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MLP Based Linear Feature Extraction for
Nonlinearly Separable Data
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Abstract: A novel approach to linear feature extraction is presented. Most supervised feature extraction algorithms use mean square error
or other measures based on the difference between expected and actual output values as a performance criterion. The novel approach
presented here uses data visualisation together with an empirical classification error (percentage of cases classified incorrectly) as performance
criterion. To find the optimal data transformation weights, the Multilayer Perceptron cost function with a special regularisation term is
applied. The technique proposed is verified and compared with five competing mapping techniques with respect to visualisation and
different classification error criteria. For comparison, two artificial and 12 real world data sets are used.
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1. INTRODUCTION

A number of research papers are devoted to the development
and comparison of new feature extraction algorithms [1,2].
John et al. [3] compared PC (Principal Components) and
linear discriminant analyses on several small handwritten
character data sets. Backer et al. [4] studied four unsupervised
nonlinear feature extraction methods. Other research work
on this topic can be found elsewhere [3,5–9].

Two important aspects of feature extraction can be formu-
lated. One is mapping accuracy measured in terms of classi-
fication or prediction error. The second is data visualisation.
Good data visualisation is necessary in data mining and
knowledge discovery applications where there is a need to
present a solution in a very simple, easily understandable
way. It is also important for optimal initialisation of neural
networks [10]. Researchers have offered some modifications
on existing feature extraction algorithms and created new
ones. A dimensionality reduction technique that seeks direc-
tions emphasising multimodality was presented by Intrator
[11]. In Raudys [10] a feature extraction technique for active
neural network initialisation was proposed. In Pao and Shein
[12], the authors proposed a novel neural network feature
extraction algorithm based on variance conservation. The
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authors also noted the importance of 2D feature extraction
for visualisation purposes. A number of feature extraction
algorithms are based on neural networks. All of them incor-
porate nonlinear functions to transform and reduce the
dimensionality of the data.

In spite of the abundance of mapping algorithms, there
is a shortage of simple linear methods which reveal a data
structure with respect to multiple pattern classes and, at the
same time, allowing data visualisation. The novel feature
extraction method presented in this paper uses linear trans-
formation. It utilises classification error, the number of cases
classified incorrectly, as the feature mapping criterion. To
minimise the classification error, a modified conventional
MLP cost function is suggested, paying special attention to
the magnitudes of the output layer weights.

2. TAXONOMY OF FEATURE MAPPING
ALGORITHMS

Feature Extraction (FE), also known as mapping, variance
conservation or feature compression, can be divided into
several groups (see Fig. 1). Feature extraction is determined
by two major factors:

1. The type of transformation determining how the new
features are made from the initial (the original) ones.

2. The criterion for extracting features (a cost function is
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Fig. 1. Taxonomy of feature mapping algorithms. (a) According to
type of the transfromation function; (b) according to a type criterion
(of the cost function), and according to the method used to evaluate
mapping performance used to find parameters of the transform-
ation function.

used to find optimal coefficients that determine the
transformation).

Sometimes researchers confuse the type of transformation
and FE criterion. For example, Sammon mapping [13] is
sometimes called nonlinear. However, it utilises linear trans-
formation and a nonlinear criterion (vector inter-distance
preservation).

The transformation. Often researchers use linear transform-
ations Y�VX, where V is a transformation matrix, in per-
forming FE. Depending on the transformation matrix, linear
transformation can be orthogonal or not orthogonal.
Examples of linear transformation feature extraction tech-
niques are Principal Component analysis [14], Sammon [13]
and Foley-Sammon [14] methods. For nonlinear transform-
ation techniques, polynomial functions, radial basis functions
and outputs of the MLP can be employed. An example of
nonlinear transformation feature extraction is illustrated by
the auto associative neural network [15].

