2048894 0.010 (MA)

217+179TTH 217 Indian 1 rs2048894 0.002 (MA/MO) [104]

77MA; 111MO 287 Portuguese 3 rs702757-rs5333 <0.05 [105]

140 French 5 c.-231A>G [106]

NOS2 17q11.2 504 512 Chinese 2 PNRP 0.007 [107]

200 (52MA, 148MO) 142 Brazilian 1 rs2779249
rs2297518

<0.05 [108]

NOS3 12q14 156 125 Italian 1 rs1799983 <0.05 (MA) [109]

ACE angiotensin I-converting enzyme, EDNRA endothelin receptor type A,MA migraine with Aura,MO migraine without Aura,MTHFR methylene-
tetrahydrofolate reductase, NOTCH3 neurogenic locus notch homologue protein 3, PNRP pentanucleotide repeat polymorphism, TTH tension-type
headache, II replication cohort

Neurogenetics (2015) 16:77–95 83



3 [KCCN3]), (b) Na+/K+-ATPase subunits, (c) mole-
cules involved in the synthesis, release, and binding of
neuropeptides (calcitonin gene-related peptide) or neu-
rotransmitters (glutamate, GABA, dopamine, serotonin)
relevant to neuronal excitation and/or to nociception.
Some case–control association studies have yielded
positive results, as listed in Table 3 [77–90], although
most studies have been negative especially for the

former two gene families. Nonetheless, a thorough
screening of 150 brain-expressed genes involved in
ion homeostasis (channels, transporters, exchangers,
and accessory subunits) identified three genes encoding
potassium channels associated with migraine, namely
KCNK18, KCNG4, and KCNAB3 [121]. KCNK18 is
especially interesting, in view of its expression in the
trigeminal and dorsal root ganglia, as well as its

Table 5 Positive association findings with hormonal candidate genes

Gene Locus Cases Controls Ethnicity n. SNPs
analyzed

Associated
SNPs/polymorphisms

P value Refs

ESR1 6q25.1 224
260 (II)

224
260 (II)

Australian 1 rs2228480 0.003
8×10−6

131

240 160 Spanish 1 rs1801132 0.008 (females) 132

356 (198MA,
158MO)

374 Spanish 1 rs1801132 0.004 133

217MA, 179TTH 217 Indian 1 rs2234693 0.002 MA 134

207
127 (II)

200 Indian 4 rs2234693 Pcorr0.01 135

ESR2 356 (198MA,
158MO)

374 Spanish 1 rs4986938 0.004 133

FSHR 2p21-
p16

356 (198MA,
158MO)

374 Spanish 1 rs6166 0.004MA (females) 133

CYP19A1 15q21 207
127 (II)

200 Indian 1 rs10046 pcor0.01 135

PGR 11q22 275
300 (II)

275
300

Australian 1
1

PGR PROGIN insert 0.002
0.003

136

CYP19A1 cytochrome P450, family 19, subfamily A, polypeptide 1 gene, ESR1 estrogen receptor 1gene, ESR2 estrogen receptor 2 gene, FSHR follicle
stimulating hormone receptor gene, PGR progesterone receptor gene, TTH tension-type headache, II replication cohort

Table 6 Positive association findings with inflammatory candidate genes

Gene Locus Cases Controls Ethnicity n. SNPs
analyzed

Associated
SNPs/polymorphisms

P value Refs

TNFA 6p21.3 299 306 Italian 1 rs1800629 <0.001
(MO)

[110]

221 (MO) 183 Iranian 1 rs1800629 <0.0001 [111]

216 216 Indian 1 rs1800629 <0.006
(MA)

[112]

67 (MO) 96 Turkish 1 rs1800629 0.004 (MO) [113]

203 202 Turkish 1 rs1800629 <0.0001 [114]

TNFB/LTA 6p21.3 79 (47MO+32MA) 101 Italian 1 TNFB*2al. 0.004 (MO) [115]

439 382 South Korea 15 LTA-294C 0.005 [116]

299 278 Italian
(Sardinian)

1 rs909253 0.018 [117]

91 119 Japanese 1 rs909253 <0.05 [78]

TNFRSF1B 1p36.22 416 415 Chinese Han 1 rs5745946 0.004 [118]

HLA-
DRB1

6p21.3 255 (41MA,
214MO)

