Pattern Analysis & Applications (2002)5:121-135
Ownership and Copyright
© 2002 Springer-Verlag London Limited

Bagging, Boosting and the Random Subspace Method

for Linear Classifiers

Marina Skurichina and Robert P. W. Duin

Pattern Recognition Group, Department of Applied Physics, Faculty of Applied Sciences, Delft University of

Technology, Delft, The Netherlands

Abstract: Recently bagging, boosting and the random subspace method have become popular combining techniques for improving weak
classifiers. These techniques are designed for, and usually applied to, decision trees. In this paper, in contrast to a common opinion, we
demonstrate that they may also be useful in linear discriminant analysis. Simulation studies, carried out for several artificial and real data
sets, show that the performance of the combining techniques is strongly affected by the small sample size properties of the base classifier:
boosting is useful for large training sample sizes, while bagging and the random subspace method are useful for critical training sample
sizes. Finally, a table describing the possible usefulness of the combining techniques for linear classifiers is presented.

Keywords: Bagging; Boosting; Combining classifiers; Linear classifiers; Random subspaces; Training sample size

1. INTRODUCTION

When data are highly dimensional and the training sample
size is small compared to the data dimensionality, it may
be difficult to construct a good single classification rule.
Usually, a classifier constructed on small training sets is
biased and has a large variance as the classifier parameters
(coefficients) are poorly estimated. Consequently, such a
classifier may be weak, having a poor performance [1].
Moreover, often it will be unstable: small changes in the
training set cause large changes in the classifier. In general,
bad performance of a classifier can be caused by different
factors: incorrect assumptions about the model when con-
structing a classifier; too low a complexity of the classification
rule to solve the problem; incorrect settings for classifier
parameters; instability of the classifier, etc. Consequently, in
the literature the term ‘weak classifier’ can refer to different
things: badly performing classifiers, unstable classifiers, classi-
fiers of a low complexity, or classifiers depending upon
certain assumed models that are not always true. However,
in all cases when intending to improve a ‘weak classifier’,
one actually aims to improve its performance. Therefore,

Received: 3 November 2000
Received in revised form: 2 November 2001
Accepted: 13 December 2001

describing a ‘weak classifier’ as one that has a poor perform-
ance seems to be the most general definition.

To improve a weak classifier (a classifier that has a poor
performance), one may use different approaches. One way
is to stabilise the decision of a weak classifier (as weak
classifiers are often unstable) by regularisation [2] or noise
injection [3]. Another approach is to construct many weak
classifiers instead of a single one, and to combine them into
a powerful decision rule. Recently, a number of combining
techniques has been developed. The most popular are bag-
ging [4], boosting [5] and the Random Subspace Method
(RSM) [6]. In bagging, one samples the training set, generat-
ing random independent bootstrap replicates [7], constructs
the classifier on each of these, and aggregates them by a
simple majority vote in the final decision rule. In boosting,
classifiers are constructed on weighted versions of the train-
ing set, which are dependent on previous classification
results. Initially, all objects have equal weights, and the first
classifier is constructed on this data set. Then, weights
are changed according to the performance of the classifier.
Erroneously classified objects get larger weights, and the next
classifier is boosted on the reweighted training set. In this
way, a sequence of training sets and classifiers is obtained,
which is then combined by simple majority voting or by
weighted majority voting in the final decision. In the random
subspace method, classifiers are constructed in random sub-
spaces of the data feature space. These classifiers are usually

122

combined by simple majority voting in the final decision
rule.

Bagging, boosting and the RSM are designed for, and
usually applied to, Decision Trees (DT) [6,8—11], where they
often produce an ensemble of classifiers, which is superior
to a single classification rule. However, these techniques may
also perform well for classification rules other than DTs.
For instance, it was shown that bagging and boosting may
be useful for perceptrons [12,13]. Bagging and the RSM
may also be advantageous for k nearest neighbours classi-
fication rules [14]. Previously, we have demonstrated that
bagging may be beneficial in Linear Discriminant Analysis
(LDA) for critical training sample sizes (when the number
of training objects is comparable with data dimensionality)
[15]. Our earlier studies [16-19] have shown that boosting
and the RSM may also be advantageous for linear classifiers.

In this paper, we study the usefulness of bagging, boosting
and the RSM in LDA for two-class problems. In particular,
we want to investigate their relations with the training
sample size and the small sample size properties of the base
classifier. All combining techniques discussed are designed
for weak classifiers. The most popular linear classifiers are
the Nearest Mean Classifier (NMC) [20] and the Fisher
Linear Discriminant function (FLD) [20]. However, when
the number of training objects is smaller than the data
dimensionality, the sample estimate of the covariance matrix
is singular. In these circumstances, the FLD cannot be
constructed, as it requires the inverse of the covariance
matrix. To avoid the direct inverse of an ill-conditioned
covariance matrix, one may perform the Moore-Penrose
Pseudo inverse, which is used in the Pseudo Fisher Linear
Discriminant function (PFLD) [20]. Both the NMC and the
PFLD are weak classifiers: the NMC is usually weak when
data classes have another distribution than the Gaussian
distribution with equal variances; the PFLD as such is weak
for critical training sample sizes, and its use as a single
classifier is not recommended. Combining techniques, how-
ever, may be useful for these classifiers. Therefore, we have
chosen the NMC and the PFLD for our comparative simul-
ation study. We discuss the performance and instability of
these linear classifiers in Section 2.

Several artificial and real data sets representing two-class
problems are used in our simulation study. They are
described in Section 4, but first a description of bagging,
boosting and the RSM, followed by a comparative discussion,
is given in Section 3. Simulation results on the performance
of bagging, boosting and the RSM in LDA are discussed in
Section 5. Conclusions are summarised in Section 6.

2. PERFORMANCE AND THE INSTABILITY
OF LINEAR CLASSIFIERS

To study the usefulness of combining techniques for linear
classifiers in relation to their instability and training sample
size, let us consider a few linear classifiers. The most popular
and commonly used linear classifiers are the Fisher Linear
Discriminant (FLD) [20] and the Nearest Mean Classifier

M. Skurichina and R. P. W. Duin

(NMCQC), also called the Euclidean Distance Classifier [20].
The standard FLD is defined as

gi(x) = X' W+ W = (1)
X3 (K04 X) |1 0 (RO -)

where (WF, W) are the coefficients of the linear discriminant
function gi(x), S is the standard maximum likelihood esti-
mation of the p X p covariance matrix 3, x is a p-variate
vector to be classified, and X is the sample mean vector
of the class m;, i = 1, 2.

Notice that Eq. (1) is the mean squared error solution
for the linear coefficients (w, w,) in

g{x)=w-x+wy=1L (2)

with x € X, and with L being the corresponding desired
outcomes, 1 for class 7, and —1 for class m,. When the
number of features p exceeds the number of training vectors
n, the sample estimate S of the covariance matrix will be a
singular matrix that cannot be inverted. For feature sizes p
increasing to n, the expected probability of misclassification
rises dramatically [1] (see Fig. 1(a)).
The Nearest Mean Classifier can be written as

g =[x =2 K0+ X9) | (RO-X2) @)

It minimises the distance between the vector x and the class
mean X?, i =1, 2.