The criterion. The criterion helps to evaluate the mapping
accuracy, i.e. how good the extracted features are. This
criterion is minimised during feature extraction training. For
example, in the Sammon method, the criterion is vector
inter-distance. During training, the algorithm is trying to
preserve vector inter-distances in the new mapped feature
space. In pattern classification problems, the criterions can
be subdivided into:

1. Unsupervised (a criterion does not utilise class indexes).

2. Supervised (the class indexes of the data are taken into
account).

The aim of supervised FE is to extract features where classes
(in the extracted features) can be separated in the best
possible way. Supervised FE can be subdivided into two
groups, linear and nonlinear. Another way to subdivide the
supervised mapping algorithms is based on their relation to
the classification error. In the literature, only one single
method which minimises classification error directly [16] can
be found. The assumption that data is distributed in a
multivariate Gaussian way is made, and the probability of
misclassification is minimised in the new reduced feature
space. Unfortunately, this method becomes useless if the
data is complex, multimodal or asymmetric (non-Gaussian).
Other known methods minimise criteria that are only
approximately related to the classification error (e.g. mean
square error). None of the other FE methods utilise
classification error directly, that is, the difference between
correctly and incorrectly classified cases. Supervised criteria
can be applied to linear (classification error is evaluated
by a linear algorithm – Foley-Sammon) and to nonlinear
(classification error is evaluated by a nonlinear algorithm –
complex MLP, k-nearest neighbour (k-NN) algorithm,
Parzen window algorithm, etc.) mapping methods. Below
several popular FE methods used in benchmarking are
presented.

Principal Component Analysis [14], also known as the Kar-
hunen–Loeve transformation, is the most popular FE tech-
nique. It is an unsupervised linear transformation algorithm.
The central idea of Principal Components is to find features
with maximal rate of decrease of variance. Extracted features
are orthogonal between each other.

Foley–Sammon. The widely known Foley–Sammon feature
mapping algorithm (sometimes called linear discriminant
analysis feature extraction) [17], belongs to the group of
supervised methods. The Fisher linear classifier is used by
Foley-Sammon to create a linear decision boundary [14]
which helps to extract the first new feature. Distance to a
discrimination hyperplane serves as a new feature. This
feature extraction procedure is repeated on the rest of the
orthogonal features until there are no features left. The first
extracted feature is a direction where pattern classes are
best separated linearly. The second feature is the direction
where classes are separated slightly worse, and so on. The
disadvantage of this algorithm is its linearity and limitation
for two pattern classes only.

Auto Associative Neuronal Network (AANN) is also known
as nonlinear, neural network based Principal Component
analysis [15,18]. It is an unsupervised feature extraction
algorithm. It has two groups of layers, one for encoding the
data, and another one for decoding (see Fig. 2). Each group
of layers can contain from one to several layers. The number
of encoding group outputs is equal to the number of decod-
ing group inputs and equal to the number of extracted
features. The number of encoding inputs is equal to the
dimensionality of the input vector X and equal to the
decoding group outputs. The encoding layer compresses the
original features to fewer features, and the other group
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Fig. 2. Auto associative neural network model.

decodes the features back to the original (input) space.
There are two major architectures of the AANN. The first
of them uses one layer for encoding and one layer for
decoding (3 layer MLP). The second one uses two layers
for encoding and two layers for decoding (5 layer MLP). In
5 layer AANN the p-h-r-h-p (the letters indicate the number
of neurons in each layer) architecture is utilised, where p
is a number of inputs, r is a number of extracted features
and h is a number of neurons in encoding and decoding
hidden layers. Instead of the nonlinear feature extraction
architecture p-h-r-h-p, a linear 3 layer architecture p-r-p can
be used.

After the network is trained (the outputs of the network
are approximately equal to the inputs), the decoding group
can be removed and only the encoding layers must be used
to extract features.

Multilayer Perceptron feature extraction. In this technique,
the conventional MLP (MultiLayer Perceptron) based clas-
sifier is trained, and the outputs are taken as the new
extracted features. It has been used in some comparative
studies [7]. The limitation of this algorithm is that the
number of classes is equal to the number of extracted
features. There is no freedom in selecting the desired number
of extracted features. In the case of two pattern classes,
only two features can be extracted. In the case of three
classes, three features can be extracted, and so on. The
geometry of the data is lost as well. In the new feature
space of the two pattern class problem, the pattern vectors
are concentrated in opposite corners of a ((0;0) and (1;1))
square (see Fig. 3).