325 Italian – DRB1*16al. 0.043 (MO) [119]

IL1 β 2q14 67 (MO) 96 Turkish 1 rs1143634 0.004 [113]

COX-2 1q25.2 144 123 Turkish 2 rs20417 0.0001 [120]

COX-2 cyclooxygenase-2, HLA-DRB1 major histocompatibility complex, class II, DR Beta 1, LTA lymphotoxin alpha, MA migrane with Aura, MO
migraine without Aura, TNFA tumor necrosis factorα gene, TNFB tumor necrosis factorβ gene, TNFRSF1B tumor necrosis factor receptor superfamily,
member 1B
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relationship with MA also detected through linkage (see
below).

(II) Vascular genes. Association studies of genes involved in
blood pressure regulation, endothelial cell function, va-
soconstriction, and vasodilation have provided more
consistent positive results (Table 4) [91–109,
122–129]. Many vascular genes associated with mi-
graine also confer risk for stroke and heart disease
[125–127]. This is especially important for MA, which
displays a significant comorbidity with stroke and de-
pression [15, 16]. Common functional variants in several
vascular genes may predispose to migraine, while also
influencing type and frequency of the attacks [127]:

(a) Angiotensin converting enzyme (ACE) plays a key
role in the maintenance of blood pressure and vessel
wall tension. The D-D (“deletion-deletion”) common
variant located in the ACE gene (human chr. 17q23)
increases ACE enzymatic activity, as well as the
frequency and duration of MA attacks [91–93];

(b) An association between methylenetetrahydrofo-
late reductase (MTHFR) gene variants and mi-
graine has also been found in several studies
[128]. MTHFR is a key component of the
remethylation of homocysteine to methionine, as
it catalyzes the conversion of 5,10-methylenetet-
rahydrofolate to 5-methyltetrahydrofolate. Rare
loss-of-function mutations in the MTHFR gene,
located in human chromosome 1p36.22, can lead
to hyperhomocysteinemia due to decreased en-
zyme activity. Several studies involving different
ethnic groups [78, 93–100, 122–124] and several
recent metanalyses [98, 123, 124, 129] provide
converging evidence of contributions by the
T677 MTHFR allele at SNP rs1801133 to mi-
graine, more consistently for carriers of the TT
genotype and relative to MA than to MO.
Nonetheless, lack of association with MTHFR
gene variants has also been reported, which may
be related to advancing age and selective survival
[122];

(c) NOTCH3 encodes for a transmembrane receptor
regulating vascular development and differentiation
during embryogenesis, as well as contributing to
vascular integrity in adults [27, 28]. In addition to
rare NOTCH3 mutations producing MA within the
context of CADASIL [19–24], also common vari-
ants are significantly associated with migraine [101,
102]. Hence, NOTCH3 may play a broader role also
in the pathogenesis of common migraine, well be-
yond rare forms associated with CADASIL;

(d) Endothelial genes assessed for association with mi-
graine encode for endothelin-1 (EDN1), endothelin

receptor type A and B (EDNRA and EDNRB), in-
ducible NO synthase (NOS2), endothelial NO syn-
thase (NOS3), and vascular endothelial growth factor
(VEGF) [103–109, 125]. Endothelin-1, encoded by
the EDN1 gene (human chr 6p24), is involved in
blood pressure regulation and produces vasocon-
striction. EDN1 has two receptors, A and B, encoded
by the EDNRA and EDNRB genes located on human
chr 4q31 and 13q22, respectively. Several studies
have found an association between EDNRA alleles
and migraine (Table 4), including one study involv-
ing an experimental and a replica sample of Finnish
and German migraineurs, respectively, reporting a
nominal association with MA at EDNRA SNP
rs2048894, especially with age at onset <20 years
[103].

