
Pattern Analysis & Applications (2000)3:120–131
 2000 Springer-Verlag London Limited

An Approach for Recognition and
Interpretation of Mathematical Expressions
in Printed Document

B. B. Chaudhuri and U. Garain
Computer Vision & Pattern Recognition Unit, Indian Statistical Institute, Calcutta, India

Abstract: In this paper, we propose an approach for understanding Mathematical Expressions (MEs) in a printed document. The system
is divided into three main components: (i) detection of MEs in a document; (ii) recognition of the symbols present in each ME; and
(iii) arrangement of the recognised symbols. The MEs printed in separate lines are detected without any character recognition whereas
the embedded expressions (mixed with normal text) are detected by recognising the mathematical symbols in text. Some structural features
of the MEs are used for both cases. The mathematical symbols are grouped into two classes for convenience. At first, the frequently
occurring symbols are recognised by a stroke-feature analysis technique. Recognition of less frequent symbols involves a hybrid of feature-
based and template-based technique. The bounding-box coordinates and the size information of the symbols help to determine the spatial
relationships among the symbols. A set of predefined rules is used to form the meaningful symbol groups so that a logical arrangement
of the mathematical expression can be obtained. Experiments conducted using this approach on a large number of documents show
high accuracy.

Keywords: Document; Mathematical Expression; OCR; Symbol arrangement; Symbol recognition

1. INTRODUCTION

In spite of the use of electronic documents, the volume of
paper-based documents is growing at a rapid rate. This is
because of convenience as well as a long ingrained human
tradition of reading and archiving paper-based documents.
For the interchange and interaction of information, it is
useful to convert one category of document into another.
The conversion of a paper-based document into its electronic
version has become an important and challenging problem.
One approach to solving the problem is the use of Optical
Character Recognition (OCR) systems. Given a document,
an OCR system tries to recognise the characters on the
document automatically, and stores the corresponding ASCII
code in a computer-processable file.

Existing OCR systems show high accuracy in processing
the text portions, but fail to process properly other document
elements like figures, logos, tables, mathematical formulas
and equations. Technical documents generally contain a

Received: 17 May 1999
Received in revised form: 10 February 2000
Accepted: 25 February 2000

large number of Mathematical Expressions (MEs), but com-
mercial OCR systems cannot handle them. This is partly
because MEs involve a large set of symbols that are not
standardised, and show wide variations in font size and style.
Moreover, mathematical notations convey meaning through
subtle use of spatial relationships among the symbols, while
it is very difficult to capture all such relationships and
faithfully convert them into an electronic form.

A naive approach for handling documents that contain
MEs is to manually key the expressions into the computer.
This approach is not acceptable when a huge number of
such technical documents are to be processed on-line. Thus,
an automatic approach for processing such mathematical
equations or expressions in the documents is called for.

This paper concentrates on understanding MEs contained
in printed documents. The processing of such documents
involves three main operations: identification of MEs in the
document; symbol recognition; and symbol arrangement. The
problem has attracted the attention of several earlier work-
ers. Blostein and Grbavec [1] presented an interesting, sys-
tematic review on mathematical notation recognition. The
existing techniques for recognition of MEs fall into one of
three types: projection-profile cutting; graph rewriting; and

121Recognition and Interpretation of Mathematical Expressions

procedurally coded math syntax. Anderson [2] adopted a
syntactic method, and used coordinate grammars for ME
recognition. He manually simulated the symbol recognition
step and got an error-free recognition result. Belaid and
Haton [3] designed a coordinate grammar that is simpler
than that of Anderson. Among other studies that use a
syntactic method, Chang [4] used a structure specification
scheme to recognise the structure of MEs. Okamoto and
Twaakyondo [5] attempted a projection profile approach for
processing MEs. In another study, Okamoto and Miyazawa
[6] proposed a recursive projection-profile cutting for arrang-
ing the symbols. On the other hand, Grbavec and Blostein
[7] used a computational technique called graph rewriting,
where the information was represented as an attributed
graph, and the computation proceeded by updating the
graph by following the graph-rewriting rules. Larvirotte and
Pottier [8] also used the graph grammar to recognise the
mathematical formulas. Lee et al [9] proposed another
method for understanding MEs. Their method is procedure-
oriented, where it provides step-by-step instructions for reco-
gnising an ME. Faure and Wang [10] demonstrated an
approach that systematically organises the procedurally coded
rules. Chou [11] used a stochastic grammar to recognise a
large set of mathematical expressions, all of which are drawn
from a textbook printed by a known typesetter.

