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Abstract Rare copy number variations by the nonrecurrent
rearrangements involving PMP22 have been recently
suggested to be associated with CMT1A peripheral neu-
ropathy. As a mechanism of the nonrecurrent rearrange-
ment, replication-based fork stalling template switching
(FoSTeS) by microhomology-mediated break-induced rep-
lication (MMBIR) has been proposed. We found three
Korean CMT1A families with putative nonrecurrent dupli-
cation. The duplications were identified by microsatellite
typing and applying a CGH microarray. The breakpoint
sequences in two families suggested an Alu–Alu-mediated
rearrangement with the FoSTeS by the MMBIR, and a two-
step rearrangement of the replication-based FoSTeS/

MMBIR and meiosis-based recombination. The two-step
mechanism has still not been reported. Segregation analysis
of 17p12 microsatellite markers and breakpoint junction
analysis suggested that the nonrecurrent rearrangements are
stably inherited without alteration of junction sequence;
however, they may allow some alteration of the genomic
contents in duplication across generations by recombination
event. It might be the first study on the pedigree analysis of
the large CMT1A families with nonrecurrent rearrange-
ments. It seems that the exact mechanism of the nonrecur-
rent rearrangements in the CMT1A may have a far more
complex process than has been expected.
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Introduction

Charcot–Marie–Tooth disease (CMT) is a genetically and
clinically heterogeneous hereditary motor and sensory
neuropathy with an estimated prevalence of 1/2,500.
Based on the electrophysiological criteria, CMT is
frequently classified into two forms, the demyelinating
form (CMT1) and the axonal form (CMT2) [1]. Up to
date, more than 50 genes or loci have been reported as the
underlying cause of CMT at the Inherited Peripheral
Neuropathies Mutation Database (http://www.molgen.ua.
ac.be/CMTMutations/Mutations/). Of them, the nonallelic
homologous recombination (NAHR) between proximal
and distal homologous repeat elements (CMT1A d-REP
and p-REPs) on chromosome 17p12 is the most frequent
genetic cause of the demyelinating CMT, particularly
CMT1A (MIM# 118220) [2–4]. Reciprocal deletion of
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the same region by the unequal crossover is associated
with the hereditary neuropathy with liability to pressure
palsies (HNPP, MIM# 162500) [5, 6]. The two flanking
CMT1A–REPs share 98.7% sequence identity, and the
duplication comprises approximately 1.4-Mb genomic
region which includes the dosage-sensitive myelin gene
PMP22 [7]. Duplication is found up to approximately 70%
of patients with CMT1 [8].

Rearrangements of the human genome can be grouped
into two types according to breakpoint sequences, recurrent
rearrangements, and nonrecurrent rearrangements. The
major mechanism of recurrent rearrangements is NAHR
which is associated with several genomic repeated sequen-
ces, e.g., low copy repeats (LCRs), long interspersed
repetitive sequences (LINEs), and transposons. Because
significant regions of homology are required for recombi-
nation, short interspersed repetitive sequences (SINEs),
such as Alu, are not usually substrates for the NAHR [9,
10]. The molecular mechanism of the nonrecurrent rear-
rangements by nonhomologous end joining (NHEJ) has
been little understood. Recently, a replication-based mech-
anism of fork stalling template switching (FoSTeS) has
been proposed to explain the nonrecurrent rearrangements
of the NHEJ [11–15]. According to the FoSTeS DNA
replication model, the active replication fork can stall and
switch templates using complementary template micro-
homology to anneal and prime DNA replication (micro-
homology-mediated break-induced replication, MMBIR).
Chen et al. suggested a serial replication slippage as a
possible cause of smaller genomic complex rearrangements
[16]. Template switching during replication may be
exacerbated by the presence of cruciform or other non-B
DNA structures [12, 17].

Although the genomic disorders of CMT1A duplication
and HNPP deletion are prevalently associated with
recurrent rearrangements caused by NAHR events be-
tween two LCRs, recently, rare copy number variations
(CNVs) on the chromosome 17p12 by the nonrecurrent
rearrangements have also been suggested as the underly-
ing cause of the CMT1A and HNPP [15, 18, 19].
Breakpoint sequence analyses have also revealed that
various molecular mechanisms are involved in generating
the nonrecurrent 17p12 rearrangements, such as NHEJ,
Alu-Alu-mediated rearrangement, and FoSTeS and/or
MMBIR mechanisms.

