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Abstract Since identification of mutations in the A7M gene
leading to ataxia-telangiectasia, enormous efforts have been
devoted to discovering the roles this protein plays in DNA
repair as well as other cellular functions. Even before the
identification of ATM mutations, it was clear that other dis-
eases with different genomic loci had very similar neurolog-
ical symptoms. There has been significant progress in under-
standing why cancer and immunodeficiency occur in ataxia-
telangiectasia even though many details remain to be deter-
mined, but the field is no closer to determining why the
nervous system requires A7M and other DNA repair genes.
Even though rodent disease models have similar DNA repair
abnormalities as the human diseases, they have no consistent,
robust neuropathological phenotype making it difficult to
understand the neurological underpinnings of disease.
Therefore, it may be useful to reassess the neurological and
neuropathological characteristics of ataxia-telangiectasia in
human patients to look for potential commonalities in DNA
repair diseases that result in ataxia. In doing so, it is clear that
ataxia-telangiectasia and similar diseases share neurological
features other than merely ataxia, such as length-dependent
motor and sensory neuropathies, and that the neuroanatomical
localization for these symptoms is understood. Cells affected
in ataxia-telangiectasia and similar diseases are some of the
largest single nucleated cells in the body. In addition, a subset
of these diseases also has extrapyramidal movements and
oculomotor apraxia. These neurological and neuropathologi-
cal similarities may indicate a common DNA repair related
pathogenesis with very large cell size as a critical risk factor.
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Introduction

Ataxia-telangiectasia (A-T) is an autosomal recessive disease
that has long fascinated clinicians and scientists alike (OMIM
#208900) [1]. A-T was likely originally described in 1926 [2]
and again in 1941 [3]. However, it was not until a series of
patients described by Boder and Sedgewick [4] as well as
Wells and Shy [5] that A-T became widely appreciated as a
clinical syndrome. Although rare, with an estimated incidence
of 1 in 40,000 to 100,000 births [6—8], A-T has been of
significant interest because of patients’ unusual combination
of neurological degeneration, cancer predisposition, immuno-
deficiency, radiation sensitivity, and telangiectasia (capillary
dilatation on the face and sclera most prominently) as well as
specific laboratory abnormalities (such as elevated alpha fetal
protein levels) that aid in diagnosis. Cancer and diseases of the
respiratory system (possibly secondary to immunodeficiency)
are the most common causes of death, but neurological degen-
eration results in significant disability over the majority of a
patient’s life [8]. Cells derived from A-T patients were found to
be sensitive to ionizing radiation and have chromosome rear-
rangements, first suggesting ATM’s role in DNA repair and
genome stability [9—12]. After the genetic cause was identified,
mutations in the gene ataxia-telangiectasia mutated (ATM)
[13], a great deal of excellent work has focused on understand-
ing the myriad of functions of this protein. Through this
research, there is a reasonable insight into the causes of both
immunodeficiencies and cancer [14]. However, there is still no
clear mechanistic understanding of neurological degeneration.

In addition to A-T, there are several other DNA repair
associated neurological diseases that have extremely similar
neurological symptoms. Different symptoms have variable
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penetrance and severity at different times during the course of
disease, but common symptoms suggest or have been dem-
onstrated to have similar neuropathological localization be-
tween diseases. The similarities in neurological and neuro-
pathological phenotypes in multiple DNA repair diseases
suggest the possibility of a similar neuropathological mecha-
nism(s). Neurologists and neuropathologists who study A-T
and similar diseases may have limited understanding of the
details of DNA repair. Basic scientists who study DNA repair
may not understand the nuances of A-T’s neurological pathol-
ogy. This is an attempt to partially bridge that gap. Since the
goal is to examine neurological aspects of A-T and similar
diseases, the neurological symptoms will remain the focus and
other clinical phenotypes may be only briefly mentioned.