The NMC generates the perpendicular bisector of the class
means, and thereby yields the optimal linear classifier for
classes having the spherical Gaussian distribution of features
with the same variance. The advantage of this classifier is
that it is relatively insensitive to the number of training
examples [21]. The NMC, however, does not take into
account differences in the variances and covariances.

The modification of the FLD, which allows us to avoid
the inverse of an ill-conditioned covariance matrix, is the
so-called Pseudo Fisher Linear Discriminant (PFLD) [20]. In
the PFLD, a direct solution of Eq. (2) is obtained by (using
augmented vectors)

Serp(X) = (W, wp) - (6 1) = (1) (X, D' L (4)

where (x, 1) is the augmented vector to be classified and
(X, I) is the augmented training set. The inverse (X, I)™' is
the Moore-Penrose Pseudo Inverse, which gives the mini-
mum norm solution. Before the inversion the data are
shifted such that they have zero mean. This method is
closely related to singular value decomposition.

The behaviour of the PFLD as a function of the sample
size is studied elsewhere [15,22]. For one sample per class
this method is equivalent to the Nearest Mean and to the
Nearest Neighbour methods (see Fig. 1(a)). For values n >
p the PFLD, maximising the total distance to all given
samples, is equivalent to the FLD (1). For values n = p,
however, the Pseudo Fisher rule finds a linear subspace,
which covers all the data samples. The PFLD builds a linear
discriminant perpendicular to this subspace in all other
directions for which no samples are given. In between, the

Bagging, Boosting and the RSM for Linear Classifiers

(@)
0.5 T < :
S
1
el
20.
T
N
®
()
jod
)]
O]
(]
ey
}_
o ‘ .
10° 10’ 10°
The Number of Training Objects per Class
(®)
05—————====r= =T .
U B FLD
04l I NMC ||
. |— PFLD
> "\'
= A
= 0.3 1
8
72}
£
2o.2¢]
|_
0.1 .
0
10° 0' 10°

1
The Number of Training Objects per Class

Fig. 1. (a) Generalisation error of the PFLD, FLD, NMC and Nearest
Neighbour Classifier (NNC); (b) instability of the linear classifiers
versus the training sample size for the 30-dimensional Gaussian
correlated data.

generalisation error of the PFLD shows a minimum, and
then a maximum, at the point n = p. This can be understood
from the observation that the PFLD succeeds in finding
hyperplanes with equal distances to all training samples until
n = p. One obtains the exact solution, but all noise presented
in the data is covered. In Raudys and Duin [23], an asymp-
totic expression for the generalisation error of the PFLD is
derived, which theoretically explains the behaviour of the
PFLD. The advantage of the PFLD is that it is a straightfor-
ward, simple classification rule, which takes into account
differences in variance. However, it is a weak and a very
noise sensitive classifier when it is constructed on critical
training sample sizes. In such a situation, it is not rec-

123

ommended to use it as a single classifier. Nevertheless, due
to the peaking phenomenon shown by the generalisation
error of the PFLD, this classifier is very suitable for studying
dimensionality (or training sample size) effects. Here it will
be used as a base classifier for the combining techniques.

To understand better when combining techniques can be
beneficial, it is useful to consider the instability of a base
classifier [15]. The classifier instability is measured by calcu-
lating the changes in classification of a test set caused by
the bootstrap replicate of the original training data set.
Repeating this procedure several times on the training set
(we did it 25 times) and averaging the results, one obtains
an estimate of the classifier instability on one training set.
The mean instability of linear classifiers (on 50 independent
training sets) defined in this way is presented in Fig. 1(b).
One can see that the instability of the classifier decreases
when the training sample size increases. The instability and
performance of a classifier are correlated: more stable classi-
fiers perform better than less stable ones. In this example,
however, the performance of the NMC does not depend
upon the training sample size. In contrast to other classifiers,
it remains a poor performing classifier for large training
sample sizes, while its stability increases.

3. BAGGING, BOOSTING AND THE RANDOM
SUBSPACE METHOD

To improve the performance of weak regression and classi-
fication rules, a number of combining techniques can be
used. During the last few years, the most popular methods
have become bagging, boosting and the random subspace
method. They all modify the training data set, build classifi-
ers on these modified training sets, and then combine them
into a final decision rule by simple or weighted majority
voting. However, they perform in a different way.

3.1. Bagging

Bagging was proposed by Breiman [4], and is based on
bootstrapping [7] and aggregating concepts, so it incorpor-
ates the benefits of both approaches. Bootstrapping is based
on random sampling with replacement. Therefore, taking a
bootstrap replicate X* = (X%, X%, ..., X%) (random selection
with replacement) of the training set X = (X;, X, ..., X,),
one can sometimes avoid or get less misleading training
objects in the bootstrap training set. Consequently, a clas-
sifier constructed on such a training set may have a better
performance. Aggregating actually means combining classifi-
ers. Often a combined classifier gives better results than
individual classifiers, because of combining the advantages
of the individual classifiers in the final solution. Therefore,
bagging might be helpful to build a better classifier on
training sample sets with misleaders. In bagging, bootstrap-
ping and aggregating techniques are implemented in the
following way:

1. Repeat for b=1,2, ..., B

(a) Take a bootstrap replicate X’ of the training data
set X.

124

(b) Construct a classifier C(x) (with a decision boundary
C(x) = 0) on X
2. Combine classifiers C¥(x), b = 1, 2, ..., B, by simple
majority voting (the most often predicted label) to a final
decision rule

B(x) = argmax E 6SgrﬂCb(X)),y

yet=1,1

where

Li=j
5= {o, i#j
is the Kronecker symbol, y € {—1, 1} is a decision (class
label) of the classifier.

Let us note that linear classifiers may be also aggregated
by other combining rules: the mean (when the decision is
made according to the mean of a posteriori probabilities
given by the base classifiers), the product (when the decision
is made by the product of a posteriori probabilities presented
by the base classifiers) or the average combing rule (when
the final classifier is obtained by averaging the coefficients

B
of the base classifiers CP(x) :E C¥(x)). When using the
b=1
average combining rule to aggregate linear classifiers, the
final classifier is also a linear classifier with the same
complexity as the base classifiers.

As mentioned before, bagging is based on bootstrapping
the training set and aggregating (combining) the bootstrap
versions of the original classifier. On average, when taking
a bootstrap sample of the training set, approximately

1
o 37% of the objects are not presented in the bootstrap

sample, meaning that possible ‘outliers’ in the training set
sometimes do not show up in the bootstrap sample. Thus,
better classifiers (with a smaller apparent error — classi-
fication error on the training data set) may be obtained by
the bootstrap sample than by the original training set. These
classifiers will be presented ‘sharper’ in the apparent error
than those obtained on the training sets with outliers. There-
fore, they will be more decisive than other bootstrap versions
in the final judgement. Thus, aggregating classifiers in bag-
ging can sometimes give a better performance than individ-
ual classifiers. To illustrate this, let us consider the FLD
applied to an imaginary two-class problem of one-dimen-
sional data with one outlier. In Fig. 2, one can see that the
FLD constructed on the complete data set is not able to
separate the data classes without error. Constructing classifi-
ers on bootstrap samples of the training sets sometimes
gives a better classifier, sometimes a worse one. The better
classifier is sharper in the domain of the a posteriori prob-
abilities, so it dominates in the final decision. Therefore,
aggregating (combining) bootstrap versions of the original
classifier allows us to get a better classifier than the orig-
inal one.