In the present study, we identified three Korean CMT1A
families who are suggested to be associated with the
nonrecurrent rearrangements by the replication-based
FoSTeS. Analysis of the breakpoint junctions in each of
the unique rearrangements suggested involvement of
several mechanisms, such as Alu–Alu mediation, two-step
process combining replication error and meiotic recombi-
nation, and complex rearrangement of two discrete dupli-

cations. The haplotype and breakpoint junction analyses
also suggested that the nonrecurrent rearrangements may
allow a slight modification of genomic contents by
recombination event within duplication regions across
generations.

Materials and methods

Patients

This study included three Korean CMT1A families (FC85,
FC116, and FC388) with 34 individuals (19 affected and 15
unaffected individuals) (Fig. 1). This study also included
four healthy controls for the CNV test. As the gain and loss
controls, each two CMT1A duplication and HNPP deletion
patients with the common 1.4 Mb recurrent recombination
on 17p12 was involved. For the examination of clinical
phenotypes, 149 CMT1A patients were also involved. All
participants in this study provided written informed consent
according to the protocol approved by the Institutional
Review Board for Ewha Womans University Hospital.
Total DNA was isolated from peripheral blood by using a
QIAamp Blood DNA purification kit (Qiagen, Hilden,
Germany).

Determination of duplication by microsatellite typing
and real-time PCR

The nine microsatellites within the 17p12 CMT1A dupli-
cation region were amplified using the hexaplex PCR
system that consisted of D17S921, D17S9A, D17S918,
D17S4A, D17S122, and D17S2230, or single PCR method
(D17S1296, D17S1357, and D17S9B) with fluorescent-
labeled primers [20]. The PCR products were resolved with
the automatic genetic analyzer ABI3100, and genotypes
were determined by the Genotyper software (Applied
Biosystems, Foster City, CA, USA). Duplication of
PMP22 was also determined by real-time quantitative
PCR. The real-time PCR was performed on the RotorGene
real-time PCR machine (Corbett Research, Australia) using
the QuantiTech SYBR Green PCR kit (Qiagen). GAPDH
was co-amplified for the control gene.

CNV determination by comparative genomic hybridization
microarray

A high resolution of the rearrangement map and narrowed
range of breakpoint junctions were obtained by determining
the CNVs with a customer-designed high-density compar-
ative genomic hybridization (CGH) microarray (HG18
CGH 2X 135K; Roche-NimbleGen, Madison, WI, USA).
The mean probe size and spacing length of the array were
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60-mer and 215 bp, respectively. The CGH microarray
data were analyzed with NimbleScan (ver. 2.4) and
SignalMap (ver. 1.9) software. The gain and loss threshold
used in this study were log2 ratio >0.3 and <−0.3,
respectively. Healthy individuals were used as normal
control, and recurrent CMT1A duplication and HNPP
deletion patients were used as gain and loss controls,
respectively.

Long-range template PCR and determination of breakpoint
sequence

Long-range template PCR was attempted to amplify the
breakpoint junctions. PCR primers were designed as
approximate intervals of 2 kb within about 10-kb ranges
with either side of estimated breakpoints by the CGH
analysis (Supplemental Table 1). The PCR was performed
using the long-range template PCR kit (Roche, Mannheim,
Germany). PCR products were sequenced on the automatic

genetic analyzer ABI3100 using the BigDye terminator
cycle sequencing kit (Applied Biosystems). DNA sequen-
ces were compared to reference sequences, UCSC hg18 at
the UCSC Genome Browser (http://genome.ucsc.edu/) or
Build 36.1 at the NCBI website (http://blast.ncbi.nlm.nih.
gov/) by using the SeqScape (ver. 2.1, Applied Biosystems)
and Chromas software (ver. 2.33; Technelysium, Australia).

Clinical assessment

Clinical information was obtained in a standardized
manner, including motor and sensory impairments, and
deep tendon reflexes. Histopathological examination of the
affected individuals included the light and electron micro-
scopic analyses of a sural nerve. Magnetic resonance
imaging study was performed on the lumbar spine and
lower legs of the patients using a supine position using a
1.5-T system (Siemens Vision, Erlangen, Germany). Phys-
ical disability was determined by two scales, the functional
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Fig. 1 CMT1A pedigrees with nonrecurrent duplication. Haplotypes
(indicated below each member) were obtained by genotyping of nine
microsatellites, but the genotypes in parentheses were deduced from
the pedigree analysis. Asterisks (*) indicate individuals whose DNA
were used for this analysis. The gray boxes on the haplotypes indicate
the duplicated region, and open boxes indicate chromosomal regions
before de novo event, respectively. Arrows (↗) indicate probands

(open squares and circles unaffected individuals, filled squares and
circles affected individuals). a FC116 family. Except for a putative
crossover (III-11 to IV-17) on the duplication region (black left-
pointing pointer) (a-1), the duplication was stably inherited without
alteration (a-2). b FC388 family. Putative de novo rearrangement
occurred from I-1 to II-2. c FC85 family. A de novo discrete
rearrangement was observed (I-1 to II-2)
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disability scale (FDS) [21] and the CMT neuropathy score
(CMTNS) [22].