(III) Hormonal genes. Genes governing estrogen and pro-
gesterone metabolism would be predicted to at least
partly explain the sex-biased distribution of affection
status, especially considering menstrual migraine
[130]. However, results from genetic association stud-
ies are conflicting, although several positive case–con-
trol studies were published [131–136], as well as a
pedigree-based association performed in the genetic
isolate of Norfolk Island, a population with high prev-
alence of migraine descended from a small number of
Isle of Man “Bounty Mutineer” and Tahitian founders
[137]. In the latter study, three estrogen receptor 1
(ESR1) haplotypes were significantly associated with
the disorder (P<0.05 or 0.01). In addition to ESR1, six
other hormonal genes have been investigated: estrogen
receptor 2 (ESR2), progesterone receptor (PGR), an-
drogen receptor (AR), follicle stimulating hormone re-
ceptor (FSHR), nuclear receptor interacting protein 1
(NRIP1), and cytochrome P450, family 19, subfamily
A, polypeptide 1 (CYP19A1). However, a meta-
analysis of eight genetic association studies investigat-
ing these genes suggests an association only with the
ESR1 c.594G>A and c.325C>G polymorphisms, a
finding that does not differ between MA and MO [9]
(Table 5).

(IV) Inflammatory genes. Animal and human studies sug-
gest that inflammation and components of the immune
system may play an important role in the pathogenesis
of migraine. In the case of CSD, for example, this
process triggers local neurogenic inflammation, with
activation of mast cells and macrophages accompanied
by the release of proinflammatory cytokines, ultimately
resulting in the sensitization of meningeal nociceptive
nerve endings [138]. Among several genes implicated
in neurogenic inflammation, results support a positive
association especially for tumor necrosis factor alfa
(TNF-α) [110–120] (Table 6).
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Linkage studies

Many classical linkage studies have been performed on mi-
graine using either a genome-wide approach or targeting
specific regions using microsatellite markers (139–161;
Table 7). Results have been highly conflicting, and very few
linkage peaks have been replicated in two independent sam-
ples (Table 7). This relative lack of success can be attributed to
several causes, including locus heterogeneity, reduced pen-
etrance, the existence of phenocopies, the separation/
clustering together of MA and MO phenotypes which
may represent in some families different clinical expres-
sions of the same underlying mutation, while identical
mutations may yield distinct clinical phenotypes in other
families. Nonetheless, greater success has been achieved in
linkage studies of FHM (162–169), which have detected
several loci involved in these monogenic forms, as

described above (Table 8). Some studies applying linkage
to single large pedigrees, rather than combining several
multiply affected families evidently afflicted by underlying
heterogeneity, have also been successful. For example, a
frameshift mutation in the KCNK18 gene was found to
cosegregate with MA in a large pedigree from Ontario
[170]. KCNK18 encodes for the TRESK pore potassium
channel, highly expressed in trigeminal and dorsal root
ganglia during embryogenesis: the truncated TRESK pro-
tein produces a dominant-negative effect blocking K+ flow
through TRESK and yielding abnormal neuronal excitabil-
ity [170, 171]. TRESK may play a broader role in common
forms of migraine, since KCNK18 gene variants were
found associated with migraine also in a case–control
study (see above) [121]. Interestingly, the loss-of-
function missense mutation C110R, found in sporadic
cases, has also been detected among controls, underscoring

Table 7 Overview of the linkage studies of migraine with or without aura

Locus Migraine subtype N. of families Ethnicity Experimental method Refs

1p36 MA 64 Canadian Loci-specific microsatellite markers [139]

1q21-23 MA 21 Caucasian Loci-specific microsatellite markers [140]

MA and MO, LCA 756 Australian twins Genome-wide scan [141]

1q31 MA and MO 1 US (German descent) Genome-wide scan [142]

1q31 MA and MO 82 Australian Loci-specific microsatellite markers [143]

1q (ATP1A2 gene) MA and MO, LCA 105 Dutch Genome-wide scan [144]

3qter MA and MO, LCA 92 Australian Genome-wide scan [145]

4q21 MO 103 Icelandic Genome-wide scan [146]

4q24 MA, TCA 50 Finnish Genome-wide scan [147]

[148]

5q21 MA and MO, LCA 756 Australian twins Genome-wide scan [141]

6p12.2-p21.1 MA and MO 1 Swedish Genome-wide scan [149]

MA and MO, LCA 756 Australian Genome-wide scan [141]

6p12 MA and MO 134 Spanish Loci-specific microsatellite markers [150]

9q21-q22 MA 36 Finnish Genome-wide scan [151]

10q22-q23 MA and MO, TCA 210 Finnish/Australian Genome-wide scan [152]

11q23 MO 50 Sardinia, Italy Loci-specific SNP markers [153]

11q24 MA 43 Canadian Genome-wide scan [154]

12p13 MA 36 Finnish Genome-wide scan [151]