Another example, presented in Fig. 3, shows the case
when, by aggregating bootstrap versions of the classifier, one
obtains a solution (a discriminant function) that is imposs-

M. Skurichina and R. P. W. Duin

T T T

the original classifier
the bootstrap versions
the bagged classifier

aposteriori probabilities
o
[9)]

Or A

-0.2 0 0.2 0.4 0.6
w1/wO

0 ; ; .

2 .

7 |

7] : v

o : :

O % % *x%[oQ | 0 O o

2 o

; L YEW XeW,

©

© 1 L 1

~-0.2 0 0.2 0.4 0.6
w1/w0

Fig. 2. Scatter plot of the one-dimensional data set with one outlier,
the discriminant functions and the a posteriori probabilities of the
original training set, obtained for the FLD built on the original
training set, for two bootstrap versions of the FLD and for the
bagged FLD (with the average combining rule) constructed from
these two bootstrap versions.

0.25— - ; ; . ; , . :
02k * the original classifier 1
bootstrap versions .
0.15F| © the bagged classifier
0.1} . ", 1
0.05- I .
30 . * . M *
<. oF o e %, i
z I
~0.05} . : T,]
e .0 e ,:..: 8.
-0.1f I 44 1
o o .d' |
-0.15}F . ot 1
-0.2¢ . 1

0235 08 —07 06 -05 -04 -03 -02 -01

Fig. 3. Scatter plot of the two-dimensional projection of the NMC
in the space of its normalised coefficients w,/w, and w,/w, for the
two-dimensional Gaussian correlated data set.

ible to reach by separate bootstrap versions of the classifier.
In this example, two-dimensional Gaussian correlated data
are used (see Fig. 7). The NMC is bagged on 100 bootstrap
replicates of a training data set consisting of 10 objects, and
the average combining rule is used to aggregate base classifi-
ers. A scatter plot of the NMC, its bootstrap versions and
its bagged version in the space of normalised coefficients
wy/w, and wy/w, are shown in Fig. 3. One can see that the
bagged classifier gives a solution inside an empty space
between different bootstrap versions of the classifier. Separate
bootstrap versions of the classifier cannot reach the solution
obtained by aggregating bootstrap versions of the classifier.

Bagging, Boosting and the RSM for Linear Classifiers

3.2. Boosting

Boosting, proposed by Freund and Schapire [5], is another
technique to combine weak classifiers having a poor perform-
ance in order to get a classification rule with a better
performance. In boosting [5] (not in arcing [9]), classifiers
and training sets are obtained in a strictly deterministic way.
Both training data sets and classifiers are obtained sequen-
tially in the algorithm, in contrast to bagging, where training
sets and classifiers are obtained randomly and independently
(parallelly) from the previous step of the algorithm. At each
step of boosting, training data are reweighed in such a way
that incorrectly classified objects get larger weights in a new,
modified training set. Thus, one actually maximises the
margins between training objects. It suggests the connection
between boosting and Vapnik’s Support Vector Classifier
(SVC) [8,24], as the objects obtaining large weights may be
the same as the support objects. Although boosting and the
SVC have the same aim, computationally they perform in a
different way. In the SVC one performs global optimisation
in order to maximise the minimal margin, while in boosting
one maximises the margin locally for each training object.
To illustrate the similarities and differences between boosting
and the SVC, let us consider the example of the 30-dimen-
sional Gaussian correlated data set described in Section 4.
In Fig. 4(a) one can see that, on average, support vectors
found by the SVC get larger weights in boosting than non-
support vectors. However, objects getting large weights
(larger than 1) in boosting are not always identical to the
support vectors (see Fig. 4(b). When the training sample
size is small, almost all training objects are found to be the
support vectors, while only part of the training objects get
large weights in boosting. When the training sample size
increases, the set of objects having large weights in boosting
becomes larger as well. It also contains more of the support
vectors (but not all of them) found by the SVC. On the
other hand, the number of support vectors found is smaller
than the total number of training objects obtaining large
weights in boosting. This means that objects with large
weights in boosting are not identical to the support vectors
found by the SVC.

Boosting is organised by us in the following way. It is
based on the ‘arc-fs’ algorithm described by Breiman [9],
where we reweight the training set instead of resample it.
The ‘arc-fs’ algorithm is the improved version of the stan-
dard AdaBoost algorithm [5]. Additionally, we set initial
weight values w},i=1,...,n to 1 instead of 1/n, in order
to be independent on data normalisation. Therefore, boost-
ing is implemented by us as follows:

1. Repeat for b=1, 2, ..., B:

(a) Construct the classifier C*(x) on the weighted version
Xt = (whX,, wiX,, ..., whX,) of training data set X =
(X, X5 .- X,), using weights wb, i=1, ..., n (all
wl=1 for b=1).

(b) Compute probability estimates of the error

125

~
S
g
*]

N
[,
:
.

i
o
T
.

The Average Boosting Weights

— for support vectors
--- for nonsupport vectors

O L Il
10’ 10°
The Number of Training Objects per Class
(b)
100 . .
80r 1
(0]
g
E 60' b
(O]
e
()
o
o 40
e
'_
20L 4
—— % of SV in high weighted objects in boosting
--- % of SV having high weights in boosting
O L L
10° 10' 10°

The Number of Training Objects per Class

Fig. 4. (a) Average weights obtained in boosting the NMC after 250
steps, for non-support and support vectors, found by the linear
SVC, versus the training sample size; (b) percentage of Support
Vectors (SV) in training objects that obtain high weights (larger
than 1) in boosting the NMC, and the percentage of support vectors
having high weights (larger than 1) in boosting versus the training
sample size.

n

1
em = 3wt

=1

where

&=

o |0, if X; is classified correctly
1, otherwise

and combining weights

126

_11 ﬂ
Ch_z 8 err,

() If 0 < err, < 05, set W't = w exp(cé),

i=1,...,n and renormalise so that E witl = n.

=1
Otherwise, set all weights w!=1,i=1, ..., n and
restart the algorithm.

2. Combine classifiers C’(x), b = 1, 2, ..., B, by weighted
majority voting with weights ¢, to a final decision rule
B(x) = argmax 2 COsgn().y

yel-1L1} 4
where §;; is the Kronecker symbol, and y € (-1, 1} is a
decision (class label) of the classifier.

