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Abstract: Most existing content-based image retrieval systems built above a very large database typically compute a single descriptor per
image, based for example on colour histograms. Therefore, these systems can only return images that are globally similar to the query
image, but cannot return images that contain some of the objects that are in the query. Recent image processing techniques, however,
focused on fine-grain image recognition to address the need of detecting similar objects in images. Fine-grain image recognition typically
relies on computing many local descriptors per image. These techniques obviously increase the recognition power of retrieval systems, but
also raise new problems in the design of fundamental lower-level functions such as indexes and secondary storage management. This paper
addresses these problems: it shows that the three most efficient multi-dimensional indexing techniques known today do not efficiently
cope with the deep changes in the retrieval process caused by the use of local descriptors. This paper also identifies several research
directions to investigate before being able to build efficient image database systems supporting fine-grain recognition.
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1. ORIGINALITY AND
CONTRIBUTIONS

Many authors coming from the image community develop
new techniques to retrieve images by their contents. Their
focus is on increasing the recognition power of their
schemes. They usually evaluate the strength of their tech-
niques using data sets that typically fit in main memory,
therefore avoiding the secondary storage management bur-
den. Facilitating the management of disks and removing this
burden has long been a strong motivation for the database
community. Because the focus of this community is not on
image recognition, the very large content-based retrieval
systems presented in the DB literature use simple and ordi-
nary image processing techniques.

This paper tries to bridge this gap. We investigate the
use of a very powerful image recognition technique, together
with the most recent indexing schemes. That investigation
has two major goals: it evaluates the performance of a recent
recognition scheme at a scale larger than that typically used
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in research labs, and shows the way indexes behave when
used together with smart image processing techniques. Our
conclusion is that current indexing schemes do not cope
efficiently with powerful recognition schemes. We therefore
identify several research directions to investigate before
being able to build efficient, very large and powerful content-
based retrieval systems.

2. INTRODUCTION

Building large content-based retrieval systems require two
types of complimentary technologies to enforce fast similarity
searches. First, image processing techniques are needed to
extract descriptors from images. Descriptors are typically vec-
tors of real numbers defining points in a high-dimensional
space. They encode information found in images, and they
are used during the search process. The similarity of two
images is assumed to be proportional to the similarity of
their descriptors, which is measured as the distance between
the points defined by the descriptors. Similarity search is
therefore implemented as a nearest-neighbour search or as
a e-range search within the feature space.

Secondly, database techniques are needed for storing
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descriptors on disks, and for accelerating searches by using
multi-dimensional index structures. Space-partitioning
methods like grid-file [1], K-D-B-Tree [2] or LSDh-Tree [3]
divide the data space along predefined lines regardless to
the actual values of data, and store each descriptor in the
appropriate cell. Data-partitioning methods like R-Tree [4],
X-Tree [5], SS-Tree [6], SR-Tree [7] or TV-Tree [8] divide
the data space according to the distribution of data. All
these access methods generally work well for low-dimen-
sional spaces. Their performance, however, is known to
degrade as the number of dimensions of the descriptors
increase. This phenomenon is known as the dimensional
curse.

Recently, two innovative approaches for indexing, the
Pyramid-Tree [9] and the VA-File [29], specifically designed
to tackle this phenomenon, have been published. Both
provide today among the most efficient support for multi-
dimensional similarity search. These techniques, however,
do not cope with the requirements of fine-grain image
recognition techniques based on local descriptors. Instead of
computing a single descriptor per image (as for coarse-grain
image recognition, as used in QBIC [10]), fine-grain recog-
nition techniques compute several descriptors per image. To
perform a search with local descriptors, the system needs to
compute all the descriptors that describe the query image.
Each descriptor is then used to query the index. Each
(partial) answer is kept around, and once they all have
been returned, they are analysed as a whole and then the
final result (i.e. a set of similar images) is eventually
returned. Today, with conventional image technologies
(based on global descriptors) and conventional database
technologies, querying a multi-dimensional index only once
is barely efficient when the database of descriptors is large,
and when the data space has a lot of dimensions. Techniques
using local descriptors need multiple consecutive queries to
get the images that are similar to a single image, and adding-
up the response time of each individual query makes the
global response time far above what one might tolerate.

This paper is an initial exploration of the consequences
of using local descriptors together with up-to-date database
multi-dimensional indexing strategies. We show that none
of the DB techniques known today can efficiently handle
similarity-search queries made of many descriptors instead
of a single one, as it is assumed traditionally. We also list
research directions and enumerate several potential solutions
for enabling efficient content-based retrieval systems when
stored images are characterised by many descriptors, as sug-
gested by modern image processing techniques.

The remainder of this paper is structured as follows.
Section 3 presents a family of local descriptors for robust
object recognition in colour images. This family is a good
example of recent image processing techniques. These local
descriptors are therefore good candidates to evaluate the
behaviour of recent database indexing techniques in a fine-
grain recognition oriented context. Section 4 gives an over-
view of the multi-dimensional indexing techniques used in
databases. Section 5 first demonstrates the recognition power
of the descriptors, and then evaluates the performance of

the three most efficient techniques known today to index a
large base of high-dimensional data when queries contain
many descriptors. Section 6 presents some open issues and
an initial set of solutions, before concluding.

3. MODERN IMAGE PROCESSING
TECHNIQUES FOR CONTENT-BASED
RETRIEVAL

Database and image technologies have orthogonal contri-
butions to the construction of a complete system for content-
based retrieval. Database techniques focus on the efficient
management of large volumes of data and mainly address
response time issues. In contrast, image techniques focus on
recognition. The global recognition power of the whole
system is driven by the capabilities of the image processing
technique chosen. Choosing a specific type of descriptor is
therefore crucial. The first part of this section motivates
and presents some possible choices. This section then details
an extension to colour images of the fine-grain recognition
scheme for grey-level images originally proposed by Florack
et al [11].