A-T has been a distinct genetic disease for over 5 decades
and is well characterized both neurologically and pathologi-
cally so it will be the source for comparison to other diseases.
Very similar neurological symptoms are found in other DNA
repair diseases including A-T-like disease (MREII) (OMIM
#604391) [15]; ataxia, early onset, with oculomotor apraxia
and hypoalbuminemia (EAOH) (a.k.a. ataxia with oculomotor
apraxia 1) (APTX) (OMIM #208920) [16, 17]; spinocerebellar
ataxia, autosomal recessive 1 (SCAR1) (a.k.a. ataxia with
oculomotor apraxia 2) (SETX) (OMIM #606002) [18]; and
spinocerebellar ataxia with neuropathy (7DPI) (OMIM
#607250) [19], and in some patients with epileptic encepha-
lopathy, early infantile, 10 (a.k.a microcephaly with seizures)
(PNKP) (OMIM #605610) [20, 21]. Even though ataxia is not
the only neurological symptom, this group of genetic condi-
tions will be referred to as DNA repair ataxia diseases for this
phrase’s relative succinctness.

Multiple groups have created mouse models of DNA repair
ataxia diseases, including Atm [22-28]. While A¢m knockout
mice have abnormalities in DNA repair and develop cancer
and immunodeficiency, they lack dramatic neuropathology
such as neuronal loss with some having subtle or variable
neurological phenotypes (reviewed by Lavin [29]). Similarly,
murine disease models with mutations in Mrella [30], Tdpl
[31-33], Aptx [34], and Setx [35] do not have dramatic neu-
ropathological phenotypes similar to the human diseases even
though they also replicate the DNA repair abnormalities. The
lack of a robust neuropathological phenotype has limited the
ability to test hypotheses concerning mechanisms for neuro-
degeneration. This emphasizes the importance of understand-
ing the human neurological pathology.

Neurological features of A-T
The neurological symptoms and neuropathology will be
discussed as a way of illuminating the specific requirements

for ATM and other genes in the nervous system. The correla-
tions between a neurological phenotype and loss of specific
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cell types are typically quite strong for the symptoms
discussed. The pathogenesis in Purkinje versus granule cells
in the cerebellum will be detailed, but one cannot be certain in
which cell type the defect resides since animal models with
neurological phenotypes are needed to make definitive deter-
minations. Because of their unknown clinical significance,
neuropathological features not clearly associated with A-T’s
specific neurological deficits as well as inconsistent or rare
pathological findings will not be discussed in detail.
Childhood neurological diseases are frequently categorized
as degenerative, a function that was previously present but
lost, or developmental, deficient development of a function.
DNA repair ataxia diseases are degenerative as patients lose
functions they previously possessed. The age of onset of
neurological symptoms in A-T seems to be affected by muta-
tion severity and can be separated into two categories, early
childhood and mid-childhood [36—38]. While later onset neu-
rological symptoms are different in terms of timing and sever-
ity, both have the same neuropathological features [38, 39]
and early onset neurological disease will be the focus. Many
neurological diseases that typically start in childhood, such as
mitochondrial or metabolite processing diseases, frequently
have milder cases that present in a patient’s 30’s, 40’s, or even
later in life. However, A-T neurological symptoms seem to
always start prior to adulthood.

In early onset A-T, ataxia and cerebellar degeneration, a
particular form of lack of motor coordination, is typically the
initial symptom and is found in essentially all patients at some
point [8]. Cerebellar atrophy is common but not universal in
genetic ataxias. Neurological symptoms in A-T generally start
with ataxia, although other symptoms such as extrapyramidal
symptoms can predominate at first in later onset disease and
weakness can rarely be the earliest symptom [40, 38].
Although not proven, Purkinje cell loss is likely to be the
primary cause of cerebellar atrophy and is a universal finding
in A-T. Granule cells proliferate, migrate, and synapse to
Purkinje cells starting in utero and continuing the first year or
two of life when A-T ataxia can start in early onset cases,
suggesting that granule cells may be primarily defective
(Fig. 1). However, Purkinje cell loss is universal and granule
cell loss is not as severe and occasionally not apparent, making
ATM more likely required in Purkinje cells [41, 42]. In addi-
tion, mouse studies suggest that intrinsic loss of granule cells
does not seem to result in severe Purkinje cell losses [43, 44].
Therefore, while it is not definitive, evidence supports Purkinje
cells as primarily affected in the cerebellum. Dysarthria or
slurred speech is common in A-T. Dysarthria is often difficult
to localize neuroanatomically because it can have many dif-
ferent causes. The dysarthria associated with A-T is similar to
other forms of ataxia and may be cerebellar in origin [45].
However, drooling is also common in A-T but not a universal
symptom in cerebellar ataxias, so involvement of brainstem
nuclei controlling the oral pharynx is possible but not clear [8].
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Fig.1 Diagram of cerebellum and development. a The mature cerebellar
cortex has three layers. Adjacent to the pial surface (outer surface) is the
molecular layer (/ight pink/blue) containing Purkinje cell dendrites, gran-
ule cell axons, and a few sparse cells not depicted. Next is a single cell
layer of large Purkinje cell bodies (red) followed by the highly abundant
granule cell bodies (blue). b Purkinje cells are “born” significantly before
granule cell proliferation begins. Granule cells migrate across the pial
surface to cover the developing cerebellum forming the external granule
cell layer. Granule cell precursors divide (vellow), start to differentiate
(green), and when mature (blue) migrate into the cerebellum. As the
granule cells migrate through the molecular layer, they extend their axons