3.3. The Random Subspace Method

The Random Subspace Method (RSM) is the combining
technique proposed by Ho [6]. In the RSM, one also modi-
fies the training data. However, this modification is perfor-
med in the feature space. Let each training object X; (i =
1, ..., n) in the training sample set X = (X}, X, ..., X,)
be a p-dimensional vector X; = (x;, Xa, ... X;), described
by p features (components). In the RSM, one randomly
selects r < p features from the p-dimensional data set X.
One thus obtains the r-dimensional random subspace of the
original p-dimensional feature space. Therefore, the modified
training set X* = (X%, X%, ..., X% consists of r-dimensional
training objects X! = (x4, xb, ..., &%) (i=1, ..., n), where r
components x4 (j=1,..., r) are randomly selected from p
components x; (j =1, ..., p) of the training vector X; (the
selection is the same for each training vector). Then one
constructs classifiers in the random subspaces X’ and com-
bines them by simple majority voting in the final decision
rule. So, the RSM is organised in the following way:

1. Repeat for b=1, 2, ..., B

(a) Select an r-dimensional random subspace X’ from
the original p-dimensional feature space X.
(b) Construct a classifier C(x) (with a decision boundary
Ct(x) = 0) in X"
2. Combine classifiers C¥(x), b = 1, 2, ..
majority voting to a final decision rule

. B, by simple

B(x) = argmax 2 6sgn(Cb(X))a)’
b

yei{-11}

where §;; is the Kronecker symbol, and y € {—1, 1} is
a decision (class label) of the classifier.

The RSM may benefit from using random subspaces for
both constructing and aggregating the classifiers. When the
number of training objects is relatively small compared with
the data dimensionality, by constructing classifiers in random
subspaces one may solve the small sample size problem. The
subspace dimensionality is smaller than in the original fea-
ture space, while the number of training objects remains
the same. Therefore, the relative training sample size
increases. When data have many redundant features, one

M. Skurichina and R. P. W. Duin

may obtain better classifiers in random subspaces than in
the original feature space. The combined decision of such
classifiers may be superior to a single classifier constructed
on the original training set in the complete feature space.

3.4. Discussion

Bagging, boosting and the RSM have been theoretically and
experimentally investigated and compared to each other and
to other combining techniques by many researchers. It was
shown that they are beneficial for regression and classi-
fication trees [4-10,11,22]. They may be useful for per-
ceptrons [12,13], and for k nearest neighbours classifiers
[14,25]. It was demonstrated that boosting often gives a
better performance than bagging, and the RSM may outper-
form them both. In Breiman [9] it was stated that bagging
and boosting are useful for unstable classifiers. It was demon-
strated [9,22] on several examples that both bagging and
boosting reduce the variance of the classifier. However, it
was shown [8] that a large variance of the classifier is not
a requirement for boosting to be effective.

The usefulness of bagging and boosting in LDA was also
studied by simulation experiments [9]. Just one linear clas-
sifier (probably the FLD) was considered, and the relation
between the training sample size and the data dimensionality
was not taken into account. From this study, the conclusion
was made that neither bagging nor boosting are beneficial
for linear classifiers, because in general, linear classifiers are
stable. Section 2 of this paper contradicts that conclusion,
illustrating that the instability of linear classifiers depends
upon the training sample size and on their complexity. In
Breiman [9] large training sample sizes are used. Indeed,
the linear classifiers are stable when trained on large training
data sets, and bagging is not beneficial in that case. The
failure of boosting was probably caused by the improper
choice of the linear classifier. We should mention that, as a
rule, no systematic study (for decision trees and other
classifiers) was performed on the performance of boosting
and bagging and on their comparison with respect to the
training sample size. Usually, large training sample sizes were
considered (e.g. taking 90% of available objects for training
and 10% for testing). In our study, the training sample size
plays an important role. In Section 5, we investigate the
usefulness of bagging, boosting and the RSM for linear
classifiers in relation to the training sample size.

We studied bagging for linear classifiers [15]. Previously,
it was noticed [4] that the efficiency of bagging depends
upon the stability of regression or classification. We have
also established that bagging may be useful for linear classi-
fiers when they are unstable. This happens when the training
sample size is critical, that is when the number of training
objects is comparable with the data dimensionality (and with
the number of parameters in linear classifiers). For very
small and also for very large training sample sizes, bagging
is usually useless, as bootstrapping such training sets is not
effective. Additionally, in bagging the actual training sample
size is reduced, because on average only 1-1/e = 63% of
the training objects is used in each bootstrap replicate of
the training data set. Ignoring the object repetition in a

Bagging, Boosting and the RSM for Linear Classifiers

bootstrap sample, the training set becomes smaller. In this
way, the bootstrap sample is comparable with a smaller
training set, therefore classifiers should be similar. So the
bagged classifier will have similar characteristics as the clas-
sifier built on the smaller training set.

This phenomenon is the most evident for the PFLD due
to its characteristic maximum of the generalisation error for
critical sizes of the training set. Indeed, considering the
effect of bagging on the PFLD (see Fig. 5), it can be clearly
seen that the generalisation error of the bagged classifier is
shifted with reference to the generalisation error of the
original classifier in the direction of the generalisation error
of the classifier built on a smaller training sample set (see
Fig. 6). Thus, the usefulness of bagging also depends upon
the small sample size properties of the base classifier [15].
This means that, due to the shifting effect on the generalis-
ation error in the direction of the generalisation error
obtained on the smaller training sets, bagging will not be
useful for classifiers whose generalisation error decreases with
an increase in the training sample size (we call such classifiers
those with a decreasing learning curve). Therefore, one may
expect that bagging may only be useful for two linear
classifiers: for the NMC and especially for the PFLD. Usually,
the behaviour of the generalisation error of the NMC is not
affected by the training sample size. The generalisation error
of the PFLD has a peaking behaviour (see Fig. 1(a)). Bagging
may thus be beneficial for these two classifiers when they
are constructed on critical training sample sizes.

In boosting one is focused on the difficult objects in the
training set, which are usually objects on the border between
data classes. Therefore, the number of actually used training
objects decreases, and the performance of boosting is also
affected by the training sample size [17]. It is not advan-
tageous for classifiers having a decreasing learning curve. In
addition, it was shown [26] that in boosting, the generalis-
ation error Py of the final rule B(x) is bounded,

0.5 " .

— PFLD
------- Bagged PFLD

[vellusveiivs)
nn o

The Generalization Error

017

O H L

10° 10’ 10°
The Number of Training Objects per Class
Fig. 5. Generalisation error of the PFLD and the ‘bagged’ PFLD for

different numbers of bootstraps B versus the training sample size
for the 30-dimensional Gaussian correlated data.

127

_9 Ba%ging
- (n*<p)

the RSM
* é_—
(p*<n) ;

The Generalization Error

1
1
1
1
1
1
1
[
¥
1
o
“a

i
1
]
i
1
1
1
1
|
1
1

n<p n=p n>p
The Number of Training Objects n

Fig. 6. Shifting effect of the generalisation error of the PFLD for
bagging and the RSM. In bagging, the learning curve shifts with
respect to the learning curve of the original classifier in the direction
of larger training sample sizes (the bagged classifier performs similar
to the original classifier constructed on a smaller training set). In
the RSM, the learning curve of the final classifier shifts with respect
to the learning curve of the original classifier in the direction of
smaller training sample sizes (the final classifier obtained in the
RSM performs similar to the original classifier constructed on a
larger training set). Here, n is the number of training objects and
p is the data dimensionality.

pNspﬁo(\/ﬁl) 5)
n

where P, is the apparent error, n is the training sample
size, d is the Vapnik—Chervonenkis (VC) dimensionality [27]
of the parameter space of the weak learner, and B is the
number of iterations (the number of combined base
classifiers) used in boosting. This formula shows that boost-
ing is the most effective for classifiers having a simple
complexity (with the low VC-dimensionality d) and for large
training sample sizes n. Therefore, in LDA, boosting will
only be useful for the NMC constructed on large training
sample sizes, as the NMC is the most simple linear classifier
and remains weak on large training sample sizes.