3. A NOVEL MULTILAYER
PERCEPTRON BASED, LINEAR
FEATURE EXTRACTION TECHNIQUE

The previous literature review has shown that, up to now,
there has been no linear feature mapping method able to
work with multiple pattern classes using classification error
as the criterion for FE. The reason is simple. While calculat-
ing the classification error, a threshold function should be

Fig. 3. Two features extracted using the MLP technique from iono-
sphere data. Horizontal axis represent MLP first output, and vertical
second output.

used. This function is non-differentiable and cannot be
minimised using conventional gradient descent optimisation
methods. In principle, to overcome this numerical difficulty,
genetic optimisation methods can be utilised. These
methods, however, have a shortcoming in that their conver-
gence is rather slow.

To solve the criterion problem, an observation in Raudys
[19] is used. This is the fact that with an increase in the
magnitude of the weights, the cost function of a nonlinear
single layer perceptron begins to minimise the classification
error. Indeed, let a cost function of a Single Layer Perceptron
(SLP) be:

costt �
1
N �L

k�1

�Ni

f�1

(t(i)
j � f(WT

k X(i)
j � wk0))2 (1)

where tj(i) is a desired output (a target) for X(i)
j , jth training

set observation from class �i, L is a number of pattern
classes, Wk, wk0 are weights, and f(c) is a nonlinear acti-
vation function, e.g. the sigmoid function:
f(c)�1/(1�exp(�c)). When the weights are small, the acti-
vation function acts almost as a linear function. When the
weights are large, the weighted sums cij � WT

k X(i)
j � wk0

becomes large and, for all training vectors X(i)
j , outputs of

SLP f(WT
k X(i)

j � wk0) approach either 1 or 0. In such a
case, separate terms (t(i)

j � f(WT
k X(i)

j � vk0))2 in Eq. (1)
are very close either to 0 or 1. It means the cost function
begins to minimise the frequency of misclassifications.
Consequently, in principle, the cost function (1) can be
utilised to minimise the empirical classification error.

To ensure convergence, the initial weights should be
small. The cost function will then be smooth and differen-
tiable. During training, the weights should increase. In back
propagation training, typically the starting weight values are
chosen as small randomly determined values. These values
increase during training up to optimal values. At the end
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of the training process, the magnitudes of the weighs are
determined by the classification error as expressed by the
degree of overlap of the training sets of the opposite pattern
classes. Therefore, in high empirical error cases, in order to
ensure the weights grow and thereby minimising the empiri-
cal classification error, it is recommended to add a special

anti-regularisation term � � �
L

k�1
(WT

k Wk � c2)2 to the cost

function, where � and c2 are parameters of the penalty
(regularisation) terms. Parameter c2 controls the magnitudes
of the weights vectors Wk (k � 1, 2, %, L).

To apply this useful peculiarity of the nonlinear SLP
training, the outputs Y�VX�(y1,y2)T of the linear trans-
formation have to be used as the inputs to the nonlinear
SLP (here (y1,y2, . . . are components of the vector Y). The
weights of SLP can be found by minimising the cost function
(1) by the conventional back propagation algorithm. Unfor-
tunately, SLP forms only the linear decision boundary. The
classification error is evaluated only by the linear algorithm.

To overcome this difficulty, nonlinearly transformed outputs
f (yj) are used as inputs to the nonlinear SLP in an upper
part of the information processing schema (see Fig. 4).
Analysis of this calculation schema shows that actually, the
MLP with one hidden layer is used. To force the MLP
classifier to minimise the number of training set errors, the
cost (1) with the additional anti-regularisation term � �

�
L

k�1

(WT
k Wk � c2)2 is utilised, where Wk is the weight

vector of the kth output layer neuron. In practice, training
is stopped when the minimal number of classification errors
is obtained. The parameters � and c2 are evaluated in a
trial. Thus, in reality, to find the transformation matrix V
� [V1, V2]T, the MLP classifier is trained. In the conven-
tional MLP FE, both the hidden and output layers are used
for FE and minimisation of the classification error. In the
novel FE technique, the linear part of the hidden layer is
used for FE and the rest is used for performance evaluation.
Thus, the novel approach differs from MLP in two aspects:

1. Instead of outputs of the hidden neurons as the new
features the weighted sums W1

TX � w1.0, W2
T X � w2,0,

. . . are used.