Results

Identification of partial duplication of chromosome 17p12
in CMT1A families

From the genotyping of nine microsatellites on 17p12 in
subjects with CMT1A families, we found three families
with unusual partial duplication. CMT1A patients with
common duplication showed 1.4 Mb duplication containing
all the markers from D17S921 to D17S2230; however,
FC116 and FC388 revealed duplication from D17S1296 to
D17S2230 (Fig. 1a) and from D17S1296 to D17S122
(Fig. 1b), respectively. Particularly, FC85 showed a
complex rearrangement with two discrete regions,
D17S921, and D17S1357 to D17S2230 (Fig. 1c). The
duplication regions included the PMP22 gene in all three
families, which was also confirmed by amplification of the
PMP22 using the real-time PCR. De novo rearrangements
were suggested in two families with both paternal origins:
father (I-1)-to-daughter (II-2) in FC388 and father (I-1)-to-
son (II-2) in FC85. Although the proband’s father (I-1) in
FC388 was not directly tested in this study, we considered

that a de novo rearrangement occurred during transmission
because he was determined to be an unaffected individual
by history taking.

The exact duplication regions were further narrowed into
14.84–15.44 Mb in FC116 and 14.59–15.31 Mb in FC388
by applying the CGH microarray (Fig. 2a). The complex
duplication of FC85 included 14.00–14.46 Mb and 14.98–
15.43 Mb. Figure 2b explains the genomic structure of the
identified rare rearrangements.

Nonrecurrent rearrangements by Alu–Alu
and microhomology mediation

The breakpoint junctions were successfully amplified by
long-range template PCR from the patients in FC116 and
FC388 (Supplementary Fig. S1). The range of distal
breakpoints in FC116 and FC388 could be narrowed
within 14,839,425–14,841,529 bp and 14,582,503–
14,584,531 bp, respectively (hg18). However, we failed
to obtain the PCR products from FC85 even though we
tried to amplify the breakpoint junction by using various
primer pairs.

The exact DNA sequences at the breakpoints and their
surrounding regions were determined from the long-range
template PCR products (Table 1). In FC116, the breakpoint
junction was found within two different Alu sequence
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catactgacTCAcatggca--------

 

 

  Prox-ref gcagtaGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCgaggc    
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Fig. 2 Characterization of the rare nonrecurrent rearrangements in
CMT1A patients. a Log2 ratio plots obtained by the high-density CGH
microarray (NimbleGen). Compared to healthy control (CTL),
common CMT1A and HNPP patients showed duplication or deletion
of 1.4 Mb on the 17p12 region. However, three families revealed
unique partial duplications different from each other. b Diagram of
genomic structure on 17p12 and rearrangements identified in CMT1A

patients with partial duplication. All CNVs included the PMP22
duplication. Map distances were from Map build UCSC hg18 (http://
genome.ucsc.edu/). c Sequences of the break junctions in FC116 and
d FC388. The proximal and distal reference sequences are given by
black and blue letters, respectively. The sequences with micro-
homology are indicated by red letters with gray boxes (– deletion)
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families (distal end, AluY; proximal end, AluSc) with 34-bp
exact microhomology (Fig. 2c). In FC388, each proximal
and distal breakpoint was within a long terminal repeat
(LTR, family MALR) sequence and an intron of CDRT4
gene with 3-bp “TCA” microhomology. The breakpoint
junction of FC388 also showed an 11-bp deletion, 7 bp after
the microhomology (Fig. 2d). The 11-bp deletion was not
observed in either non-rearranged regions corresponding to
distal breakpoint end (presumptive ancestral sequence before
de novo event) in proband (II-2) or same chromosomal
regions of her mother (I-2) and unaffected siblings (II-3, 4, 5)
(Supplementary Fig. S2). We also could not find the
variation of 11-bp deletion from the dbSNP (http://www.
ncbi.nlm.nih.gov/projects/SNP) and BLAST (http://blast.
ncbi.nlm.nih.gov/Blast.cgi?). Therefore, we considered that
the 11-bp deletion is due to a complex nonrecurrent
rearrangement during the de novo event. All the affected
members in FC116 (n=15) and FC388 (n=3) showed
exactly the same breakpoint DNA sequences in each
pedigree.