In the RSM, by using random subspaces, one actually
decreases the data dimensionality. This implies that the
performance of the RSM in LDA will be affected by the
small sample size properties of the base classifier. We expect
that, similar to bagging, in the RSM the final classifier will
have a shifting effect of the generalisation error with respect
to the generalisation error of the original classifier (see Fig.
6). However, this shift will be in the opposite direction: in
the direction of the generalisation error obtained on larger
training sample sizes. Thus, the RSM will be useful for
classifiers having a decreasing learning curve (e.g. the FLD),
and will be useless for the NMC, as its performance does
not depend upon the training sample size. We also expect
the RSM to be effective for the PFLD constructed on critical
training sample sizes.

128

In relation to the above discussion, one can see that to
study the efficiency of bagging, boosting and the RSM for
linear classifiers, with respect to the training sample size and
the small sample size properties of the base classifier, is of
great interest. We perform our study for two linear classifiers:
the NMC and the PFLD. This choice is made for two
reasons: first, they have quite different small sample size
properties that allow us to study the effect of these on
the performance of the combining techniques considered;
secondly, it seems that only these two classifiers in LDA
may benefit from the combining techniques.

4. DATA

To illustrate and compare the performance of combining
techniques in different situations, a number of artificial and
real data sets are used in our experimental investigations.
Mostly, highly dimensional data sets are considered, because
we are interested in unstable situations when the data dimen-
sionality is smaller or comparable to the training sample
size. In our study, we use artificial data sets which have many
redundant features, as some of the combined techniques (e.g.
the RSM) are most effective for data with a small intrinsic
dimensionality. Real data sets are needed to show that these
techniques may be effective when solving real world prob-
lems. Some of the real data sets considered are used by
other researchers [6,9] in the comparative study of bagging,
boosting and the RSM for DTs and in the LDA. Therefore,
we decided to involve them in our study too.

Two artificial data sets and five real data sets are used
for our experimental study. The first set is a 200-dimensional
correlated Gaussian data set made of two classes with equal
covariance matrices. Each class consists of 500 vectors. The
mean of the first class is zero for all features. The mean of
the second class is equal to 3 for the first two features and
0 for all other features. The common covariance matrix is
a diagonal matrix with a variance of 40 for the second
feature and a unit variance for all other features. The
intrinsic class overlap (Bayes error) is 0.0717. This data set
is rotated for the first two features using a rotation matrix
{‘ ‘11] These features are presented in Fig. 7. The first 30

1
features of this data set constitute the 30-dimensional corre-
lated Gaussian data set.

The second artificial data set consists of two 200-
dimensional spherical Gaussian data classes with equal covari-
ance matrices. Each data class contains 500 vectors. The first
data class is distributed spherically with a unit covariance
matrix and with zero mean. The covariance matrix of the
second data set is also unit. The mean of the second class
is equal to 0.25 for all features.

The real data sets are taken from the UCI Repository
[28]. They are the 34-dimensional ionosphere data set, the
8-dimensional pima-diabetes data set, the 60-dimensional
sonar data set, the 30-dimensional wdbc data set and the
24-dimensional german data set. These data sets have been
used [6,9], when studying bagging, boosting and the RSM
for decision trees. The diabetes data set was also used when
bagging and boosting were applied in LDA [9].

M. Skurichina and R. P. W. Duin

25 T T T T T

201]

15

-5k

-10f

Fig. 7. Scatter plot of a two-dimensional projection of the 200-
dimensional Gaussian correlated data.

Training sets are chosen randomly from a total data set.
The remaining data are used for testing. All experiments are
repeated 50 times on independent training sets. In all figures
(besides Figs 2 and 3), the averaged results over 50 rep-
etitions are presented. The standard deviations of the mean
generalisation errors for single and combined linear classifiers
are of similar orders for each data set. When increasing the
training sample size, they are decreasing approximately from
0.018 to 0.005.

Bagging, boosting and the RSM are techniques which
combine multiple classifiers. They fundamentally differ from
each other in the way in which different versions of the
classifier are obtained. By using a different combining rule
in each of the combining techniques, we make the difference
between them even larger. Our previous study [16,19] has
revealed that the choice of combining rule may be very
important when combining classifiers in bagging, boosting
and the RSM (see Fig. 8). Therefore, to perform a fair
comparison of bagging, boosting and the RSM, we decided
to use the weighted majority voting combining rule (as it
is defined in boosting) in each of them.

5. PERFORMANCE OF BAGGING, BOOSTING
AND THE RSM IN LDA

Let us now consider the performance of bagging, boosting
and the RSM in LDA on the example of the NMC and the
PFLD. These combining techniques perform differently for
different base classifiers. In addition, their performance is
strongly affected by the training sample size.

Bagging, Boosting and the RSM for Linear Classifiers

(a) Bagged NMC (B=250)
0.5 v v
G"
_0.4f 1
e
]
c
203
©
N
©
2
0.2
(0] --- Average
2 e--+ Mean
'_0.1 L oo Product
= Majonty
0 1;)1 - 2
The Training Sample Size per Class
(b) Boosted NMC (B=250)
0.5 r T
_04
[
1w
c
203
©
N
©
2
50.2
o}
(]
=
=
0.1
"""" Majority
----- WMajority
°) 10°
The Training Sample Size per Class
(c) RSM for PFLD (r=15, B=250)
.5
PFLD
0O s--¢ Mean
_04 oo Product
ug_, ——ae Major'ity‘
- o - WMajority
£0.3¢ e RS
] L
g (.
©
(]
£0.2
(0]
@
e
= .
o1 ST
0 R
100 1 2

The Number of Training Objects per Class

Fig. 8. Generalisation error of (a) the bagged NMC, (b) the boosted
NMC and (c) the RSM (R = 15) applied to the PFLD using different
combining rules (the average, mean, product, simple majority and
weighted majority voting) for the 30-dimensional Gaussian corre-
lated data.

5.1. The NMC

Simulation results (see Fig. 9) show that the combining
techniques may be useful for the NMC. Bagging improves
the generalisation error of the NMC for critical training
sample sizes (see Figs 9(a),(c),(d)), when the classifier is
unstable and bootstrapping the training data set is the most
effective. When training sets are very small, they often
represent the distribution of the entire data set incorrectly.
By bootstrapping such small training sets, they are expected

129

to become even worse. Classifiers obtained on them may
have a poor performance, and combining such classifiers
will probably not be beneficial. Therefore, bagging is useless
for very small training sample sizes. When the training
sample size is large, the classifier is stable. Large training
sets represent the real data distribution more accurately,
therefore perturbations in the composition of the training
set (bootstrapping) do not change the training set very
much. Classifiers obtained on bootstrap replicates will also
be similar to each other. Combining similar classifiers is not
very effective, so bagging is also useless for large training
sample sizes.