In early onset A-T, weakness from loss of motor neurons
generally starts to become an issue later in childhood (Fig. 2, left
side). In A-T, neuropathy is consistent with loss of axons in the
nerve (as opposed to loss of myelin that covers axons) as well as
the motor neuron cell bodies within the spinal cord, most
pronounced within the lumbar regions (lower spinal cord that
innervates the legs) [46—49, 39]. The neuropathy is most severe
for the longest axons with distal muscle wasting of the feet and
hands common late in disease. Muscle loss is consistent with
loss of neurons as opposed to a primary defect in muscle fibers
based upon muscle histological pattern, group atrophy [50, 39].
The length-dependent nature of the neuropathy is illustrated by
a patient who cannot move his toes and barely his ankles but has
normal or near normal strength at shoulders and hips [51].

A-T patients lose sensation from loss of sensory neurons
(Fig. 2, right side), particularly position and vibration as
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and form synapses on Purkinje cell dendrites. Granule cell bodies migrate
past the Purkinje layer and into the internal granule cell layer with their
axons trailing behind. ¢ A cartoon underrepresenting the elaborate arbor-
ization of a human Purkinje cell dendrite. The dendrite is planar and
viewed here sagittally. d Two Purkinje cells (turned 80° from view seen in
¢) with two granule cell parallel fibers (axons) extend in the horizontal
plane making synapses on multiple Purkinje cell dendrites. Granule cell
synapses are required to form the very large Purkinje cell dendritic tree.
Therefore, granule cell proliferation is associated with dramatic increases
in Purkinje volume via dendritic growth (Color figure online)

well as losing deep tendon reflexes, but have relative
sparing of cold and pain sensation [45, 49]. Like motor
neurons, the neuropathy is axonal and also includes loss of
sensory neuronal cell bodies in dorsal root ganglia [50, 46,
8,49, 39]. The spinal cord shows a striking loss of sensory
axons carrying position and vibration sense within the
posterior portion of the spinal cord from the leg regions
with arm regions relatively intact [50, 45, 39]. The axons
that convey joint position and vibration are larger in diam-
eter than those that carry pain and temperature, and the
large caliber fibers are lost in A-T nerves [47]. Taken
together, this shows that neurons are lost in a length-
dependent (longer>shorter), as well in an axonal
diameter-dependent (larger>smaller), manner [39]. The
loss of deep tendon reflexes in A-T patients is likely due
to the loss of sensory neurons, motor neurons, or both [8].
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Fig. 2 Illustration of the relative vulnerability of motor and sensory
neurons in A-T. The thin black lines in midline represent the spinal cord.
On the left are motor neurons with cell bodies residing within the spinal
cord whose axons extend to muscles. The motor neurons with the longest
axons (red) are most affected in A-T while the motor neurons with shorter
axons (green) are less affected. On the right are sensory neurons with cell
bodies just outside of spinal cord in clusters, the dorsal root ganglia. A
single axon extends out into the periphery as well as into the spinal cord.
The most vulnerable neurons have large diameter cell bodies and axons
and a single large caliber axon that carries vibration sense or position
information (red) from the legs to the brain stem. Sensory neurons with
small cell bodies and smaller axonal caliber carry pain or temperature
sensation (blue), convey information from the periphery, synapse in the
spinal cord at the approximate level they enter (not in the brain stem), and
are less affected in either the upper or lower extremities of A-T patients
compared to vibration and proprioceptive neurons (Color figure online)