When the microsatellite haplotypes were analyzed in
FC116, the deduced two alleles by duplication (gray boxes)
were always the same in six corresponding markers as
shown in Fig. 1a-2 (4-4/7-7/6-6/4-4/5-5/6-6). Therefore, it
seems that the rearrangement might be resulted from the
FoSTeS by the MMBIR via 34-bp microhomology. The
haplotypes of the duplicated region were the same in all the
affected members except for IV-17 (Fig. 1a-1). The
different haplotype of IV-17 might be due to a meiosis-
based recombination event between D17S1357 and
D17S918 during transmission of rearrangement region
from mother (III-11) to son (IV-17) (Fig. 3a). The haplotype
analysis of FC388 suggested a more complex two-step
rearrangement process (Figs. 1b and 3b). First, a nonrecur-
rent rearrangement between D17S1296 and D17S122 might
occur by the FoSTeS via 3-bp microhomology during DNA
replication, which produced a presumptive intermediate
haplotype, “4-4/8-8/8-8/1-1/7-7”. Second, the crossover
event between D17S1357 and D17S918 during meiosis
might produce final rearrangement with the haplotype of
“4-4/8-8/8-9/1-1/4-7”.

Clinical manifestations

The clinical phenotypes of 19 patients with the rare duplica-
tion showed no significant different features from the common
CMT1Apatients with 1.4-Mb recurrent duplications (Table 2).
However, FC116 family revealed broad intrafamilial pheno-
typic variations, e.g., age at onset: 4 to 60 years, CMTNS: 2/
30 to 27/30, FDS: 0/8 to 5/8, and median nerve conduction
velocities: 0 to 30.7 m/s. The histological examination of a
sural nerve biopsy in a 52-year-old woman (FC116—IV-25)
showed severe loss of myelinated fibers of all calibers and
revealed diverse features of onion bulb and pseudo-onion

Table 1 Characterization of breakpoint sequences in the nonrecurrent rearrangements

Family Size (kb) Breakpoint junction Microhomology Putative mechanism

Distal end Proximal end

FC116 607 AluY AluSc 34 bp Alu–Alu-mediated FoSTeS/MMBIR (NAHR may be involved)

FC388 725 CDRT
(intron)

LTR
(MALR)

3 bp (11 bp deletion) 2-step rearrangement with FoSTeS/MMBIR and crossover

FC85 465 d-REP ND ND Complex FoSTeS/MMBIR
450 ND p-REP

ND exact breakpoint sequences were not determined
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Fig. 3 Putative crossover and two-step process of a rearrangement
(blue X crossover). a Crossover on the duplication region in FC116. A
crossover event might occur between D17S1357 and D17S918 during
transmission from III-11 to IV-17 (Fig. 1a-1). b De novo rearrange-
ment by putative two-step process in FC388. The FoSTeS/MMBIR
event might be preceded during DNA replication (red horizontal
arrows), and then crossover occurred during meiosis between
D17S1357 and D17S918 during transmission from II-2 to III-1
(Fig. 1b). The regions indicated by single asterisk and double asterisk
were used for sequencing analysis to determine the 11-bp deletion
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bulb formations as the characteristics of common CMT1A
patients (data not shown).

Discussion

Human genomic disorders are caused by an alteration of the
genome architectures which are mostly resulted from
recurrent genomic rearrangements between region-specific
LCRs. However, replication-based nonrecurrent rearrange-
ment has been also proposed to be one of the important
underlying causes of genomic disorders. Several CMT1A
patients have been recently reported to be associated with
the nonrecurrent rearrangements [15, 18, 19, 23]. This
study also identified three CMT1A families with the rare
nonrecurrent rearrangements. It might be the first haplotype
analysis of large CMT1A families with the NHEJ. The
exact breakpoint junctions were determined by the long-
range template PCR after analysis of the CGH microarray
in FC116 and FC388. However, we failed to obtain PCR
product from FC85 with two discrete duplicated regions.
The rearrangement of FC85 may contain more complex
events such as inversion or microduplication/deletion. Two
paternal originated de novo rearrangements were observed
(FC388 and FC85). This is comparable to the predominant
paternal origin of general CMT1A de novo duplications by
the unequal crossover even though the rearrangement
mechanisms might be considerably different between the
two events [24–26].

A careful examination of clinical phenotypes for all the
affected individuals showed no significant difference
compared with the common CMT1A patients, which is
consistent with the idea that the copy number of the PMP22
gene may contribute to the phenotype. However, the broad
intrafamilial phenotype variation in FC116 (e.g., broad
range of age at onset from 4 to 60 years) might suggest an

existence of a genetic modifier or environmental factor(s)
which influence on the expressivity of the clinical symp-
toms rather than incomplete penetrance of the phenotype.
Kleopa et al. suggested that mutations in the PMP22 gene
are relevant with the broad phenotypic spectrum [27].