13q14-q21 (HTR2A gene) MA and MO 3 Australian Loci-specific microsatellite markers [155]

13 MA and MO, LCA 105 Dutch Genome-wide scan [144]

14q21.2-q22.3 MO 1 Italian Genome-wide scan [156]

15q11-q13 MA 19 Italian Loci-specific microsatellite markers [157]

18p11 MA and MO, LCA 92 Australian Genome-wide scan [145]

19p13 MA and MO 28 German Loci-specific microsatellite markers [158]

19p13 MA 1 Australian Loci-specific microsatellite markers [159]

20 MA and MO, LCA 105 Dutch Genome-wide scan [144]

Xq MA and MO 2 Australian Loci-specific microsatellite markers [160]

Xq27 [161]

MA migraine with aura, MO migraine without aura, LCA latent class analysis, TCA trait component analysis
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the need for a multiple-hit model to explain TRESK con-
tributions at least in some patients with MA [172].

To overcome the limitations of classical linkage in the
presence of genetic and clinical heterogeneity and to target
more homogenous subgroups of patients, latent class analysis
(LCA) and trait component analysis (LTC)methods have been
used in some migraine studies with promising results [141,
144, 148, 152].

Genome-wide association studies

To this date, six original GWAS of migraine with no selection
based on specific comorbidities have been performed:

1) The first GWAS of migraine was produced by the
International Headache Genetics Consortium (IHGC) in
2010. Anttila and colleagues [173] carried out a two-stage
association study in six clinic-based and one population-
based Europeanmigraine samples. In the discovery stage,
2748 cases with MA, recruited from headache clinics in
Finland, Germany, and Denmark, were compared with
10,747 population-matched controls. Out of 429,912
markers genotyped, only rs1835740 reached genome-
wide significance, while 11 additional SNPs reached
suggestive significance. This association was then repli-
cated in 3202 cases and 40,062 controls, and combined
results indicated an 18 % increase in migraine risk con-
ferred by the minor allele at rs1835740 (OR=1.18, 95 %;
P=1.69×10−11), with a stronger effect in the MA than in
MO. This SNP is located on human chr 8q22.1, between
the metadherin gene (MTDH), also known as astrocyte
elevated gene 1, and the plasma glutamate carboxypepti-
dase Q gene (CPQ), also known as plasma glutamate
carboxypeptidase (PGCP). Although the proximity of
an association signal to a gene in GWAS does not neces-
sarily implicate that gene in the pathophysiology of the
disease, interestingly, these genes are both involved in
glutamate homeostasis. In cultured astrocytes,
metadherin down-regulates EAAT2, the major glutamate
transporter in the brain: this in turn is predicted to increase

glutamate concentrations in the synaptic cleft and/or de-
lay glutamate removal, thus lowering the threshold for
cortical spreading depression [174, 175], which plays a
major role in the pathophysiology of MA, as discussed
above.

2) A population-based GWAS was then performed using a
total of 23,330 women, divided in 5122 cases and 18,108
controls [176]. No SNP reached genome-wide signifi-
cance in the discovery step. Among the seven loci show-
ing suggestive significance (P<5×10−6), SNPs tested in
three independent replication cohorts provided significant
results at SNPs located in or near the TRPM8, LRP1, and
PRDM16 genes. TRPM8 is expressed in sensory neurons
and dorsal root ganglion neurons and encodes a sensor for
cold and cold-induced pain [177]. The role of TRPM8 in
animal models of neuropathic pain further supports a
functional link with migraine, which shares several com-
monalities with this pain syndrome [178]. LRP1,
expressed in brain and in many other tissues [179], mod-
ulates synaptic transmission and interacts with gluta-
matergic NMDA receptors. Finally, PRDM16 is a pleio-
tropic gene important for craniofacial development,
grown fat determination, and for the proliferation of car-
diomyocyte, neural, and leukocyte precursor cells [180].
Interestingly, the mouse homologue Prdm16 has been
shown to act as a negative regulator of TGF-β, encoded
by TGFBR2, another migraine candidate gene [181]. An
association with PRDM16, but not with LRP1 and
TRPM8, has been recently replicated in a Chinese Han
cohort [182]. Conversely, an association with LRP1 and
TRPM8 has been detected in a Danish and Icelandic
sample including 2523 cases and 38,170 controls, while
a meta-analysis confirmed an association at all three loci
[183].