Many A-T patients have prominent movement disorders
that appear extrapyramidal in nature [2, 5, 8, 52]. A-T pa-
tients’ extrapyramidal symptoms frequently include abnormal
posture, tremor (shaking), myoclonus (rapid single jerks of a
limb), and/or choreoathetoid movements (slow dancing and/
or writhing-like) 8, 52]. Extrapyramidal symptoms are often
associated with injury to the basal ganglia but can also come
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from injury to regions of the thalamus or brainstem such as the
substantia nigra. In early onset A-T, extrapyramidal symptoms
are prominent later in the course of the disease but at times can
predominate to the extent that two early descriptions of A-T
described the disease as extrapyramidal as opposed to ataxic
in nature [2, 5]. Only a few neuropathological studies have
found any potential pathology in the basal ganglia while
others found abnormalities in the locus coeruleus and the
substantia nigra [53-55, 48, 45, 56, 39]. A-T patients have
metabolic changes in their basal ganglia indicative of dysfunc-
tion even though the neuroanatomical localization of the
extrapyramidal neuropathology remains to be definitely deter-
mined [57].

A-T patients can have peculiar eye movements known as
oculomotor apraxia that are distinct from those usually found
in other ataxic diseases [58, 8]. Oculomotor apraxia is a rare
condition where patients have the ability to move eyes in all
directions when tracking (following) an object but cannot
voluntarily move their eyes to a different location, as when
looking back and forth between two different objects [59].
The neuroanatomical localization for oculomotor apraxia is
not known in A-T or any other condition [59].

While affecting multiple different types of neurons, A-T
does not appear to be a universally progressive neurological
disease. As noted above, A-T is a degenerative disease and
several different cell types are lost, but the vast majority of the
neurons in the brain appear unaffected in A-T. For instance,
patients do not seem to have significant cognitive degenera-
tion during the course of their disease. Early impressions were
that intellectual disability was present in A-T, but much of that
was due to slowness in responses secondary to motor dys-
function [60, 48, 45]. When followed over time, A-T patients
can stop acquiring intellectual gains as opposed to losing
intellectual capacity that typically occurs during cerebral cor-
tical degeneration. In addition, there is little definitive struc-
tural MRI or pathological change in the cerebral cortex, thal-
amus, or basal ganglia neurons or axons, although it is possi-
ble that subtle changes may have not yet been consistently
identified. Abnormalities in small blood vessels are present in
the brain, but they seem to occur later in disease and are not
necessarily correlated with neurodegeneration, so their contri-
bution to neurodegeneration is uncertain [48, 8, 61]. A-T
patients have cells with hyperchromatic nuclei with bizarre
shapes, but these abnormalities are found in many organs with
no correlation to tissue pathology and their clinical signifi-
cance remains undetermined [46, 62, 55, 48].

Neurological features of other DNA repair ataxia diseases
The other DNA repair ataxia diseases were recognized more