In boosting, incorrectly classified objects get larger weights.
These are mainly objects on the border between data classes
which are difficult to classify. Therefore, boosting performs
the best for large training sample sizes, when the border
between data classes becomes more informative and gives a
good representation of the real distribution of the data
classes. In this case (for large training sample sizes), boosting
the NMC performs similar to the linear SVC (see Figs
9(a),(c),(d),(e),(f)). However, when the training sample size
is large, the NMC is stable. This made us think that, in
contrast to bagging, the usefulness of boosting does not
depend directly upon the stability of the classifier. It depends
upon the ‘quality’ (distribution) of the ‘difficult’ objects, and
on the potential ability of the classifier (its complexity) to
distinguish among them correctly.

One may see that for small and critical training sample
sizes, the boosted NMC may perform worse or even much
worse (having a high peak of the generalisation error) than
the original NMC. This is for two reasons: first, the objects
on the border between data classes (which are getting larger
weights in the boosting algorithm) often have a distribution
other than the original training set; secondly, in boosting,
only a portion of training objects (on the border) get large
weights. These objects are more decisive than other objects
when constructing the classifier. Therefore, the number of
effectively used training objects in boosting is actually
reduced, compared with the original training set. Smaller
training sets give more biased sample estimates of class
means. Using very small training sets, that consist of objects
located on the border between data classes, may be very
misleading when constructing the classifier for the entire
data set. Therefore, the NMC constructed on such training
sets may perform very poorly. A combination of the bad
quality classifiers constructed on the smaller training sets
may perform worse than the single classifier constructed on
the larger training set.

The RSM is usually useless for the NMC (see Figs
9(a),(b),(c),(e),(f)). However, if some data features are
redundant (and the discrimination power is evenly spread
over the features [6,19]) and the learning curve of the
NMC decreases with an increase of the training sample size,
sometimes the RSM may improve the performance of the
NMC (see Figs 9(d,g)). It happens because the relative
number of training objects increases when constructing clas-
sifiers in random subspaces. If classifiers obtained in random
subspaces are diverse and perform better than the original

130

200-dimensional Gaussian correlated data

(@)

0.5
_04
e
o
c
203
IS
2
@
£02
S)— NMC N
£ |--- Bagged NMC ‘N\.__.,_‘
0.1§--- Boosted NMC
~ RSM (r=75)
&—=4 Linear SVC
0 10! 2
The Number of Training Objects per Class
34-dimensional ionosphere data
(c)
0.5
— NMC
--- Bagged NMC
30-4' JPEN --- Boosted NMC|
= e N RSM (r=10)
p - |~ Linear SVC
L0.3f
¥
®
°
502
6]
[
=
=
0.1

~
Q
~

1 2

10
The Number of Training Objects per Class

60-dimensional sonar data

05

_04

e

]

Sos

8

s

202

6] — NMC

2 --- Bagged NMC

Fo4ll--- Boosted NMC
w RSM (1=10)
+—a linear SVC

0

1

10 10
The Number of Training Objects per Class

()

M. Skurichina and R. P. W. Duin

200-dimensional Gaussian spherical data

o e o
[w »

The Generalization Error

e

NMC

Bagged NMC
Boosted NMC
RSM (r=25)
Linear SVC

N

1 2
The Number ot Training Objects per Class

8-dimensional pima-diabetes data

0.4

0.3

The Generalization Error

0.1

{— NMC
{~=-- Bagged NMC

|--- Boosted NMC‘]

|a— Linear SVC
—]

RSM (r=4)

S

1 2

10 10
The Number of Training Objects per Class

30-dimensional wdbc data

The Generalization Error

|— NMC

Bagged NMC
Boosted NMC
[RSM (r=10) !
+— LinearSVC |

10°

10'
The Number of Training Objects per Class

24-dimensional german data

05

_04

<]

n]

c

03

8

s

202

& ||— Nmc }

2 | --- Bagged NMC

=o.1l--- Boosted NMC
~ RSM (r=10)
4—4 Linear SVC

0

10
The Number of Training Objects per Class

1

10°

Fig. 9. Performance of bagging, boosting and the RSM (B = 250) for the NMC.

Bagging, Boosting and the RSM for Linear Classifiers

classifier constructed in the complete feature space, combin-
ing such classifiers is useful.

Let us note that bagging, boosting and the RSM are
useless for the NMC constructed on the Gaussian spherical
data set and on the wdbc data set (see Figs 9(b),(f)). The
NMC is not a weak classifier for these data sets. Additionally,
the NMC is the optimal classifier for the Gaussian spherical
data set. By modifying the training set, it is difficult to get
better classifiers than the single classifier obtained on the
original training set. Combining such classifiers is not ben-
eficial.

5.2. The PFLD

Simulation results (see Fig. 10) show that bagging may be
useful for the PFLD constructed on critical training sample
sizes. The generalisation error of the PFLD has a peaking
behaviour for increasing the training sample size: first, the
generalisation error may decrease, then it increases achieving
a maximum at the point when the training sample size is
equal to the data dimensionality n = p; afterwards it again
decreases. Bagging the PFLD is useless for very small and
very large training sets, as bootstrapping these data sets is
not effective. However, due to the shifting effect of bagging
on the generalisation error of the classifier in the direction
of the generalisation errors obtained on smaller training
sample sizes (see Fig. 6), one may significantly improve the
performance of the PFLD in the region of critical training
sample sizes.

Boosting the PFLD is useless. For training sample sizes
larger than the data dimensionality, the PFLD, maximising
the distance to all given samples, is equivalent to the FLD.
For training sample sizes smaller than the data dimensional-
ity, however, the PFLD finds a linear subspace, which covers
all the data samples. On this plane the PFLD estimates the
data means and the covariance matrix, and builds a linear
discriminant perpendicular to this subspace in all other
directions for which no samples are given. Therefore, for
these training sample sizes, the apparent error (the classi-
fication error on the training set) of the PFLD is always
zero. The boosting algorithm does not start as it requires a
non-zero apparent error. For training sample sizes larger
than the data dimensionality, n > p, when the PFLD is
equivalent to the FLD, the PFLD is a stable and strong
classifier. In this case, boosting may perform similar to a
single classifier (if the number of objects on the border is
sufficiently large to construct a good FLD), or may worsen
the situation (if the number of actually used training objects
at each step of boosting is not sufficiently large to define a
good FLD). Thus, boosting is useless for the PFLD.

The RSM may be very useful for the PFLD. Due to the
shifting effect on the generalisation error of the classifier in
the direction of the generalisation error obtained on larger
training sets (see Fig. 6), the RSM may significantly improve
the performance of the PFLD constructed on critical training
sample sizes, even when constructing the classifiers in very
small subspaces. Obviously, the efficient dimensionality of
random subspaces depends upon the level of redundancy in
the data feature space. When the training sample size is

131

large, the PFLD is no longer a weak classifier, and the RSM
becomes less useful.

6. CONCLUSIONS

Summarising the simulation results presented in the previous
section, we can conclude that bagging, boosting and the
random subspace method may be useful in LDA. However,
their efficiency is strongly affected by the training sample
size, and by the choice of the base classifier (see Fig. 11).

e Bagging. Bagging is useful in LDA for weak and unstable
classifiers. Usually this happens when classifiers are
constructed on critical training sample sizes (when the
number of training objects is comparable with the data
dimensionality and, therefore, with the number of para-
meters in a linear classifier).