Fig. 4. Principal MLPLFE technique flow diagram.

2. The modified cost function is applied as the criterion in
order to minimise the empirical classification error.

In the new extracted feature space, the proposed linear
mapping method with nonlinear SLP in its output stage can
be limited complexity. In the case of the two new features,
the maximum complexity shape is this: . In higher feature
cases, it can be more complex. In principle, instead of the
SLP the MLP can be utilised. To ensure convergence of
the MLP with two hidden layers applied to complex nonlin-
ear data sets, adequate MLP initialisation and training stra-
tegies should be developed.

An important aspect of the novel approach is the utilis-
ation of the anti-regularisation term. This term is used
in order to ensure the minimisation of the frequency of
misclassifications (empirical error). The taxonomy of the
feature extraction algorithms discussed above shows that the
novel algorithm is linear (Fig. 1a). It also belongs to the
group of the supervised-nonlinear (Fig. 1b) algorithms, and
uses the classification error as the performance measure.
Minimisation of the empirical classification error does not
rely on assuming the distributions of the pattern classes to
be normal. Thus, as can be seen from taxonomy diagram,
there is only one algorithm that satisfies this description.

4. DATA

Several data sets were used for comparative experiments.
First, the new method was tested on specially created arti-
ficial data sets. After analysis of peculiarities of the new
algorithm with the artificial data, a number of real world
data sets were utilised to evaluate the usefulness of the new
approach. Table 1 contains brief information about the
number of classes, features and size of each data set.

The 3Gauss artificial data set is a mixture of three non-
overlapping multivariate Gaussian components with means
located on one line. The left and the right distributions
components belong to the first class, the middle one belongs
to the second class. Data was generated in a two-dimensional
space, and later to make task more difficult, to each two
dimensional vector, six-variate random vectors were added
to form a final eight-dimensional vector. Finally, a random,
orthogonal space transformation was made in order to hide
the first two features between the noise features.

The Palm data set has a palm shaped decision boundary
in a two-variate subspace. The first pattern class is inside
the ‘palm’ shape and the second class is outside. As in the
first artificial data set, two small noise features were added
to original two-dimensional data, and later to hide the first
features between the noise features, the four-variate data
was orthogonally transformed. The distribution of the two
most informative features is widest. This was done on pur-
pose in order to help the Principal Component analysis to
extract features in the best way. The results in Table 2
demonstrate this.

A short description of the real world data sets is presented
in Table 1. More details about the data sets can be found
elsewhere [19–21].
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Table 1. List of data sets used in experiments

Nr Name Features Classes Patterns Short description

1 3 Gauss 6 2 200 + 200 3 not overlapped Gaussian distributions spread sequentially.
The first and last distributions belong to first class, the
middle one–to the second class.

2 Palm 3 2 500 + 500 The first class is inside the palm shape and the second class
is outside.

3 Ionosphere 33 2 126 + 225 Radar signals from the ionosphere. Arguments of an auto
correlation function.

4 Stock 69 2 697 + 683 4 years daily history of stock market closing prices. Classes
are growth vs fall of the index.

5 Chromosome 30 2 499 + 501 Features describe the geometry of the chromosome.
104 + 101 +

6 Wave data 12 6 133 + 100 Represents six different human pronounced phonemes.
104 + 108

7 Dow 64 2 134 + 251 Machine vibration data classified into ‘good’ and ‘bad’, velo-
city and acceleration characteristics.

8 Vowel 28 2 400 + 400 Vowels pronounced by 20 speakers, 28 spectral and cepstral
features.

9 Thyr 18 2 93 + 191 Healthy and hypothyroid patients.
10 Sonar 60 2 111 + 97 Sonar signals patterns, features characterise energy within

particular frequency.
11 Satim 9*4 6 961 + 415 Vectors representing satellite images characterised by nine

470 + 1038 pixel values in four spectral bands.
12 Musk 166 2 207 + 29 Musk and non musk molecules conformations. Features rep-

resent parameters of the shape.
13 Mammo 18 + 47 2 57 + 29 Benign and malignant mammograms. Features as: number,

shape, size, a texture, histogram statistics, Gabor wavelet
response, etc.