recently. Therefore, the clinical and neuropathological litera-
ture is not as extensive. Neurological similarities to A-T will
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only be summarized and neuropathological similarities when
known are not detailed due to space constraints (Table 1).
Mutations in MRE1IA4 can produce ataxia-telangiectasia-like
disorder (ATLD) with degenerative cerebellar ataxia, dysar-
thria, drooling, oculomotor apraxia, loss of sensation, loss of
reflexes, weakness with distal muscle wasting, and extrapyra-
midal symptoms [63, 64, 15, 65, 66]. Mutations in the
aprataxin (APTX) gene lead to ataxia, early onset, with ocu-
lomotor apraxia and hypoalbuminemia (EAOH) (a.k.a. ataxia
with oculomotor apraxia I, AOA1) with degenerative cerebel-
lar ataxia, dysarthria, extrapyramidal abnormalities, oculomo-
tor apraxia, loss of position and vibration sense, and length-
dependent weakness with muscle wasting of the distal extrem-
ities [67, 16, 17, 68-75]. Senataxin (SETX) mutations can lead
to a disease called spinocerebellar ataxia, autosomal recessive
1 (SCARY1) (a.k.a. ataxia with oculomotor apraxia 2, AOA2)
with degenerative cerebellar ataxia, extrapyramidal abnormal-
ities, loss of reflexes, motor and sensory neuropathy particu-
larly affecting vibration and position sense, oculomotor aprax-
ia, some evidence of loss innervation to the spinal motor
neurons from the cerebral cortex (a.k.a. upper motor neuron
signs), and dysarthria [76, 18, 77—83]. Mutations in tyrosyl-
DNA phosphodiesterase 1 (TDPI) result in spinocerebellar
ataxia, autosomal recessive with axonal neuropathy (SCANTI)
with cerebellar degenerative ataxia, distal muscle weakness,
length-dependent loss of vibration and position sense, dysar-
thria, and loss of reflexes [19]. Patients with mutations in
polynucleotide kinase 3-prime phosphatase (PNKP) were first
reported with microcephaly, developmental delay, and sei-
zures, called epileptic encephalopathy, early infantile 10
(EEEI 10, a.k.a. microcephaly with seizures) [20].
Subsequently, it was found that some patients in later child-
hood developed cerebellar degenerative ataxia, as well as

sensory and motor neuropathy [21]. Mutations in the DNA
repair gene 7DP?2 lead to intellectual disability, epilepsy, and
ataxia, but this very recently identified condition requires
more clinical characterization before it is clear how patients
with TDP2 mutations may relate neuropathologically to the
other DNA repair ataxia diseases [84]. Also currently not
included is a single family with a compound homozygous
polymorphism in phosphoinositide-3-kinase, regulatory sub-
unit 5 (PIK3R5) (OMIM# 615217) because even though they
neurologically appear very similar to other DNA repair ataxia
diseases, evidence for PIK3RS dysfunction in the patients is
not yet definitive [85].

In summary, patients with A-T (47M), ATLD (MRE114),
EAOH (AOAL1) (4PTX), SCARI (AOA2) (SETX), and
SCANI1 (TDP1) and some with EEEI10 (PNKP) have nearly
identical neurological symptoms including prominent cerebel-
lar ataxia, dysarthria (likely secondary to cerebellar degener-
ation), length-dependent motor neuropathy, and length-
dependent sensory axonal neuropathy of vibration and posi-
tion sense with loss of reflexes likely secondary to neuropathy
(Table 1). Mutations in ATM, MRE11A4, APTX, and SETX can
lead to prominent extrapyramidal symptoms and oculomotor
apraxia. Ataxia is consistent with cerebellar degeneration most
likely secondary to loss of Purkinje cells. Weakness is pre-
dominately due to loss of motor neurons as opposed to loss of
myelination or muscle disease. Sensory changes, predomi-
nately position and vibration, are also likely secondary to loss
of sensory neurons/axons and not an abnormality of myelin.
Loss of reflexes is likely secondary to loss of sensory neurons,
although loss of motor neurons may also contribute. There is
length-dependent axonal loss of the largest diameter axons.
The neuropathological localizations for the extrapyramidal
symptoms and oculomotor apraxia are not well understood,

Table 1 Summary of neurological symptom and neuropathological correlate if known

A-T (ATM) ATLD (MRE114) EAOH (ak.a. SCARI (ak.a. SCAN1 TDP1 EEEI 10 (a.k.a.
AOA1) APTX AOA2) SETX MCSZ) PNKP
Ataxia Prominent, 2° to Prominent, 2° to Prominent, 2° to Prominent, 2° to Prominent, In some, with
Purkinje cell loss ~ Purkinje cell loss  Purkinje cell loss Purkinje cell loss cerebellar cerebellar
degeneration degeneration