Bagging has a shifting effect on the generalisation error
of the base classifier in the direction of the generalisation
error obtained on smaller training sample sizes (see Fig.
6). Bagging is therefore useless for classifiers having a
decreasing learning curve (that is, when the generalisation
error of the base classifier decreases with an increase in
the training sample size). Therefore, bagging may be
beneficial only for the NMC (where performance is not
affected much by the training sample size, if data classes
have another distribution than the Gaussian with equal
variances) and for the PFLD (which has a peaking behav-
iour of the generalisation error), when they are con-
structed on critical training sample sizes.

e Boosting. Boosting may be useful in LDA only for classi-
fiers that perform poor on large training sample sizes.
Such a classifier is the NMC.

Boosting is useful only for large training sample sizes,
if the objects on the border give a better representation
of the distribution of the data classes than the original
distribution of the data classes and the classifier is poten-
tially able (by its complexity) to distinguish among them
well.

It was shown theoretically and experimentally for DTs
[8] that boosting increases the margins of the training
objects. Boosting is thus similar to the maximum margin
classifiers [24], based on the number of support vectors.
In this paper, we have experimentally shown that boosted
linear classifiers may achieve the performance of the linear
support vector classifier when training sample sizes are
large compared with the data dimensionality.

As boosting is useful only for large training sample
sizes, when classifiers are usually stable, the performance
of boosting does not depend upon the instability of
the classifier.

e The Random Subspace Method. The RSM may be useful
for weak linear classifiers obtained on small and critical
training sample sizes, because when constructing classifiers
in random subspaces, one relatively increases the number
of training objects. One may thus improve the perform-
ance of linear classifiers which often suffer from the curse
of dimensionality.

132

M. Skurichina and R. P. W. Duin

200-dimensional Gaussian correlated data
(b)

05

The Generalization Error

— PFLD
- RSM for PFLD

° 10' 10°

0
10

The Number of Training Objects per Class

200-dimensional Gaussian spherical data

C))
0.5
— PFLD
------- RSM for PFLD
_04
<
I
=
203
©
N
©
2
80.2
2 =150
£ r=100
0.1 =75
i 1=50
r=25
0

N L
1 2

10
The Training Sample Size per Class

34-dimensional ionosphere data

(a)
0.5
— PFLD
‘‘‘‘‘‘ Bagged PFLD
50-4' --- Boosted PFLD
= »~—a |jnear SVC
u '
£03
8
[
()
50.2¢
0]
2
=
0.1}
° ; 10
The Number of Training Objects per Class
()
0.5 1
— PFLD
----- Bagged PFLD
504 |--- Boosted PFLD
5 |+—= Linear SVC
S03 ‘
8
©
200t
[0
0]
2
p_
0.1}
0 1 o
The Number of Training Objects per Class
(e)
0.5 -
_0.4}
e
1
C
203}
g
[
[} .
-
0]
2 — PFLD
F o4l --- Bagged PFLD
--- Boosted PFLD
a~—+ Linear SVC
0

o' o*

1
The Number of Training Objects per Class

N
05

— PFLD
-~ RSMfor PFLD |
|

0.4t

0.3r

The Generalization Error

0.1}

" A
0 1 2

10 10
The Number of Training Objects per Class

Fig. 10. Performance of bagging, boosting and the RSM (B = 250) for the PFLD.

Bagging, Boosting and the RSM for Linear Classifiers

8-dimensional pima-diabetes data

) (h)
0.5 T T 0.5
. 0.4r 9 _04 =6
<} o r=4
] I =2
c C
£0.3¢ 203
g g
E E
] ()
£0.2 50-2r
s \ — PFLD °
F ol Bagged PFLD »50 .
“[|--- Boosted PFLD “Il— PELD
&—& lipearSVC | |l RSM for PFLD
0 6‘ : 2 ?00 : 1 . 2

(?) 9)

0.5).5
0.4 _0.4
8 g
i w
c c r=50
503 203 r=40
.g E r=30
g g r=20
0.2} £02 r=10
0] 1]
o — PFLD o
'—01_} ~-~-- Bagged PFLD Foi

"1l --- Boosted PFLD e PFLD
4—= Linear SVC RSM for PFLD
0 + 0 = -
10 10° 10’ 10°
The Number of Training Objects per Class The Number of Training Objects per Class
30-dimensional wdbc data
(k) O
05 - 0.5
_ \ — PFLD
NMC | S I RSM for PFLD

oal T Bagged NMC 0.4 |
5 --- Boosted NMC | 5
By a—a |inear SVC J i
o - e C
Sost 1 203
5 2 | re2s
o 2 | =20
g0l 0.2} r=15
[@ V-
& e G} r=10
- 2
Toa Foa

0 . . 0 . .
1 2 100 1 2

1 10 10
The Number of Training Objects per Class The Number of Training Objects per Class

60-dimensional sonar data

10 10
The Number of Training Objects per Class The Number of Training Objects per Class

Fig. 10. Continued.

133

134

M. Skurichina and R. P. W. Duin

24-dimensional german data

(m)

05

_ 0.4t

&

=

So03f

I

[

@

g0.2t

s ||— pFLD

Fo4ll ~ Bagged PFLD
“||--- Boosted PFLD

a—= Linear SVC

0

1 102

10
The Number of Training Objects per Class

(n)

05 S

=20

r=15
r=10
r=5

<
'Y

o
w

<
N

The Generalization Error

o
—

— PFLD
''''''' RSM for PFLD

10 10' 10°
The Number of Training Objects per Class

Fig. 10. Continued.

THE USER GUIDE
the linear classifier the training sample size
small (n<p) critical (n~p) large (n>3p)
FLD
(@a decreasing learning curve)
RSM RSM Combining 15
E
useless
small crbeal Targe "
PFLD
(a learning curve with the
peaking behaviour)
E Combining is bagging, Combining is
useless RSM useless
E| Combining is bagging boosting
| useless
| -“""‘—‘-_.—-—
|
|
mﬁl—ﬁrﬁ? n
NMC
(a decreasing learning curve)
E RSM RSM Combining is
useless
small _cnfical large

Fig. 11. Possible uses of combining techniques for linear classifiers.

The RSM has a shifting effect on the generalisation
error of the base classifier in the direction of the generalis-
ation error obtained on larger training sample sizes (see
Fig. 6). Therefore, the RSM may improve the performance
of classifiers having decreasing learning curves. Examples

of such classifiers are the FLD and the PFLD (which is
equivalent to the FLD for training sample sizes larger
than the data dimensionality).

The usefulness of the RSM, as well as the efficient
dimensionality of random subspaces, also depends upon
the level of redundancy in the data feature space [6,19].

A summary of the possible usefulness of combining tech-
niques for linear classifiers is given in Fig. 11. The abbrevi-
ations and notifications used in the table have the following
meanings: FLD is the Fisher linear discriminant; NMC is
the nearest mean classifier; PFLD is the Pseudo Fisher linear
discriminant; RSM is the Random Subspace Method; # is
the training sample size; p is the data dimensionality.