3) Lighthart et al. [184] performed a GWAS and meta-
analysis using six European cohorts from the Dutch
Icelandic migraine genetics consortium for a total of
2446 cases and 8534 controls. No SNP reached
genome-wide significance, while 32 SNPs reached sug-
gestive evidence (P<1×10−5). The lowest P value was

Table 8 Summary of linkage
studies in familial hemiplegic
migraine (FHM)

Locus N. of families Ethnicity Experimental method Refs

1q21-q23 1 French Loci-specific microsatellite markers [162]

1q21-q23 1 Italian Loci-specific microsatellite markers [163]

1q23 2 Italian Loci-specific microsatellite markers [164]

1q23 1 Irish Loci-specific microsatellite markers [165]

2q24 2 German Genome-wide scan [166]

14q32 1 Spanish Loci-specific microsatellite markers [167]

19p 2 French Loci-specific microsatellite markers [168]

19p 1 British Loci-specific microsatellite markers [169]

19p 44 Danish Genome-wide scan [52]
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produced by a variant located in the nerve growth factor
receptor (NGFR) gene. However, none of these SNPs
reached significance in independent replica samples from
the Netherlands and Australia.Metanalysis of the full data
set provided weak evidence of association for the
metadherin MTDH gene (P<0.05).

4) Freilinger et al. [185], with the aim to identify SNPs
associated with MO, performed a GWAS including
2326 cases and 4580 controls from German and Dutch
populations. In the discovery step, significant genome-
wide association was reached by one locus located in chr.
1q22 (P<5×10−8), while eleven additional loci provided
suggestive evidence of association (P<1×10−5).
Eighteen SNPs from these 12 loci were then analyzed in
four independent European replication samples
consisting of 2508 cases and 2652 controls. Results
showed a convincing replication at the 1q22 (MEF2D)
and the 3p24 (near TGFBR2) loci, and suggestive evi-
dence of replication for SNPs located in or near the
PHACTR1 and ASTN2 genes, while previously identified
loci (TRPM8 and LRP1) were also found associated.
MEF2D is a transcription factor highly expressed in the
brain, where it regulates neuronal differentiation and re-
stricts excitatory synapses [186, 187]. This posesMEF2D
as a strong candidate gene for migraine, given the in-
volvement of glutamatergic neurotransmission in CSD
and migraine pathogenesis [175], as well as possibly
increased plasma levels of glutamate in individuals with
migraine [188]. TGFBR2 encodes for transforming
growth factor-β (TGF-β), involved in the regulation of
cell proliferation, differentiation, and in extracellular ma-
trix production [189]. A missense mutation has been
associated with migraine headaches in 11 of 14 mutation
carriers in a large pedigree [190].

5) Cox et al. [191] recently performed a pedigree-based
GWA study of an isolated population of Norfolk Island
with a high prevalence of migraine (25.5 %). They found
an association with rs4807347 located in the finger pro-
tein 555 (ZNF555) gene which was replicated in an
independent case–control sample albeit with opposite
alleles, as well as association with SNPs located in the
ADARB2, GRM7, and HTR7 genes, mostly related to the
serotoninergic system. This association is apparently spe-
cific to this isolated population but might bring insights to
future research.

6) A recent large meta-analysis of 29 population- and clinic-
based samples including a total of 23,285 individuals with
migraine and 95,425 matched controls identified 142
SNPs located in 12 different loci significantly associated
with the phenotype, with 8 loci containing SNPs located
in known transcripts [192]. Five loci were not previously
associated with migraine (AJAP1, TSPAN, FHL5,
C7orf10, andMMP16), although the TSPAN SNP is close

to a previously associated SNP located near TSPAN-2
[145]. The remaining loci confirmed previous reports
(PRDM16, MED2D, TRPM8, TGFBR2, PHATCTR1,
ASTN2, and LRP1). The most significant P values were
observed in the LRP1 locus (P=2.69×10−19). Finally, an
eQTL analysis performed on 394 brain tissue specimens
revealed 5 additional loci potentially implicated in mi-
graine susceptibility (APOA1BP, FUT9, STAT6, ATPB5,
and TBC1D7). Results of this study analyzed by network
analysis have been suggestive for a possible involvement
of the identified gene into a common functional glutamate
pathway [192].