Length-dependent ~ Yes, distal Yes, distal

Yes, distal weakness, Yes, distal weakness, Yes, distal

In some patients

neuropathy weakness, 2° to weakness, 2° to 2° to axonal loss 2° to axonal loss weakness, 2° to with distal
(motor) axonal loss axonal loss axonal loss weakness
Length-dependent ~ Yes, distal vibration Yes, distal vibration Yes, distal vibration  Yes, distal vibration  Yes, distal In some patients
neuropathy and position, 2° and position, 2° and position, 2° to  and position, 2°to  weakness, 2° to
(sensory) to axonal loss to axonal loss axonal loss axonal loss axonal loss
Extrapyramidal Yes, neuronal Yes, neuronal Yes, neuronal Yes, neuronal No No
symptoms localization localization localization localization
unknown unknown unknown unknown
Oculomotor Yes, neuronal Yes, neuronal Yes, neuronal Yes, neuronal No No
apraxia localization localization localization localization
unknown unknown unknown unknown
Spasticity Rare Occasional No Occasional No No
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although one might suspect that they are similar as these
symptoms are quite rare in other degenerative ataxia diseases.
In addition, it is also important to note the rather restricted and
very specific neurons affected in these diseases as A-T and
similar diseases do not appear to have widespread neuronal
degeneration.

The neurological symptoms associated with DNA repair
ataxia diseases are distinct from other ataxia diseases.
Autosomal recessive cerebellar degeneration with both motor
and sensory neuropathies is not common but present in all
DNA repair ataxia diseases. In autosomal recessive ataxias
that do have neuropathy, some are demyelinative while A-T
and similar diseases have axonal neuropathies [86]. The most
common genetic ataxia, Friedreich’s ataxia (OMIM #229300),
has some clinical similarities, but several key differences,
generally making this disease reasonably easy to clinically
distinguish from DNA repair ataxia diseases [87].
Friedreich’s ataxia is often characterized by ataxia and neu-
ropathy similar to A-T, but neuroimaging of the cerebellum is
normal early in disease [88, 86]. In Friedreich’s, some of the
ataxia may be mediated via loss of the sensory input to the
cerebellum via the spinocerebellar tract as well as prominent
loss of the cerebellar dentate neurons (as opposed to Purkinje
cells) [89]. Additional features of Friedreich’s ataxia include
some overlapping features with DNA repair abnormalities
associated with ataxia including dysarthria, sensory neuropa-
thy with loss of reflexes, and length-dependent weakness.
However, unlike A-T, Friedreich’s ataxia often has evidence
of loss of the connection from cerebral cortex to the spinal
cord motor neurons (a.k.a. upper motor neuron signs) early,
and scoliosis is prominent while some have bladder distur-
bances, optic atrophy, and hearing loss. Extraneurological
symptoms include frequent and potentially lethal cardiac ab-
normalities and diabetes mellitus [88, 90]. Friedrich’s ataxia is
more likely to be confused clinically with a different disease,
ataxia with vitamin E deficiency (77P4) (OMIM #277460),
because of overlapping neurological features [91-93].
Dominant ataxias, sometimes called spinocerebellar ataxias
(SCA), have nearly 40 different genetic loci. Some have
neuropathy and some have extrapyramidal movements, but
it would be rare that they would be clinically confused with
DNA repair ataxia diseases because of the combination of
neurological symptoms and age of onset [94, 95]. When all
neurological symptoms are considered, the neurological sim-
ilarities between DNA repair ataxia diseases are striking when
compared to other ataxia diseases.

DNA repair activities
This is not intended to be a comprehensive review of bio-

chemical roles and mechanisms of DNA repair proteins as
many excellent reviews have been previously written [96-99,
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14, 100-108]. However, a brief claboration of DNA repair
activities is required to establish some context. ATM is a
serine/threonine protein kinase that plays a very central role
in many aspects of DNA repair signaling, particularly well
studied in double-strand break repair. For example, ATM and
its paralog ATR phosphorylate over 700 different proteins
after ionizing radiation [109]. In addition to ATM’s role in
double-strand break repair, it has been implicated in single-
strand break repair, response to hypoxia, oxidative stress,
insulin signaling, mitochondrial activity, histone acetylation,
and other functions (recently reviewed in Hoche et al. [104]
and Shiloh and Ziv [107]). MRE11 is required for optimal
activation of ATM under multiple stressors (upstream of ATM
activation), is phosphorylated by ATM, and has ATM-
independent roles as well [98].