The scheme proposed by Florack et al [11] is a powerful
image recognition technique. It can detect that two images
contain similar objects, even if the locations of objects
differ, even if they are in front of different backgrounds,
seen from different viewpoints or illuminated differently.
This technique is based on the computation of many local
differential descriptors per image. Both its performance in
terms of recognition and the way in which local descriptors
are computed and used during the retrieval make this tech-
nique somehow archetypical of what a modern image pro-
cessing technique could be. It is therefore interesting to
investigate the behaviour of recent database indexing tech-
niques in this context. Before presenting the way in which
we extend Florack’s grey descriptors to cope with colour,
we briefly discuss the pros and cons of using global versus
local descriptors.

3.1. Global versus Local Descriptors

Descriptors are at the root of image content-based retrieval
systems. A descriptor encodes some specific information
extracted from an image. Descriptors are typically rep-
resented by multi-dimensional vectors of real numbers,
defining points in a multi-dimensional data space. They are
usually designed so that the points they define in the data
space are close if the images they are associated with are
similar. Depending on the computation strategy of the
descriptors, images may be found similar despite illumination
changes, viewpoint variations, or partial occlusions. Families
of descriptors are defined with respect to the type of vari-
ations they are invariant to. Many techniques have been
designed to make descriptors invariant to a large collection
of variations between images [12–18].

Traditionally, a descriptor encodes information that is
global to an image. In this case, the system typically computes
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a single descriptor per image. Colour histograms, grey-level
histograms or correlograms are typical examples [19,20]. It
has been demonstrated that global descriptors are robust,
i.e. they are little affected by the noise of the digital signal.
They cannot be used, however, to detect similar elements
between images like regions or objects, especially if the
backgrounds behind objects differ and occupy the major part
of the images.

To answer the increasing need to identify elements within
images, more recent image processing techniques have
designed recognition schemes based on local descriptors. This
fine-grain image recognition (as opposed to global descriptors
that enable large-grain recognitions) is extremely powerful.
With local descriptors, it is, for example, possible to identify
an object independently of its position in the image, or
even if it is partially occluded, whereas this is very hazardous
when using global descriptors.1 Computing local descriptors
is expensive because many of them are derived from a single
image, typically between 50 and 600. This extra cost is by
far amortised by their increased recognition power.

Using local descriptors instead of global descriptors dra-
matically changes the computational chain when searching
for similar images. First, it increases the size of the database:
instead of storing one descriptor per image, many of them
must be kept for each image. The size of the database is
typically increased by two orders of magnitude. Secondly, it
changes the way similar images are searched: instead of
searching the descriptors that are close to the unique query
descriptor (as is the case with global descriptors), the datab-
ase must be queried many time, each time using a different
query (local) descriptor, each partial result must be post-
processed and the similar images are known only once all
the query descriptors have been used. Therefore, searching
for images that are similar to a given one typically generates
between 50 and 600 consecutive queries which search in a
database that is 50 to 600 times larger. This demanding
process increases the impact of the performance problems
traditional multi-dimensional index techniques suffer from.

3.2. The Local Differential Descriptors Family

The descriptors we now present are an extension to colour
images of the fine-grain recognition scheme for grey-level
images originally proposed by Florack et al [11], and exten-
sively used and evaluated by Schmid and Mohr [21]. We
built on this scheme because it is highly robust to grey-
level image transformations: it detects similar elements in
images despite orientation changes (rotations), trans-
lations, resolution changes, illumination variations, partial
occlusions, changes of backgrounds or viewpoints, etc.
Coping with colour images instead of grey-level images has
a deep impact on the way in which the descriptors handle
(i.e. absorb) the variations of illumination. Before going
into detail, the scheme proposed by Florack et al [11] can
be roughly outlined as follows.

1 Although this may change, since ‘partial queries’ is an active field of
research.

Computing the local descriptors that encode information
about a single image is done in three steps. First, specific
points in the image, called interest points, are selected. The
number of points in one image varies, since it depends on
the shape of the signal of that image. Secondly, the signal
around each interest point is characterised by its convolution
with a Gaussian function and its derivatives up to the
third order. Thirdly, these derivatives are mixed to enforce
invariance properties, and to make descriptors robust to the
changes mentioned above. A descriptor is typically a vector
of real numbers having seven or nine dimensions.

Descriptors are then inserted into an index. To know
which image a descriptor has been computed from, image
identifiers are stored together with the descriptors. Comput-
ing descriptors over all the images is done off-line. The
similarity retrieval proceeds as follows: interest points are
first identified in the query image, and the corresponding
local descriptors are then computed. Each descriptor of the
query is used to probe the index. The index returns similar
descriptors found in the database (with respect to a nearest-
neighbour or a e-search), from which it is possible to
determine the id of the associated image. It is therefore
easy to count the number of times each image id is returned
by the index during the whole retrieval process. At the end
of this process (i.e. once all the local descriptors of the
query have been used to probe the index), the counters are
used to rank the candidate images by decreasing similarity.

We now present in more detail the computation process
of our descriptors.

3.2.1. Extracting Interest Points. Interest points are
determined so that it is very likely that a point found in
one image will be also found in another image which slightly
differs from the first one. Schmid [22], who extensively used
Florack’s method, compared several point extractors, and
showed that the extractor introduced by Bigün, Granlund
and Wiklund [23], and improved by Harris and Stephens
[24], had the best behaviour.

This extractor looks for 2D singularities in the signal,
and is based on the computation of the eigenvalues of
the matrix

e−
x2 + y2

2s2 # F I2
x IxIy

IxIy I2
y
G

where Ix and Iy are the convolution of the signal with the
two derivatives G/x and G/y of a Gaussian function.
In general, there are many points in each image, typically
between 50 and 600.

Dufournaud, Schmid and Horaud [25] pointed-out that
descriptors could not be invariant to scale factors if the
points extracted were not invariant to scaling. Therefore,
he proposed to extract the points at different scales by
varying the variance of the Gaussian function used. This
allow us to cope with scale factors up to 7, rather than up
to 2 as for the original method.
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3.2.2. Computing Local Descriptors for Grey-Level
Images. Once the points are extracted, the descriptors are
computed using the signal around each of the points. This
computation is done in two steps. During the first step, the
signal is convoluted with a Gaussian function and its first
nine derivatives (the derivatives up to the third order).
These smoothed derivatives provide a basic description of
the signal. During the second step, the derivatives are
mixed together to enforce invariance properties, and to
make descriptors robust to the changes mentioned above.
We describe below the way in which these derivatives
are mixed.