The success of bagging, boosting and the RSM depends
upon many factors, including the training sample size, the
choice of a base classifier (DT, PFLD, NMC, or others), the
exact way in which the training set is modified, the choice
of the combining rule [16] and, finally, on the data distri-
bution and the potential ability of the chosen base classifier
to solve the problem. Thus, it becomes quite difficult to
establish universal criteria to predict the usefulness of com-
bining techniques. Obviously, this question needs more
investigation in future.

Acknowledgements

This work is supported by the Foundation for Applied
Sciences (STW) and the Dutch Organization for Scientific
Research (NWO).

References

1. Jain AK, Chandrasekaran B. Dimensionality and sample size
considerations in pattern recognition practice. In: Krishnaiah
PR, Kanal LN (eds) Handbook of Statistics, vol 2. North-
Holland, Amsterdam, 1987; 835-855

Bagging, Boosting and the RSM for Linear Classifiers

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Friedman JH. Regularized discriminant analysis.] Am Statistical

Assoc 1989; 84: 165-175

. An G. The effects of adding noise during backpropagation

training on a generalization performance. Neural Computation
1996; 8: 643-674

. Breiman L. Bagging predictors. Machine Learning] 1996; 24(2):

123-140

. Freund Y, Schapire RE. Experiments with a new boosting algor-

ithm. Proceedings 13th International Conference on Machine
Learning 1996; 148-156

. Ho TK. The Random subspace method for constructing decision

forests. IEEE Trans Pattern Analysis and Machine Intelligence
1998; 20(8): 832-844

. Efron B, Tibshirani R. An Introduction to the Bootstrap. Chap-

man & Hall, New York, 1993

. Schapire RE, Freund Y, Bartlett P, Lee W. Boosting the margin:

a new explanation for the effectiveness of voting methods. Ann
Statistics 1998; 26(5): 1651-1686

. Breiman L. Arcing classifiers. Ann Statistics 1998; 26(3): 801-849
. Dietterich TG. An experimental comparison of three methods

for constructing ensembles of decision trees: bagging, boosting,
and randomization. Machine Learning 2000; 40(2): 139-157

Breiman L. Random forests — random features. Technical Report
567, University of California, Berkley, 1999

Avnimelech R, Intrator N. Boosted mixture of experts: an ensem-
ble learning scheme. Neural Computation 1999; 11: 483-497

Schwenk H, Bengio Y. Boosting neural networks. Neural Compu-
tation 2000; 12: 1869-1887

Alkoot FM, Kittler J. Population bias control for bagging k-NN
experts. Proceedings Sensor Fusion: Architectures, algorithms
and applications V. Orlando, FL, April 2001

Skurichina M, Duin RPW. Bagging for linear classifiers. Pattern
Recognition 1998; 31(7): 909-930

Skurichina M, Duin RPW. The role of combining rules in
bagging and boosting. In: Ferri FJ, Inesta JM, Amin A, Pudil
P (eds) Advances in Pattern Recognition (Proceedings Joint
International Workshops SSPR’2000 and SPR’2000, Alicante,
Spain, August/September 2000). Lecture Notes in Computer
Science, vol 1876. Springer-Verlag, Berlin, 2000; 631-640

Skurichina M, Duin RPW. Boosting in linear discriminant analy-
sis. In: Kittler J, Roli F (eds) Multiple Classifier Systems
(Proceedings First International Workshop MCS 2000, Cagliari,
Italy). Lecture Notes in Computer Science, vol 1857. Springer-
Verlag, Berlin, 2000: 190-199

Pekalska E, Skurichina M, Duin RPW. Combining Fisher linear
discriminants for dissimilarity representations. In: Kittler J, Roli F
(eds) Multiple Classifier Systems (Proceedings First International
Workshop MCS 2000, Cagliari, Italy). Lecture Notes in Com-
puter Science, vol 1857. Springer-Verlag, Berlin, 2000; 117-126
Skurichina M, Duin RPW. Bagging and the random subspace
method for redundant feature spaces. In: Kittler J, Roli F (eds)
Multiple Classifier Systems (Proceedings Second International
Workshop MCS 2001, Cambridge, UK). Lecture Notes in Com-
puter Science, vol 2096. Springer-Verlag, Berlin, 2001; 1-10

135

20. Fukunaga K. Introduction to Statistical Pattern Recognition.
Academic Press, 1990

21. Raudys S, Pikelis V. On dimensionality, sample size, classification
error and complexity of classification algorithm in pattern recog-
nition. IEEE Trans Pattern Analysis and Machine Intelligence
1980; 2(3): 242-252

22. Bauer E, Kohavi R. An empirical comparison of voting classi-
fication algorithms: bagging, boosting and variants. Machine
Learning 1999; 36(1/2): 105-142

23. Raudys S, Duin RPW. On expected classification error of the
Fisher linear classifier with pseudo-inverse of the covariance
matrix. Pattern Recognition Letters 1998; 19(5-6): 385-392

24. Cortes C, Vapnik V. Support-vector networks. Machine Learning
1995; 20: 273-297

25. Ho TK. Nearest neighbours in random subspaces. Proceedings
2nd International Workshop on Statistical Techniques in Pattern
Recognition. Sydney, Australia, 1998; 640-648

26. Freund Y, Schapire RE. A decision-theoretic generalization of
online learning and an application to boosting.] Computer and
System Sciences 1997; 55(1): 119-139

27. Vapnik VN. The Nature of Statistical Learning Theory. Springer-
Verlag, Berlin, 1995

28. Blake CL, Merz CJ. UCI Repository of machine learning data-
bases. http:// www.ics.uci.edu/~mlearn/MLRepository.html, Uni-
versity of California, Irvine, Department of Information and
Computer Science, 1998

Robert P.W. Duin studied applied physics at Delft University of Technology in
the Netherlands. In 1978 he received a PhD for a thesis on the accuracy of
statistical pattern recognisers. In his research he included various aspects of the
automatic interpretation of measurements, learning systems and classifiers. Between
1980 and 1990 he studied and developed hardware architectures and software
configurations for interactive image analysis. At present he is an associate professor
of the Faculty of Applied Sciences of Delft University of Technology. His research
interest is in the design and evaluation of learning algorithms for pattern recog-
nition applications. This includes in particular neural network classifiers, support
vector classifiers and classifier combining strategies. Recently, he started to study
alternative object representations for classification, and thus became interested in
the use of relational methods for pattern recognition.

Marina Skurichina studied applied mathematics at Vilnius State University in
Lithuania. From 1989 to 1996 she worked as a research fellow and later as a
PhD student in the department of Data Analysis at the Institute of Mathematics
and Informatics in Vilnius, Lithuania. In 1996 she joined the Pattern Recognition
Group of the Faculty of Applied Sciences of Delft University of Technology in
the Netherlands. She received her PhD for a thesis on the stabilising weak
classifiers in 2001. She is the author of about 20 scientific papers. Her scientific
interests include regularisation and combining techniques in discriminant analysis.

Correspondence and offprint requests to: M. Skurichina, Pattern Recognition
Group, Department of Applied Physics, Delft University of Technology, P.O.
Box 5046, Delft 2600 GA, The Netherlands. E-mail: marina@ph.tn.tudelft.nl