Unlike ATM and MREI1, the other DNA repair ataxia
disease proteins seem to have much more simple roles in
DNA repair, likely having direct enzymatic repair roles on
DNA itself. ATPX, TDP1, and PNKP can interact with single-
strand break repair machinery [96, 97, 102, 100]. APTX can
remove failed ligase products and other abnormalities that are
covalently attached to DNA [34, 110]. TDP1 can help remove
arrested topoisomerase I covalently bound to DNA and can
process damaged bases during single-strand break repair
[111-115]. PNKP can interact with multiple DNA repair
pathways in its role as a DNA 3’ phosphate and 5’ kinase
[116-118, 20, 119]. SETX is a putative RNA/DNA helicase
that may repair DNA damage associated with transcription
[120-124]. It is certainly possible that ATM and MRE11
control broad/homeostatic signaling pathways during DNA
repair or even have a critical non-DNA repair related role
required in neurons. However, APTX, SETX, TDPI1, and
PNKP are not directly involved in signaling and likely have
limited, direct enzymatic repair activities on DNA itself, and it
would be surprising that non-DNA repair functions would be
discovered for all four proteins. Therefore, since DNA repair
ataxia diseases share similar neurological phenotypes, it is
reasonable to postulate a common DNA repair pathway/
mechanism between these various genes in neurons. Recent
evidence of a biochemical relationship between ATM and
TDP1 supports the possibility of critical shared DNA repair
pathways [125].

Potential stressors that require DNA repair

Understanding the underlying pathological mechanisms can
be critical for developing therapeutic interventions in any
disease. Although the reasons for differential susceptibility
of specific neuronal populations remain elusive in many neu-
rological diseases, it may be useful to consider why specific
cells are preferentially lost in DNA repair ataxia diseases. As
noted, it is reasonable to propose that DNA repair ataxia
diseases result from abnormalities in DNA repair. Currently,
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there is no evidence that the DNA repair pathways in neurons
are significantly different than other cells, and patterns of gene
expression have yet to provide insight. Alternatively, it is
possible that all cells have similar levels of DNA damage
and the limited types of affected neurons are more sensitive
to DNA damage than other cells, but evidence for that hy-
pothesis is currently lacking. Therefore, it is possible that the
affected cells have more DNA damage. Shared characteristics
of affected neurons might suggest “stressors” that lead to
DNA damage that requires repair.

Purkinje cells, motor neurons, and sensory neurons are
“born,” meaning that they complete their last cell division
and become terminally differentiated in utero, years prior to
becoming clinically dysfunctional. Therefore, if defects are
intrinsic to the dying cells, any required DNA repair activities
are more likely to be associated with G1 (sometimes referred
to as GO in neurons since they are incapable of becoming
proliferative) and not activities specific to S, G2, and M
phases. DNA damage secondary to reactive oxygen species
is a commonly proposed mechanism for neurodegeneration in
A-T and similar diseases. However, there are several reasons
to question this hypothesis as the exclusive source of DNA
damage. Cardiac muscle and kidney are not affected in DNA
repair ataxia diseases even though they use nearly two times
the energy by weight as the brain (brain ~240 kcal/kg/d, heart
and kidney ~440 kcal/kg/d) [126]. In addition, the brain does
not appear to accumulate more somatic DNA damage than
other organs [127, 128], although other studies contradict that
assertion [129, 130]. It is also not obvious why only a few cell
types appear to be lost in DNA repair ataxia diseases since
DNA damage secondary to oxidative damage would presum-
ably be widespread. Finally, the hypothesis that reactive oxy-
gen causes accumulation of DNA damage has never been
proven due to the difficulty of altering the amount of reactive
oxygen generated or present (via anti-oxidant therapy).
Therefore, it may be fruitful to explore additional explanations
of the nervous system’s requirements for ATM and other
ataxia-associated DNA repair proteins.