Common variants identified by GWAS collectively con-
tribute to migraine pathogenesis each exerting a small effect
size, with ORs below 1.3 as typically occurs in complex
disorders [192]. This contribution is detectable in common
forms of polygenic migraine with multiple epistatic “gene ×
gene” and “gene × environment” interactions, whereas highly
penetrant rare variants, such as those responsible for FHM, are
able to produce sporadic and familial migraine without requir-
ing contributions by common variants, which may at most
modulate clinical features in monogenic forms. Despite the
small effect size exerted by each single polymorphism, com-
mon variants unveiled by GWAS have proven very valuable
by underscoring glutamatergic roles in migraine, likely under-
lying cortical spreading depression and the sensitization of
nociceptive nerve endings, along with contributions by NGF
and 5-HT signaling, as well as neuroimmune interactions.

Methodological issues in migraine genetics research

Genetic studies performed to date provide converging evi-
dence supporting the existence of two broad migraine catego-
ries, caused either by (a) rare genetic variants with high
penetrance, inherited, or de novo or by (b) a myriad of com-
mon variants, typically inherited, each providing small contri-
butions to the overall disease risk, and collectively endowed
with incomplete penetrance, hence requiring multiple gene-
gene and gene-environment interactions as well as epigenetic
influences in order to produce full-blown pathology. In simple
terms, rare variants could be defined as “causal”, while com-
mon variants would be “predisposing”. These two categories
do not overlap with current clinical categorizations, such as
MAvs MO, although MA appears more frequently explained
by rare causal variants compared to MO, which instead may
more often fall into the latter category. Interestingly, several
lines of evidence from twin and family studies already did
support this prediction: for example, the presence of MA in
the proband was found associated with a mean relative risk
(RR) of 3.79 for MA in his/her first-degree relatives, as
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compared to 1.02 for MO; conversely, a diagnosis of MO
conferred a RR of 1.86 and 1.44 forMO andMA, respectively
[193]. It was reassuring to see this prediction confirmed by
recent GWAS studies, identifying several common variants
for MO, but none for MA [192]. Unfortunately, both mi-
graines due to rare and to common variants display great
heterogeneity, although in different ways: migraine forms
due to rare variants are highly heterogeneous, with each rare
variant causing the disorder in few families worldwide; mi-
graine forms due to common variants are also highly hetero-
geneous, with multiple different combinations of common
variants enhancing migraine risk in different individuals and
ethnic groups, in turn, exposed to only partly overlapping
environmental factors.

Experimental design must match this level of complexity
for studies to provide meaningful results. Rare variants can
hardly be tackled using classical linkage by combining multi-
ple pedigrees as rare variants are so heterogeneous, while
there is much greater probability of success for studies involv-
ing single large pedigrees with high recurrence rates. In this
regard, the possibility that rare variants responsible for mi-
graine in some family members may yield other disease
phenotypes, perhaps among those so often comorbid with
migraine, in other family members should be considered
[15, 16]. Next-generation sequencing (NGS) technologies
foster rare variants discovery through unbiased approaches,
including whole-exome sequencing (WES) and whole-
genome sequencing (WGS), whereas array-CGH can detect
copy number variants (CNVs), microdeletions and
microduplications acting either as rare or as common variants.
Surprisingly, to our knowledge, no array-CGH study of mi-
graine has been published to this date. WES has already been
used in many monogenic disorders and also to detect muta-
tions in complex disorders, such as autism [194]. Limitations
of this technique include not only its cost and incomplete
exome coverage but also the possibility that causal variants
in non-coding regions are missed. WGS overcomes this lim-
itation, at the expense of huge data production [195].
Multifactorial forms of migraine, such as most common forms
of MO, can be explored by case–control or family-based
association, using either a candidate gene or an unbiased
GWAS approach. Within the framework of the ongoing de-
bate on the role and meaning of candidate gene studies in the
GWAS era, it is important to acknowledge the relative
strengths and weaknesses of these approaches. GWAS needs
extremely large sample sizes to control for multiple testing,
and this typically requires the collaborative merging of pre-
existing samples recruited in different countries. Hence,
GWAS is a powerful and unbiased tool able to detect relevant
common variation, provided it is not ethnic-specific and it is
endowed with a sizable effect as compared to other common
variants. Since much common variation is indeed ethnic-
specific both due to disease pathophysiology and to linkage