I Gaining Translational and Rotational Invariance. Trans-
lational invariance is obtained by the fact that the
descriptors are computed around each interest point.

The angle of rotation of images can be algebraically
eliminated from the ten derivatives, providing nine
resulting quantities invariant to rotations. If the smoothed
signal is denoted by I, and its derivatives by Ix, Iy, Ixx,
. . ., these nine invariant quantities are:

I

IiIi

IiIijIj

Iii

IijIji (1)

eij (IjklIiIkIl − IikkIiIlIl)

IiijIjIkIk − IijkIiIjIk

−eijIjklIiIkIl

IijkIiIjIk

The function eij is defined by exy = 2eyx = 1, exx = eyy = 0.
Einstein’s notation used in the formulas corresponds to a
summation over each index: for instance, Ii = SiIi = Ix 1
Iy and IijIji = SiSj IijIji = IxxIxx 1 2IxyIxy 1 IyyIyy.

I Gaining Photometric Invariance. The descriptors are
invariant to the variations of illumination that are mod-
elled by I → aI 1 b. This model, although simple,
describes quite accurately what happens when the global
intensity of the illumination varies slightly. It is possible
to withdraw these two new parameters a and b and to
obtain seven rotational and photometric invariants. First,
withdraw the two first quantities of Eq. (1) and divide
each of the seven last ones by the appropriate power of
IiIi, so as to obtain ratios of degree 0 with respect to I
and its derivatives.

I Gaining Scale Invariance. Invariance to scale is achieved
by adopting a multi-scale approach: the computation of
invariants is repeated for various values of the variance
of the Gaussian, and all the resulting values are used to
describe the image. The values of the variance used here

are related to those used during the extraction of the
interest points: the variance used to extract a point gives
the variance to compute the associated descriptor.

3.2.3. Extension to Colour Images. The method used to
compute the local descriptors for grey-level images is very
robust, as evaluated in Schmid and Mohr [21]. We therefore
extended this method to cope with colour images. Each
pixel of a colour image is defined by three values, which
can be coded in many ways [26]: RGB, HSV, Lab, etc. The
RGB system is chosen because it facilitates the extension
of the descriptors to colour images.

Extending the local descriptors does not change the
way in which the interest points are extracted. We still
use Harris’s detector. The signal, however, is now charac-
terised by 30 derivatives (10 per channel). Coping with
colour significantly changes the way in which these
derivatives must be mixed to gain invariance towards
rotation and illumination variations. We detail these
changes below.

I Gaining Rotational Invariance. Rotational invariance is
obtained by withdrawing the angle of rotation. 3 3 9
invariants can be computed with Eq. (1) applied on each
channel, and two others are chosen from among the three
following quantities (for numerical reasons, it is wise to
keep all three values in practice):

RxGx + RyGy RxBx + RyBy GxBx + GyBy (2)

Scale invariance is obtained by a multi-scale approach simi-
lar to that used with grey-level images.

I Gaining Photometric Invariance. Photometric invariance is
more complex with colours because different illumination
models can be considered. A general model is (R9, G9,
B9)T = M(R, G, B)T 1 V, where M is a 3 3 3 matrix
and V a vector of dimension 3. Other models are obtained
by using a diagonal or scalar matrix for M, and by possibly
removing the vector V. According to the number of
parameters of the model, the dimension of the descriptors
varies between 18 and 29.

A very common model is obtained when M is diagonal.
In this case, the three channels remain independent when
the image is transformed. The descriptors can thus be
computed on each channel as they were in the grey-level
case, and by adding two more dimensions using the
formulas in Eq. (2). This provides descriptors of dimension
24.

Another case is that of a full rank M matrix when no
rotational invariance is needed. In this case, the vectors
(R, G, B), (Rx, Gx, Bx), (Ry, Gy, By) . . . are all subjects
to the same linear or affine transform. The vector V can
be withdrawn by not considering the vector (R, G, B).
The linear part remains. The basic invariants in this case
are the coordinates of the vectors with respect to three
of them chosen as a reference frame. If we choose (for
reasons of symmetry) the three vectors (Rxx, Gxx, Bxx),
(Rxy, Gxy, Bxy) and (Ryy, Gyy, Byy) as a reference frame,
then the invariants are:
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|
X Rxy Ryy

Y Gxy Gyy

Z Bxy Byy | |
Rxx X Ryy

Gxx Y Gyy

Bxx Z Byy | |
Rxx Rxy X

Gxx Gxy Y

Bxx Bxy Z |
, , , %

|
Rxx Rxy Ryy

Gxx Gxy Gyy

Bxx Bxy Byy | |
Rxx Rxy Ryy

Gxx Gxy Gyy

Bxx Bxy Byy | |
Rxx Rxy Ryy

Gxx Gxy Gyy

Bxx Bxy Byy |
where (X, Y, Z) is respectively equal to (Rx, Gx, Bx), (Ry,
Gy By), (Rxxx Gxxx Bxxx) % The invariants to both rotations
and a photometric model with full rank matrix M have not
been derived yet, as far as we know.

4. DATABASE TECHNIQUES FOR
INDEXING NUMEROUS IMAGES

This section gives an overview of the techniques used in
databases for indexing multimedia data (often focusing on
still images). Database indexing techniques are needed as
soon as the space required to store all the descriptors gets
too big to fit in the main memory. Say, for example,
that each image is described by 100 descriptors having 24
dimensions. In this case, 9 Gb of storage per million of
images is needed to store the associated descriptors, and this
strongly suggests keeping them on disks. Database indexing
techniques are therefore used for storing descriptors on disks
and for accelerating the search process by using multi-
dimensional index structures. Their goal is to minimise the
resulting number of I/Os. In the following, we first present
the traditional approaches used for multimedia indexing
from a database perspective. We then detail the two stra-
tegies that today provide the most efficient support for multi-
dimensional searches.