Clinical features of motor and sensory neurons indicate that
large cellular volume is correlated with vulnerability in DNA
repair ataxia diseases. The longest motor and sensory neurons
as well as the largest caliber sensory neurons (motor neuron
axons are more uniform in diameter) are the most severely
affected. In addition, huge dendrites of Purkinje cells (Fig. 1c)
that grow in the first few years of life are their distinguishing
and unique characteristic, but it is very difficult to estimate
their volume. Motor and sensory neurons are likely the largest
single nucleated cells in the body, but how much bigger they
are than other cells in the body can be unappreciated. For
instance, the longest motor neurons are >10,000 times larger
than an average hepatocyte. The volume of a cell body that is
roughly spherical can be calculated as a sphere and an axon a
cylinder. A hepatocyte has an approximate diameter of 20 wm

and volume of 42x10™° cm®. A motor neuron cell body can
have a diameter of 50 um and volume of 65x10 2 cm?, not
including the dendrites. In adults, axons that extend to the foot
can be 1 m long (or greater) and can have a diameter of up to
20 um and volume of 310,000% 10 ? cm>. This shows that
motor neurons are orders of magnitude larger than other cell
types, and the vast majority of the volume of a motor neuron is
within the axon. The lack of clear neuropathology in murine
models of DNA repair ataxia diseases may be explained by the
much smaller sizes of motor and DRG neurons as well as
Purkinje cells in mice relative to humans.

The extreme growth in volume of motor and sensory
neurons and other vulnerable cells may cause unique stressors
for these very large, single nucleated cells. DNA repair ataxia
diseases’ neurological symptoms develop in childhood at the
time the affected cells need to grow to achieve their very large
sizes. While these cells require proportionally larger amounts
of amino acids, energy (glucose and fatty acids), etc., absorb-
ing these building blocks may not be limiting because of these
cells” proportionally large surface area. Energy production
could be an issue as mitochondria along with their intrinsic
mitochondrial genome would presumably be required in pro-
portionally very large numbers. Critically, mitochondria are
produced via fission (each mitochondria can divide forming
two mitochondria) so their growth can be logarithmic. Defects
in mitochondria proliferation dynamics, particularly produc-
ing a sufficient number of mitochondria or maintaining them,
could be important and have been implicated in multiple
neurodegenerative diseases [131, 132] while ATM has been
shown to play a role in mitochondrial function [133-136]. An
additional potential stressor for producing these huge volumes
may be the increase in transcriptional requirements. Most
tissues grow dramatically in size via cell proliferation. Every
cell division doubles the number of transcriptional units
(genomes) and allows for growth in volume of a tissue. Very
large neurons must achieve their enormous sizes with the
same complement of DNA found in every cell with increases
in transcription and translation. Not surprisingly, large cells
have large nuclei and nucleoli (sources of rRNA transcription
and ribosomes) as well as high rates of transcription, making
transcription a potential source of DNA damage [137, 138].

In summary, A-T neurological features have potentially
important lessons for understanding the requirements for
ATM-related neuropathology. Both neurological and neuro-
pathological studies suggest that the localization of neuronal
defects in A-T is restricted to a reasonably small number of
cell types, including cerebellar Purkinje cells, motor and sen-
sory neurons, and likely some others that have not been
definitively determined. The other DNA repair ataxia diseases
seem to have very similar clinical phenotypes both in terms of
neurological features and neuropathology including cerebellar
ataxia and motor and sensory neuropathy (position and vibra-
tion) as well as some having extrapyramidal movements and
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peculiar eye movements distinguishing these diseases from
other forms of ataxia. The size of neurons, particularly during
their periods of cell volume growth, may be a critical risk
factor for neuronal susceptibility in DNA repair ataxia dis-
eases. This susceptibility is illustrated by the size of cells lost,
particularly motor and sensory neurons via the length-
dependent nature of the neuropathies. In addition, neurologi-
cal symptoms present as neurons are growing in volume
during childhood or early teen years and not later in adulthood
after cell volume increases have ceased. Purkinje cells are
often affected when their huge dendrites are growing as gran-
ule cells are forming synapses. Size as a risk factor may also
explain why rodent disease models do not display neuropath-
ological changes found in the much larger human cells. The
DNA repair ataxia disease gene proteins may eventually be
tied to a single cellular insult such as oxidative damage,
mitochondrial production/repair, transcription-related dam-
age, or other processes. Understanding the particular vulnera-
bilities in the neurons lost in DNA repair ataxia diseases may
be critical to developing potential therapies as well as provid-
ing insight into other neurological diseases affecting very
large neurons.
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