disequilibrium patterns, GWAS can discover the most consis-
tent variants but by no means exhaust genetic contributions to
common disorders. This can instead be sought also by using
candidate gene approaches, which are clearly more at risk of
false positives until at least some replication occurs and, more
importantly, allelic variants are proven to exert functional
roles. The efficacy of both candidate and unbiased association
strategies can be further improved applying a qualitative di-
agnostic system and by implementing endophenotypes, famil-
ial, and heritable quantitative intermediate phenotypes associ-
ated with a complex disease and able to identify subgroups of
patients possibly sharing a homogeneous pathophysiological
basis [196, 197]. Biomarkers and endophenotypes applied in
migraine research have been recently reviewed [198].
Additional endophenotypes may be represented by frequently
comorbid disorders [15, 16], whereby the process leading to
migraine may differ from non-comorbid forms [199]. A phe-
notyping approach involving endophenotypes, while requir-
ing greater care in statistically controlling for multiple testing,
has already yielded valuable results also in linkage analysis
through LCA and TCA, as discussed above.

Finally, it is highly unlikely that genetic markers will be
able to explain large portions of phenotypic variance in many
common forms of migraine. A combination of epigenomic,
trascriptomic, proteomic, and metabolomic biomarkers
assessed in first-onset cases prior to starting chronic pharma-
cological treatment and followed longitudinally for migraine
subtype characterization may provide, in combination with
common genetic variants, greater amounts of clinically useful
information [197]. To this date, few studies have identified
biochemical biomarkers of potential clinical significance,
such as the neuropeptide calcitonin gene-related peptide
(CGRP) [198]. This path of investigation remains entirely to
be explored. Additional areas where genetic investigations
will undoubtedly play a major role, but complementary ap-
proaches will likely be necessary, include the underpinnings
of treatment response, the sex bias observed in migraine, and
the overlap between migraine and comorbid conditions.

Conclusions

Genetic studies have provided pivotal insights into the molec-
ular mechanisms underlying migraine. Cellular and animal
models of monogenic forms have helped in understanding
the pathophysiology ofmigraine, which essentially leans upon
three main domains, a “neural” domain (i.e., CSD-like neural
activity patterns), a “vascular” domain, (intracranial vaso-
spasm followed by excessive vasodilatation of intra and ex-
tracranial blood vessels), and a “nociceptive” domain (sensi-
tization of perivascular trigeminal nociceptors involving in-
flammatory mediators, growth factors, and neuropeptides,
such as CGRP) [4]. The relevance of these three
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pathophysiological domains has received further support by
the results of many candidate gene association studies and
linkage studies, as well as more recently by GWAS. Hence,
despite great genetic heterogeneity, also inmigraine as in other
complex neurological and psychiatric disorders, pathway
analysis holds promise to converge upon a relatively limited
number of functional pathways starting from mutations and
polymorphisms located in many different loci.

The success of migraine genetic investigations will largely
rely upon their capacity on one hand to apply the methodo-
logical approaches most apt to respond to each specific exper-
imental question, on the other hand, on their capacity to
integrate multiple levels of phenotypic, functional, and genetic
information, in accordance with the complexity of the disorder
itself. This should ultimately lead not only to the identification
of novel genes associated with migraine but more importantly
with a better definition of the pathophysiological mechanisms
underlying specific forms of migraine in specific patients.
New reliable and valid animal models will be especially useful
in studying not only monogenic forms but also the cross-talk
between genetic vulnerability and epigenetic contributions in
common forms of migraine. Environmental factors, such as
early and recent life events, hormones, and inflammation, can
indeed act upon a genetically vulnerable background to trigger
the onset and determine the progression of the disease [13].
This is likely mediated through modifications of the epigenet-
ic profiles of migraine-relevant genes [14]. Animal models
will be especially helpful, because epigenetics is cell- and
tissue-specific; it may thus be especially challenging in
humans to move from peripheral epigenetic biomarkers to
relevant chromatin signatures located in cells directly in-
volved in migraine pathogenesis. An example is medication
overuse headache, which implies both genetic vulnerability to
migraine and triptan-induced chromatin changes affecting the
trigeminovascular system [200]. These animal models, com-
bining genetic and epigenetic components, will be instrumen-
tal in leading to more effective pharmacological treatments for
the most common forms of this debilitating disorder.
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