4.1. Traditional Approaches

Database multimedia indexing techniques can be classified
into two families: data-partitioning index methods that divide
the data space according to the distribution of data; and
space-partitioning index methods that divide the data space
along predefined lines, regardless to the actual values of
data, and store each descriptor in the appropriate cell. All
techniques fill the data space with descriptors, or with
approximations of them.

Data-partitioning index methods all derive from the semi-
nal R-Tree [4], originally designed for indexing bi-dimen-
sional data used in Geographical Information Systems. Mini-
mum bounding rectangles and overlapping are the key
concepts of this technique: the leaves of the tree reference
each object through its minimum bounding rectangle, and
the internal levels of the tree store the rectangles that
overlap and bound the rectangles of a lower level. Various
strategies can be used to determine which rectangles should
be merged or kept separated at each level of the tree [5].

The R-tree was later extended to cope with multi-dimen-
sional data. The SS-Tree [6] is an extension that relies on
spheres instead of rectangles. While spheres improve the
performance of the search process, it has been demonstrated
that bounding spheres occupy a much larger volume than
bounding rectangles with high-dimensional data, and that
this reduces the search efficiency. Therefore, to overcome
this drawback, the SR-Tree [7] specifies its regions as the
intersection of a bounding sphere and a bounding rectangle.

The TV-Tree [8] is another extension of the R-Tree. The
underlying idea of this approach comes from the observation
that not all dimensions play the same role during the search:
some are more discriminative than others. Since the search
performance is partly determined by the number of dimen-
sions of the data, Lin, Jagadish and Faloutsos [8] divide the
dimensions into three classes: the dimensions that the search
process can always ignore; those always used; and those that
may be used to refine the search. The major drawback of
this technique is that it requires an accurate knowledge of
the distribution of data along each dimension as a prerequi-
site.

Tree construction is usually achieved (this applies to all
the approaches mentioned above) by splitting nodes in
overflow into two equally filled nodes, i.e. at the 50%-
quantile. This fill factor enforces balanced trees and maxi-
mises disk usage. However, Berchtold et al [9] demonstrate
that in the general case, using a 50%-quantile leads to
the unexpected effect that, in high-dimensional spaces, the
probability of accessing every index page gets close to 1. It
is therefore likely that the whole index has to be scanned
during a search process. The resulting access pattern to disk
pages severely hampers the search performance, since it is
totally random. Consequently, a traditional sequential search
that scans the whole database is often a faster process for
similarity search.

Space-partitioning techniques like grid-file [1], K-D-B-
Tree [2] and the LSDh-Tree [3] typically divide the data
space along predetermined lines regardless of data clusters.
Actual data are subsequently stored in the appropriate cells.
These techniques are known to become inefficient when
the dimension of data increases: above 10–16 dimensions, a
simple linear scan of the entire database is typically faster
than all of these techniques. They also face the problem of
indexing large volumes of empty space. For example, divid-
ing each of the 30 dimensions of a data space into two
distinct regions creates 230 cells. This number is by far
greater than the typical number of points filling the data
space. In addition, when the query point is near a cell
boundary, the search process may have to lookup many cells
in the neighbourhood, increasing the search cost. Further-
more, it is likely that most of these cells are empty. The
evaluation of the most recent approaches [27,28] shows that
they are efficient with low-dimensions and for a small
amount of noise (e-search).

4.2. VA-File and Pyramid-Tree

All the techniques presented above generally work well for
low-dimensional spaces. Their performance, however, is
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known to degrade as the number of dimensions of the
descriptors increase, e.g. above 10–16, as evaluated by Weber
et al [29]. This phenomenon is known as the dimensional
curse.

In other words, any navigation within the index structure
becomes more costly than a simple sequential scan in high-
dimension spaces. Two innovative approaches, the Pyramid-
Tree [9] and the VA-File [29], however, have recently been
proposed to tackle the dimensional curse phenomenon head-
on: they have been designed specifically such that their
behaviour does not dramatically degenerates when the inde-
xed data has many dimensions. These two strategies today
provide among the most efficient support for multi-dimen-
sional similarity search. We therefore used them for our
performance evaluations (see Section 5).

With the VA-File, Weber et al [29] proposed a method
that improves the performance of the (simple) sequential
scan, since this technique proves to be competitive in high-
dimensions. Their method manages two different sets of
data: a file storing all the descriptors; and another file storing
the geometrical approximations of these descriptors. The
performance of this method is at its best when this latter
file fits in main memory.

To compute the geometrical approximation of the descrip-
tors, the method first split each dimension di in 2bi slices
(coded using bi bits), such that all slices are equally full.
All d dimensions are sliced in this way. The intersection of
slices define 2b cells, where b = Sibi, numbered from 0 to
2b − 1. To fill the index, all the descriptors are then read,
and the approximation of a descriptor is given by the cell
number into which it falls. The file storing the geometrical
approximations of the descriptors therefore associates a
descriptor id to a cell number. Only cells in which at least
one descriptor fall are kept in the file, avoiding the problem
of managing many empty cells, as mentioned above.

During a search, the query descriptor is processed in a
similar manner. The algorithm first computes its geometrical
approximation, determines which cells are close to the query
cell, and scans them in an increasing order of distance.
Starting from the closest cell, the algorithm sequentially
fetches the associated descriptors and performs distance cal-
culations. This process is repeated until n nearest-neighbours
are found. Restricting the search to close cells and ordering
their investigation filters out cells that may not be part of
the result, and therefore filters out all the irrelevant descrip-
tors. This reduces the number of records to fetch and the
number of comparisons and calculations to perform with
respect to the traditional sequential scan.

Berchtold et al [9] proposed, with the Pyramid-Tree, a
method that divides a space [0,1]d into 2 3 d pyramids.
The top of each pyramid is placed at the centre of the data
space (0.5, . . ., 0.5). The base of each pyramid has a surface
of d − 1 dimensions. Each pyramid is assigned a different
number. Each pyramid is then cut into slices that are parallel
to its base. The nature of pyramids is such that the slices
close to their top are smaller than those near their base.
This division of the data space has the interesting property
to create a number of cells that increase linearly (and not
exponentially) with the number of dimensions.