14 Call 8*3 2 134 + 231 Phone call intensity. Classes–number of calls will increase
vs. decrease tomorrow.

Table 2. Nearest neighbour classifier, misclassification error (in %), on two extracted features

Nr Classes Data Set Name Original PC Fol.Sam. MLPLFE AANN3 AANN5 MLP9

1 2 3 gauss (synthet) 8 39 46.5 2.2 2 35.7 0.25
2 2 Palm (synthet) 1.7 0.5 8.7 5.5 4.4 1.6 3.3
3 2 Ionosphere 15.9 26.7 8.5 1.1 19.3 13.6 0
4 2 Stock 61.3 55.2 14.1 28.0 48.6 46.6 19.4
5 2 Chromosomes 2.3 18 9.6 1.6 11.2 12.4 0.3
6 6 Wavedata 15.5 51.2 — 27.8 56.1 51.6 —
7 2 Dow 8.0 44.9 3.8 0.7 29.8 27.7 0
8 2 Vowel 0.1 15 1.8 0.3 14.7 11.3 0.1
9 2 Thyr 6.6 4.5 1.7 0.3 9.1 7.7 0
10 2 Sonar 12.0 42.3 15.8 4.8 32.2 28.8 0
11 2 Satim 9.4 21.1 — 17.5 22.5 30.3 —
12 2 Musk 14.0 35.0 7.5 3.7 28.3 33.6 0.2
13 2 Mamo 34.8 33.7 0 0 24.4 25.5 0
14 2 Call 38.9 40.2 36.4 35.3 40 36.1 14.5
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5. EXPERIMENTS

In the experiments, the two best features were extracted to
enable visualisation in two-dimensional space. The dimen-
sionality reduction sometimes decreases classification accu-
racy (if data cannot be mapped on a two-dimensional plane),
but it allows visualisation. This makes it easier to understand
the data structure.

To compare results numerically, each method’s two best
extracted features were evaluated. The evaluation was made
using the Nearest Neighbour (NN) classifier. This classifier
used Euclidean distance measure, and the leave-one-out
classification error estimation technique [14]. At first, all
methods under investigation were compared on artificial
data, and later, on all the real world data sets. In the
experiments, four evaluations were skipped (see Table 2).
The Folley-Sammon algorithm can process only two class
data, so the six class Wavedata data set and six class Satim
data set was not processed. The conventional MLP FE
algorithm can extract the same number of features as the
number of classes. So, these experiments were skipped as
well.

6. RESULTS

Results of the experiments are presented in Table 2. The
abbreviation AANN3 stands for Auto Associative Neural
Network with 3 layers, one layer for encoding and one for
decoding the data. AANN5 is the same as AANN3 but
contains five layers and two are for encoding and other two
are for decoding. MLP9 stands for the multilayer perception
with nine hidden units and two outputs used as new features.
Winning algorithms are presented in bold type. The results
of incomparable algorithms are in italics.

In principle, it is not possible to make a numerical
comparison between the feature set extracted by MLP9 and
the other methods, because MLP9 destroys the geometry of
the data. Therefore, it extracts the best features for classi-
fication. In the new MLPLFE method, accuracy is sacrificed
in order to obtain good visualisation. The Palm data set can
be classified correctly with only a minimum of nine hidden
neurons. MLP9 has nine hidden neurons, while the MLPLFE
has only two hidden neurons. Thus, in principle, the
MLPLFE algorithm with the single layer perception in its
output and two new features extracted cannot perform well
on such complicated data as the Palm data set. For compli-
cated data, in the output stage of the MLPLFE algorithm,
the MLP with a sufficient number of hidden neurons should
be utilised. In most real world problems, however, the
complexity of simple MLPLFE with SLP in its output was
sufficient to reveal the data structure.