A few of these studies address the problem of identifying
MEs in the document. Most of them assume that the
MEs are already segmented from the document, and their
processing starts from the segmented MEs. Some of the
studies [2,4,7] even avoided the symbol recognition step,
where error-free recognition results were obtained by manu-
ally simulating the symbol recognition step.

Our proposed method for processing MEs is divided into
three components: (i) detection of mathematical expressions
in a document; (ii) recognition of the symbols present in
the expression; and (iii) arrangement of the recognised sym-
bols. The system first identifies the region containing MEs
from the document. The identification of ME areas is done
through checking the presence of mathematical symbols in
the text lines. Some structural features of the expressions
found in printed documents are also used for the purpose.
The method for checking the presence of mathematical
symbols involves the recognition of such symbols. So, part
of the symbol recognition phase is done in this first stage.

The symbol recognition procedure involves a hybrid
approach of template matching and a feature-based
approach, because a feature-based approach is more flexible
for size and style variations of the character font, but
less reliable for complex-shaped patterns, where template
matching gives better result. Apart from recognising the
symbols, the system also stores some format information
against each mathematical symbol regarding its size, style
(boldface, italic, etc.), relative position (bounding box
coordinates) in the document image, etc.

In the final stage, the system translates the recognition
result into a meaningful character string satisfying the
required criteria of a certain publication system, which can
be used to recompose the MEs in the system. The method

Fig. 1. Block diagram of the proposed system.

for symbol arrangement employs the format information
stored against each symbol in the second step, as well as a
set of rules representing the knowledge of notational conven-
tions of expressing mathematics in a document.

A brief block-diagram of the system is shown in Fig. 1.
Our proposed system involves a collection of different objects
(more specifically, classes), and the overall design is based
on object-oriented methodologies [12,13]. Before detailing
different methods, we conducted a quantitative survey on
MEs to know the structural layout and relative abundance
of different mathematical symbols.

This paper is organised as follows. In Section 2, the
design concepts for the system are discussed. Section 3
presents the results of a quantitative survey on the relative
abundance of MEs and their structural layout in technical
documents. Section 4 describes the procedure for the detec-
tion of ME areas. A symbol recognition scheme has been
described in Section 5, while the technique for the re-
composition of the MEs is described in Section 6. Section
7 presents the test results.

2. OVERVIEW OF THE SYSTEM DESIGN

We design our system following the Object Modeling Tech-
nique (OMT) [14]. A higher-level object diagram with the
standard OMT notations is shown in Fig. 2. Figure 2(a)
shows different entities (or blocks) of a document. A docu-
ment is an aggregation of many text and non-text blocks.
The diamond shape notation indicates the aggregation, while
the solid ball at the end of the association line indicates
the multiplicity symbol ‘many’. A line without a multiplicity
symbol indicates a one-to-one association. Only object
names are shown in Fig. 2(a). Actually, each class in Fig.
2(a) contains many attributes and methods or functions to
perform the required operations.

Figure 2(b) shows the document class in more details.
A document has attributes like documentFid, documentFtype
(technical document, letter, bank check, data-entry form,
etc.). There are a number of operations associated with the
Document class. Some of them are (i) findFblock: finds the
different blocks in the document; (ii) determineFblockFtype:
determines whether block contains text or non-text, etc. In
our system, the determineFblockFtype operation determines
whether a block contains any MEs. Other operations like
compress (for compressing a document image), print (for
printing the document), etc. may also be there.