Dividing the data space into sliced-pyramids enables them
to map any point of the multi-dimensional space into a pair
(pyramid number, height in the pyramid). Because of this
mapping, a B1-Tree index can be used instead of a multi-
dimensional index structure. B1-Trees are known to be very
efficient for this type of data and for range queries. A given
slice of a specific pyramid is stored as a page of the B1-
Tree. In addition to their efficiency, B1-Trees are known
to cope well with concurrent updates, and can be made
failure resistant. These two properties are very desirable, and
often lack to other solutions.

5. PERFORMANCE EVALUATIONS

This section summarises the evaluation of the recognition
power of our extension to colour images of Florack’s descrip-
tors and the performance of the VA-File, the Pyramid-Tree
and the sequential scan when used together with these
descriptors. As mentioned earlier, these three database tech-
niques proved to be efficient in the context of nearest-
neighbour or e-range searches with global descriptors within
a multi-dimensional space. We therefore measured their
performance when used together with local descriptors. A
first experiment compares the recognition power of colour
and grey descriptors. The second experiment shows the
performance of the search techniques when the dimension
of the local descriptors increases. The third experiment
shows the impact of the size of the database on the response
times. Finally, the fourth experiment, which is the most
relevant to this paper, shows the influence of the (large)
number of descriptors forming a single query on the response
times. We first describe our experimental setup.

5.1. Experimental Environment

To perform our performance evaluations2 we used the source
code of the VA-File and of the Pyramid-Tree provided by
their respective authors. We also implemented our own
version of the sequential search. All the algorithms were
run on a SUN Ultra 5 workstation running SunOS 5.7. Its
CPU is a 333 MHz UltraSPARC-IIi, with 384 Mb of main
memory and 8 Gb of local secondary storage. All the
response times reported here have been obtained using
getrusage( ).

We analysed the codes of the VA-File and of the Pyramid-
Tree to insert at the appropriate places timer start and stop
instructions. We slightly changed the metric used by the
Pyramid-Tree to compute the distances between points in
the data space: it was L` and we changed it to L2. Without
this patch, the nearest-neighbours returned by the Pyramid-
Tree would not have been identical to those returned both
by the VA-file and the sequential search. This patch seems
to have no impact of the response-time.

2 We are grateful to Roger Weber who graciously gave us his implementation
of the VA-File. The source code of the Pyramid-Tree is available on the
Web page of Stefan Berchtold (http://www.stb-gmbh.de/|berchtol/).
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In addition, we implemented in C11 a sequential
search strategy.

5.2. Overview of the Database

For the different experiments shown below, three databases
where created. The first one is made of 24-dimension local
descriptors derived from 1816 real-life colour images. 1206
images come from 50 seconds of a video. The remaining
images come from a database of still images.3 The total
number of descriptors computed from these images is
413,412, and the database therefore occupies about 40 Mb
on disk.

The distribution of the descriptors along each dimension
is far from being uniform. For example, the second compo-
nent varies from about 220 to about 36, and 99.14% of
the values are between 21 and 11. Since many performance
evaluations published in the literature assume uniformity of
data distribution, we generated another database in which
the 24 3 413,412 values have been picked between 0 and
1 using a random uniform generator.

As the colour descriptors have never been compared to
grey descriptors, as far as we know, the 1806 images were
coded in grey levels, and the corresponding seven dimension
grey descriptors where computed. This third base is used in
the recognition evaluation test only.

5.3 Experiment 1: Comparing the Recognition
Power of Colour and Grey Descriptors

Before evaluating the performance of the different indexing
algorithms, it is important to verify the recognition power
of the descriptors. Some results have already been published
using grey level descriptors [30]. Therefore, this experiment
focuses on a comparison between the (original) 7D grey
level descriptors and our 24D colour descriptors. The aim
is to decide whether the colour descriptors are worth their
additional complexity in terms of size and computation.

Two databases derived from the 1806 real-life images were
created for this experiment. The first database keeps the
24D descriptors computed from the images. The second
database stores the 7D descriptors computed from the same
images. Both databases contain exactly 413,412 descriptors.
Their sizes are different, however. The database for 24D
descriptors is of 39,687,552 bytes, whereas the database
keeping 7D descriptors is of 11,575,536 bytes.

A first set of tests was done by querying the database
with images coming from sequences presenting a specific
variation to stress the robustness of the descriptors towards
this variation. For each of these tests, we show, in all the
figures below, the query image, the closest images retrieved
according to the descriptors, and possibly some false nega-
tive, i.e. images belonging to the same sequence as the one
the query image belongs to, but that were not, however,
retrieved by the system.

Under each query image is indicated the number of

3 http://www.inrialpes.fr/movi/pub/Images/index.html

descriptors computed for this image. This number is always
greater for grey-level descriptors than for colour descriptors,
since it is always possible to compute, in the grey-level case,
a descriptor for each interest point extracted. On the other
hand, some of these points correspond to the similarity of
only one or two of the three colour channels, and can
therefore not be used to compute 24D descriptors. The
number of descriptors that matched is indicated together
with each image returned by the system. For those images
retrieved using both 24D and 7D images, a label is also
indicated to allow a precise check of the results without
ambiguities.

In order to obtain results at a larger scale, all the images
from the video were used as queries in a second set of tests.

5.3.1. Specific Tests of Robustness.
I Evaluation of Invariance towards Illumination Intensity Vari-

ations. This first experiment tests the robustness of the
descriptors towards the intensity of the main light source.
Such a variation is very common, and all descriptors
should be robust to it. Figure 1 shows the results obtained
with our descriptors. The results obtained with 7D and
24D descriptors are similar. The only difference is a better
difference of scores between the relevant images and the
first non-relevant image when the 24D descriptors are
used. This would probably be a problem with larger
databases when using the 7D descriptors.
The false negative can be explained by the fact that this
image is quite saturated, a phenomenon which has not
been taken into account when the descriptors were forged.