On the 3Gauss artificial data set, the AANN3 produced
the best results, and the MLPLFE algorithm was ranked
second. As predicted by the theoretical considerations, the
synthetic Palm data set was too complicated for the simple
MLPLFE algorithm (see Figs 5 and 6). The MLPLFE results
using the Palm data set were similar to those produced by
the Foley-Sammon and AANN3 algorithms. However, the

Fig. 5. Two features extracted using the MLPLFE technique from
synthetic palm data. Straight line represents decision boundary
formed by two hidden neurons.

Fig. 6. Original palm data.

Principal Components algorithm produced the best results
here. It is because the distribution of data was widest in
informative features, and the PC method extracts features
with the widest distribution.

The first two features extracted from the Ionosphere data
are visualised in Figs 7, 8, 9 and 3. As can be seen (circles-
first class, pluses-second) in Fig. 9, the MLPLFE extracted
features are the best ones, i.e. the pattern classes could be
separated in the best possible way. The MLP9 algorithm
(see Fig. 3) gave the best separation. However, it destroyed
the geometry of the data completely.

The novel method applied to the Stock data set showed
lower accuracy than the Foley-Samon algorithm. This result
may be explained by a fact that actually the Stock data set
is linearly separable and the Foley-Samon algorithm is
designed to process linearly separable data.
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Fig. 7. First two principal components extracted from ionosphere
data.

Fig. 8. First two Sammon features extracted from ionosphere data.

An interesting observation can be made regarding the
Musk data set. The new MLPLFE algorithm was more
computationally efficient than the Foley-Sammon algorithm
on this data set. This is because of the large number (166)
of features in the data set. The Foley-Sammon algorithm is
based on LDA and requires estimation and inversion (or
pseudo inversion) of the covariance matrix. The 166�166
matrix takes a relatively long time to invert. The MLPLFE
scales up linearly, whereas the Foley-Sammon method scales
up quadratically with the number of input dimensions.

The MLP classifier based FE (MLP9) cannot be included
in the comparison table because it destroys the geometry of
the data (see Fig. 3). This fact makes the Multilayer per-
ceptron FE absolutely useless for visualisation. However, it
actually produces the best classification results.

Fig. 9. Two features extracted using the MLPLFE technique from
ionosphere data. Straight line represents decision boundary formed
by two hidden neurons.

7. CONCLUSIONS

In the new extracted feature space, the proposed linear
mapping method with nonlinear SLP in its output stage
generates a nonlinear decision boundary of limited com-
plexity ( shaped in the two new feature case) and mini-
mises the empirical classification error. It is good at analysing
simple nonlinearly separable data sets. The experiments
showed that the novel MLPLFE runs well on the majority
of the two synthetic and 12 real world data sets from
different domains. In many cases, the method proposed
outperformed the Principal Components, Foley-Sammon,
Auto Associative Neural Networks (with 3 and 5 layers)
and MLP based feature extractor techniques. It was found,
however, that there is no single mapping technique which
is good in all situations.

Several conclusions can be drawn.
Advantages

� The MLPLFE with nonlinear SLP classifier in its output
stage works well with simple nonlinear data, however, it
fails with highly complex nonlinear data sets.

� The method is faster than the Foley-Sammon method
where the data set has high dimensionality.

� The method uses linear data transformation and a nonlin-
ear performance criterion. Hence, it is easier to understand
how the data is distributed in its original space.

� Transformation back to the original space can be perfor-
med if required (some nonlinear transformations do not
allow this).

Disadvantages

� The method is slower than the Principal Components or
the Foley-Sammon (in low dimensionality cases) methods.

� The method with the SLP in its output stage may not
be as good as the MLP FE algorithm in overall accuracy,
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however, this may be offset by the possibility of
superior visualisation.

Some suggestions can be made for future research. The
method reported above can be enhanced to work with much
more complex nonlinear data. For this, in the upper part
of the data processing schema (used for the performance
evaluation), instead of the nonlinear SLP, the MLP with
sufficiently large number hidden nodes must be used. To
ensure convergence of the MLP with two hidden layers
applied to complex nonlinear data sets, adequate MLP
initialisation and training strategies should be developed. In
the present paper, data sets were not divided into training
and testing samples. It may be well to investigate doing so
in future research.
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