The Alu–Alu-mediated rearrangement in the FC116
could be explained by either of two mechanisms, meiosis-
based nonallelic homologous recombination (unequal
crossover) or replication-based FoSTeS by MMBIR [15,
28, 29]. However, Alu sequences usually do not act as the
preferring substrates for the homologous recombination
because significant regions of homology are required for
recombination [9]. When we performed the segregation
analysis of 17p12 markers, both duplicated alleles were
always the same. This segregation analysis indicated that
the rearrangement might result from the FoSTeS by the
MMBIR via 34-bp microhomology. If the rearrangement
has occurred by NAHR mechanism via the unequal
crossover between two homologous chromosomes, two
duplicated alleles would be different. However, the evi-
dence of the identical alleles could not completely exclude
the potential involvement of NAHR in this rearrangement
because an unequal crossover event between sister chro-
matids might generate identical alleles on the duplication
region [30, 31]. The involvement of the FoSTeS mechanism
via decades-bp microhomology for the Alu–Alu-mediated
rearrangement was also suggested by Zhang et al. [15].

Although the rare rearrangement in the FC388 was
regarded as by the FoSTeS/MMBIR via 3-bp microhomol-
ogy, the haplotype analysis suggested that a more complex
mechanism might be involved in the rearrangement. The de
novo duplication from I-1 to II-2 might be achieved by two
different events, FoSTeS/MMBIR during DNA replication
and recombination during meiosis (Fig. 3b). This two-step
rearrangement mechanism has still not been reported. The
“serial replication slippage” suggested by Chen et al. might

Examination Nonrecurrent dupla Current duplb P value

No. of patients 19 149 –

Age at onset (years) 18.3±15.7 15.7±10.1 ns

Asymptomatic patients 2 (11%) 10 (7%) ns

FDS 1.8±1.5 2.0±1.0 ns

CMTNS 11.2±6.9 11.2±5.7 ns

Muscle weakness 15 (79%) 118 (79%) ns

Sensory impairment 15 (79%) 102 (69%) ns

Abnormal DTR 16 (84%) 134 (90%) ns

Foot deformity 16 (84%) 131 (89%) ns

Median MNCV (m/s) 22.2±5.4 20.8±4.9 ns

Median CMAP (mV) 7.3±3.2 7.1±4.1 ns

Median SNCV (m/s) 17.7±2.3 18.5±4.7 ns

Median SNAP (μV) 9.3±6.7 6.6±3.2 ns

Table 2 Comparison of clinical
phenotypes between nonrecur-
rent duplication and reciprocal
duplication

FDS functional disability scale,
CMTNS CMT neuropathy scale,
DTR deep tendon reflex, MNCV
motor nerve conduction
velocity, CMAP compound
muscle action potential, SNCV
sensory nerve conduction ve-
locity, SNAP sensory nerve ac-
tion potential, ns not significant
a CMT1A patients with rare non-
recurrent duplications
b CMT1A patients with common
1.4 Mb duplications by unequal
crossover on 17p12
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involve in the nonrecurrent rearrangement of FC388 since
the breakpoint sequence also revealed an 11-bp deletion
[16].

Little has still been understood whether the nonrecurrent
rearrangements are stably transmitted to the next genera-
tion. As expected, this study revealed that the breakpoint
junctions are stably inherited with no sequence modifica-
tion since all the 15 affected members revealed the same
breakpoint sequence in the FC116 family including five
generations. Three affected members in the FC388 also
showed the same breakpoint sequence. But the other
concern is whether the duplicated genomic contents of
nonrecurrent rearrangements are stably transmitted across
generations. One of the interesting findings of this study is
the occurrence of meiotic recombination within the dupli-
cation. The recombinations may exchange the contents
between duplicated allele and wild-type allele in genomic
duplications. Moreover, this reminds us that the duplicated
PMP22 copies might be different in the same family (like
FC116), although the copy number of PMP22 is the same.
It may also potentially contribute to variability in gene
expression that could partially explain some of the broad
phenotypic spectrum in the same CMT1A family.

Considering the combined replication error and meiotic
recombination events, it seems that the exact mechanisms
of the rare partial duplications may have far more complex
and delicate processes than has been expected. It also seems
that the genomic contents in duplication may be unstable
across generations to some extent, although the breakpoint
junction is stable. We believe that this study provides a clue
to discover the molecular mechanisms of the nonrecurrent
rearrangements in many other human genomic disorders
with rare CNVs.
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