I Evaluation of invariance towards spectrum variations. This
second experiment is concerned with variations in the
spectrum of the main light source. Although such vari-
ations are common at small scale (for example, the morn-
ing sunlight is different from the evening sunlight), they
are not easy to produce experimentally. We used a set of
colour filters placed in front of our main light source, but
these filters are usually too colourful to simulate natural
phenomena. On the other hand, this allows us to test
the descriptors in rather extreme cases.
The results of Fig. 2 show a better performance of 7D
descriptors. This is not surprising, since they mix the
three channels together and can compensate for the fact
that only one of the three channels is really useful in
some of the images. On the other hand, the 24D descrip-
tors assume that the different channels are independent,
and this assumption is clearly wrong in the present case.

I Evaluation of invariance towards the motion of the main light
source. The last photometric variation we tested is that
arising when the light source is moving around the scene.
If the results shown in Fig. 3 are similar in terms of
which images are retrieved, the difference of score
between relevant and irrelevant images is much smaller
with 7D descriptors than it is with 24D descriptors.
This expresses a smaller power of discrimination of the
7D descriptors.
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Fig. 1. Robustness towards variation of illumination. An example with the query image, the eight most similar images retrieved using colour
and grey descriptors, and false negatives.

I Evaluation of Geometric Invariance. Rather than testing
every possible simple motion of the camera individually,
we chose a sequence of images where the camera has a
complex motion of rotation and translation around the
scene. The results of Fig. 4 show much better results for
24D descriptors, both in terms of discrimination and
retrieval.

I Evaluation of Composition Invariance. This test shows the
robustness of the descriptors when the composition of the
scene varies. More objects cause occlusions, for example.
It is clear that adding objects provides better results than
removing some of them, since removed objects are the
cause of less interest points and less descriptors in the
image. The results of Fig. 5 are slightly better with 24D
descriptors. As was the case in the previous tests, these
descriptors have also a better discrimination power.

I Evaluation with real life images. This test was not designed
to test a specific variation, but rather to test the behaviour
of the descriptors with real life images. The sequence
used presents an actress moving: this is typically a case
of complex 3D motion. As is the case with geometric
invariance, 24D descriptors provide much better results
(see Fig. 6.)

Conclusion. It could seem surprising that the 24D descriptors
are much more robust to geometric transformations of the
image than the 7D grey level descriptors, and that the
difference in performance is much smaller with respect to
photometric variations. This is because the colour illumi-
nation model used is more specific and therefore more
restrictive than the model for grey-level images. On the
other hand, the 24D space being much bigger, the descrip-
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Fig. 2. Robustness towards light spectrum variations. An example
with the query image, the six most similar images retrieved using
colour and grey descriptors, and false negatives.

tors associated with irrelevant images are usually further and
cause less noise than in the smaller 7D descriptor space.

5.3.2. Statistical Results. To obtain results at a larger
scale, another experiment was done by using the 1206
images from the video, and we tested the ability of the
grey and colour descriptors to retrieve from their respective
databases all the images of a shot given one image of this
shot as a query. This is certainly a biased definition of what
similarity means in general, but it provides an unambiguous
way to measure the results. The video sequence contains
38 shots without any special transition effects (fade-off,
wipes, etc.).

From a practical point of view, each image of the video
is used as a query. The system computes the descriptors of
this image and retrieves the 10 nearest neighbours of each
one of these descriptors in the corresponding database. Each
of these neighbours gives a vote to the image it belongs to.
Since each image has an average of 290 descriptors, it
generate around 2900 votes. Only the 15 images which
obtained the greatest number of votes are retained: these
images (called nearest images in the latter) can be con-
sidered as the nearest neighbours of the query image.

We define the score of each query as the rank of the
furthest of the nearest images which belongs to the shot of
the query image, and such that all nearer images also belong
to this same shot. If this score is 15, it means that all the
15 nearest images retained belong to the same shot. On the

Fig. 3. Robustness towards light source motion. An example with
the query image and the seven most similar images retrieved using
colour and grey descriptors.

other hand, if this score is just 1, it means that only the
first nearest neighbour (i.e. the image itself, in our
experience) belongs to the same shot, the second nearest
image being from elsewhere. In this latter case, the recog-
nition process totally fails.

Once all the queries have been processed, the scores
obtained are histogrammed, and the results are shown in
Fig. 7. The third curve is the ground truth that was obtained
by counting the number of images of each shot manually
(therefore the curve shows how many images belong to a
shot whose length is 8, 9. . . 14 or more than 15 images).

These histograms strongly depend upon the number of
static shots in the video, which are the easiest ones in
terms of recognition. On the other hand, their comparison
demonstrates the interest in using the more complex but
also more powerful colour descriptors.

The mean of the ground truth histogram is 14.77. The
mean of the histogram obtained with colour descriptors is
12.73, and 9.87 for the grey descriptors. This means that
three more images were correctly classified as nearest neigh-
bours using the colour descriptors than with the grey descrip-
tors. Grey descriptors provide better results for five images,
and colour descriptors do best for 663 of them.

The difference in performance between the two types of
descriptors is due to three kinds of shot: close-up on moving
persons; dark images; and fast lateral travelling motions, or
highly moving shots more generally. For example, the video
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Fig. 4. Robustness towards geometric variations. An example with the query image and the 15 most similar images retrieved using colour
and grey descriptors.
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Fig. 5. Robustness towards variations in the composition of images. An example with a query image and the eight most similar images
retrieved using colour and grey descriptors.

used contains several shots taken from a helicopter following
rapidly moving cars.

5.4. Experiment 2: Influence of the Dimensionality
of Data

The second experiment shows the influence of the dimen-
sionality of data on the performance of the three DB
techniques we study here. For this experiment, we first
computed the 413,412 descriptors having 24 dimensions
using real data from the database described above. These
descriptors were then truncated to 2, 4, 7, 10, 15, 20
and 24 dimensions. The other dimensions are used to get
intermediate results. 413,412 descriptors following a uniform
distribution have then been randomly generated for the
same dimensions, but also for greater dimensions (up to

1000) for experimental purposes. The sizes of the resulting
databases are given by Table 1.

Once the databases have been created, a query containing
150 descriptors was computed using an image outside the
database, or new random numbers. We then truncated them
to the appropriate dimensions in order to create the requests
that will query the real and synthetic databases. The
response times given in Fig 8 and 9 are the cumulative
response times of 150 consecutive databases interrogations,
each returning 10 nearest neighbours.

The performance of the algorithms using real data is
illustrated by Fig. 8. In this case, the performance of the
Pyramid-Tree severely degrades above seven dimensions.
Beyond that, the response time of this technique is too big
to remain competitive. The VA-File and the sequential
search clearly exhibit better performance, and degrade less
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Fig. 6. Querying with an image extracted from a video: the most similar images come from the same shot.
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Fig. 7. Scores histograms for colour and grey descriptors and ground
truth of the test.

Table 1. Size (in bytes) of the databases for various dimensions of the 413,412 descriptors stored

Dimension Size Dimension Size Dimension Size

2 3,307,296 15 24,804,720 100 165,364,800
4 6,614,592 20 33,072,960 250 413,412,000
7 11,575,536 24 39,687,552 500 826,824,000
10 16,536,480 50 82,682,400 1000 1,653,648,000

Fig. 8. Real database storing 413,412 descriptors, 150 descriptors in
each query, increasing dimension of descriptors.

rapidly when the dimension of the data increases. The
performance of the sequential search is linear with the
dimension, which is normal and without surprises. Sequen-
tially searching 150 descriptors among 413,412 descriptors
takes approximatively 14 seconds in a 2-dimensional data
space, and about 66 seconds for 24 dimensions.

The performance of the VA-File and the sequential search
are similar, except when the number of dimensions is small.

Fig. 9. Uniform database storing 413,412 descriptors, 150 descriptors
in each query, increasing dimension of descriptors.

In this case, for two dimensions, a VA-File search takes
about 24 seconds, and about 52 seconds in seven dimensions
(25 seconds are needed in 7 dimensions for the sequential
search). When the number of dimensions grows, the VA-
File can divide its data space into smaller cells, thereby
augmenting the efficiency of its filtering strategy. On the
other hand, fewer dimensions makes the filtering less selec-
tive, and exploiting the approximations in addition to com-
puting many actual distances is part of the observed over-
head.

The performance corresponding to the experiments that
use uniform data is given by Fig. 9. This figure does not
show any response time of searches for data having more
than 100 dimensions. Above that level, the VA-File never
returned any answer, probably due to a bug. We did not
measure the response times for the Pyramid-Tree beyond 24
dimensions, since it becomes too high to remain significant.

In this figure, the Pyramid-Tree is again the technique
having the worst response time. Below 15 dimensions, the
sequential search performs better than the VA-File, for
similar reasons as those mentioned above. When data has
50 dimensions, the VA-File returns its answer (recall that
150 consecutive queries must be submitted before returning
the answer) in about 104 seconds, while the sequential
search needs 134 seconds. In this case, the VA-File strongly
benefits from the uniformity of data, from the geometrical
approximations, and from its filtering strategy. Above 50
dimensions, the sequential search becomes faster than the
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VA-File. With 100 dimensions, the sequential search needs
256 seconds and the VA-file 336. These results are confirmed
by those given in the article presenting the VA-File (see
their Figure 12). This article says that above 45 dimensions,
the approximation files becomes too large to fit in main
memory, increasing the number of I/Os and the overall
response time.

Regardless of the nature of the data stored in the database
(real or uniform), the response times needed to search the
10 nearest neighbours of 150 descriptors in a small database
are big: around a minute for both the sequential scan and
the VA-File with 24 dimensions. These response times are
above what one might tolerate if these techniques were part
of a real system. The next experiment further investigates
the influence of the size of the database on the response
times.

5.5. Experiment 3: Influence of the Database Size

Figures 10 and 11 show the impact of the size of the
database on the response times of the three techniques
we evaluated. For this experiment, we reused the 413,412
descriptors previously computed with 24 dimensions, and
generated new databases by keeping only 100,000, 200,000,
300,000 and 400,000 of them. The requests are made of
the same 150 descriptors in 24 dimensions as above. We
could not easily create larger databases, since the amount
of real data we could use was limited. It is easy, however,
to create uniform databases of arbitrary sizes. We therefore
created such databases, and the larger we generated contains
1,000,000 descriptors (96 Mb), and this could correspond to
more than 6500 images if we assume that an image is
described by 150 local descriptors, on average.

Figure 10 shows the case with real data. What was
observed in the previous experiment can again be found
here. That is, the Pyramid-Tree is more expensive than
other techniques, and the VA-File is slightly better than
the sequential. Still, 15 seconds are needed to perform a
search of a database made of only 100,000 descriptors.

Figure 11 shows the case with uniform random data. For

Fig. 10. 24 dimensions descriptors, 150 descriptors in each query,
increasing the size of the real database.

Fig. 11. 24 dimensions descriptors, 150 descriptors in each query,
increasing the size of the uniform database.

a database made of 1,000,000 descriptors, the response time
for the sequential scan or for the VA-File is about three
minutes (160 seconds). This result clearly excludes the use
of these techniques in a real system indexing millions of
images (and therefore many more descriptors). Furthermore,
our request has only 150 descriptors, and Section 3 states
that they are, in the general case, more numerous. The
next experiment focuses on this problem, and shows the
influence of the number of descriptors in a request on the
response times.

5.6. Experiment 4: Impact of the Number of
Descriptors in a Request

All the descriptors used in this experiment have 24 dimen-
sions. To generate the queries used here, we searched in
our real database images for which 100, 200, 300 and 400
descriptors were computed. We also made up an artificial
query that has only one descriptor, since this is the typical
case for which the database techniques have been designed.
Forging synthetic queries is trivial, and the largest one had
1000 descriptors.

The results of this experiment given in Fig. 12 (for real
data) and Fig. 13 (for uniform distribution), showing again
that only the VA-file and the sequential scan remain inter-
esting. The response time, however, rapidly grows with the
number of descriptors in the query. For example, 400 real
descriptors cause the response time to jump to 121 seconds
for the VA-File and to 185 for the sequential. With uniform
data, 997 and 1042 seconds are needed, respectively, for the
VA-File and the sequential with 1000 descriptors.

The number of descriptors in each query is directly related
to the number of points of interest detected in the query
image (see Section 3.2). This number can clearly be very
large, depending on the image and on the detection strategy.
It is crucial that the cost of a query having many descriptors
does not increase, as illustrated by this experiment.
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Fig. 12. Real database storing 413,412 descriptors having 24 dimen-
sions, increasing the number of descriptors in each query.

Fig. 13. Uniform database storing 413,412 descriptors having 24
dimensions, increasing the number of descriptors in each query.

6. CONCLUSION AND PERSPECTIVES

In addition to the well known slowdown caused by the
dimensionality of data and by the size of the database, our
performance analysis shows that additional costs severely
degrade the performance of recent database indexing tech-
niques when local descriptors are used. While this degra-
dation is clearly seen in our experiments, worse results are
expected if the techniques are to be used in a more realistic
environment, where the size of the image bank is far bigger
than our database (up to several Gb), where the descriptors
have many more dimensions (several hundred), or where
the number of descriptors used for one query is much
greater (thousands).

It is therefore crucial to come up with new indexing
techniques specifically designed to efficiently support the use
of local descriptors. We therefore propose several research
directions aimed at tempering the above mentioned effects.

Numerous Local Descriptors for a Single Query Creates
Redundancy. When local descriptors are used, the image

recognition is not based on a one-to-one match between a
unique descriptor stored in the database and a single descrip-
tor used in the query. Rather, recognition is based on
multiple searches, each returning information which, once
accumulated and post-processed (cross-checking), gives the
final answer. Some images stored in the database will belong
to this final answer, because several descriptors of the query
are matched with several descriptors associated with these
images. There is therefore a certain form of redundancy in
the information used during the complete search process
(because all these query descriptors are associated with a
single query image), and in the information returned (because
an image is found similar, since many of its descriptors
match). It is possible to use this redundancy in (at least)
two ways.

First, the search process can be restricted so that it checks
only the descriptors that are in the same cell as that in
which each query descriptor falls. This avoids the typically
and mandatory lookup of all neighbouring cells, which is
known to be expensive, since many cells must be visited.
If the search process returns, for each query descriptor, only
the nearest neighbours that are in the same query cell, and
ignores other potential neighbours that are in adjacent cells,
than the result of each query is clearly a rough approxi-
mation of what would be returned if the normal search
process was enforced. The quality of this approximation,
however, is improved as time goes by, since many query
descriptors are used to obtain images that are similar to one
image. Cross-checking what is returned by each individual
search is a natural way to consolidate the final answer, and
fully uses the observed redundancy.

This search process therefore only needs to determine the
cell in which one query descriptor falls, sequentially fetch
the descriptors stored in that cell and compute the actual
distances.4 This simple strategy is repeated until all query
descriptors are used this way. It has the interesting property
of trading the accuracy (of the final result) for efficiency.

The second way to use the redundancy is to stop the
search before having used all of the query descriptors. In
this case, the search is a greedy algorithm, and each partial
result returned by each individual query is immediately
processed and updates the (in progress) final result. When
this current (incomplete) final result has a high probability
of being the complete final answer, the search is stopped,
the remaining query descriptors are skipped, and the result
is returned to the user.

Note that this second search strategy is orthogonal to the
first one mentioned above. Both might be combined to
search only the relevant cells (ignoring adjacent cells) for
a limited number of query descriptors.

Exploit the Distribution of Data to Accelerate the
Queries. Not all descriptors carry the same amount of
information: some are associated with many images, others
are more rare. Therefore, the matching of two descriptors
returns more or less discriminative information, making the

4 It is unlikely that all query descriptors fall in empty cells.
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associated database image more or less likely to be part of
the final result. In this case, using a Bayesian formalism
may help in determining the probability for each match to
help converging towards the final result. It is consequently
possible to sort the descriptors in the query so that it starts
with descriptors that are most informative. It is therefore
possible to stop the search as soon as the probability of
having the final answer is high enough, or as soon as the
search starts using the descriptors that do not help in
converging. This technique has the interesting property of
refining the search as time goes by. In addition, the search
accuracy can easily be made controllable by the user.

Change the Management of Memory to Benefit from Con-
secutive Queries. Traditional techniques assume that a
single search within the database is sufficient to return the
final answer. Therefore, what is fetched in memory during
a search only benefits the next query by chance: if the
second query is lucky enough to use some of the data
brought in memory by the first query, than its response time
is enhanced because some data is already cached. A better
mechanism can be designed when local descriptors are used.
In this case, we know in advance that a large number of
consecutive queries will be submitted to the database. There-
fore, it may be interesting to pick the next query descriptor
with respect to what is already in the cache. That is, the
next descriptor used to query the database can be the one
which is most likely to have its nearest neighbours already
in memory, brought in by previous descriptors. Therefore,
instead of consuming all the query descriptors sequentially
as the natural search process does, descriptors are picked in
a memory-conscious way.

Using Several Low-Dimension Indexes Instead of a Unique
High-Dimension Index. It is known that the cost of con-
tent-based retrieval grows quickly when the dimension of
data increases. It is therefore potentially interesting to evalu-
ate whether querying many low-dimension indexes in paral-
lel instead of a unique high-dimension index gives good
results. These ‘small’ indexes must be constructed in such a
way, and their use must be such that the result they return
is identical to what a regular index would return.

A small index would store the same descriptors as those
stored by the large index. These, however, would be trunc-
ated, and would only keep specific dimensions chosen with
care. A particular dimension might be kept by more than
one small index. A query would then have to be transformed
into multiple sub-queries, each interrogating a given (small)
index. If these indexes are physically stored on different
machines, then large grain parallelism is possible.

This scheme tries to limit the problem of the dimensional-
ity curse by enforcing multiple interrogations of low-dimen-
sion data for which efficient indexing schemes exist. On
the other hand, additional processing steps are needed, and
the global size of the database (i.e. the size occupied by all
the descriptors, and not by the images) is increased. These
disadvantages must be placed in perspective with the poten-
tial enhancements provided by the parallelisation and the
efficiency of each sub-query.
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