The structure of the class ME is given in Fig. 3. The
docFid attribute of class ME links an ME to the document
containing it, and the position attribute keeps the location

122 B. B. Chaudhuri and U. Garain

Fig. 2. Representation of a document. (a) The object hierarchy;
(b) Document class details.

Fig. 3. The object-diagram used for the proposed system.

information of an ME in the document. The operation
codify() converts the ME into an HTML-like code.

An ME contains a number of symbols represented by
the class Symbol (see Fig. 3). In this class, the operation
recognizeFshape recognises the symbol and sets a value to
the attribute shapeFname. The symbols form different mean-
ingful units or groups, like variable, constant, operator,
equation number, etc. These units are used by the formFexp
operation of the class Expression form. This operation forms
the expression through the symbol-arrangement analysis.
Each Expression contains an operator that may be a unary
or binary operator, or other operators like integration, sum-
mation, sine, cosine, etc.

We use object-oriented methodologies as they have several
advantages over the other existing approaches. Since the
objects are inherently decoupled from each other the main-
tenance and enhancement of the system is easier. Reusability
[15] is another advantage of the proposed system. For
example, an existing OCR system can use the components
to recognise mathematics in the document.

3. MEs IN PRINTED DOCUMENT: A
QUANTITATIVE SURVEY

Our approach for processing MEs is based on a statistical
survey, and is hence expected to be robust and efficient.
For this purpose, a large number of documents drawn from
engineering and scientific books, technical journals, proceed-
ings, etc. were manually examined. We also examined the
software packages like Latex [16] and Microsoft Equation 3.0
[17] commonly used for laying out MEs inside a document.

The results of our study on the MEs of these documents
are summarised below. More detailed results can be found
in Chaudhuri and Garain [18].

I Total number of pages scanned is 10,400.
I Total number of pages containing at least one ME is 6700.
I Total number of MEs found is 11,820.
I The estimated Probability that a page contains at least

one ME is 0.64.
I The average number of MEs per page is 1.14.
I 150 different symbols were noted in the expressions. These

symbols can be classified into four groups: (i) numerals,
(ii) English characters, (iii) Greek letters, and (iv) special
symbols (e.g. ‘1’, ‘5’, etc.). Some of the most popular
symbols (excepting the English alphabet) are shown in
Table 1.

I The expressions found are (a) either printed in a separate
line or block, with white spaces above and below, or
(b) embedded directly into the text line.

I For the MEs printed as separate text lines the following
two important points are noted:
—Most of the MEs (61%) have equation or equality
numbers at the right hand side of the MEs.
—The mean value of white spacing between two text
lines is nearly 0.4 times the text height, whereas the
mean value of the white spacing above and below the

123Recognition and Interpretation of Mathematical Expressions

Table 1. Occurrence statistics of mathematical symbols (results manually computed on 11,820 expressions)

Sl. No. Symbol % of S1. No. Symbol % of
occurrences occurrences

1 5 94 21 a 4
2 1 2 / 93 22 = 4
3 () 60 23 m 3
4 Fraction Line 51 24 h 3
5 [] 35 25 d 3
6 { } 20 26 f 3
7 , . 18 27 l 3
8 * 15 28 p 3
9 S 15 29 s 3
10 e 12 30 Þ 3
11 | 7 31 3 3
12 < 5 32 ∀ 2
13 > 5 33 ¸ 2
14 . 5 34 % 2
15 , 4 35 % 2
16 P 4 36 ⇒ 2
17 √ 4 37 d 2
18 u 4 38 l 2
19 b 4 39 s 2
20 e 4 40 6 2

Table 2. Relative frequency of mathematical keywords

Keywords % of occurrences
log 5
exp 4
sin cos tan 4
max min 3
Lt lim 3
prob 2
avg 2
In 2

ME is about 1.8 times the text height (text height means
the height of the normal text; the point-sizes 10 and 12
are most common for technical documents).

I In the expressions, certain words represent mathematical
functions. We call them mathematical keywords, and treat
them as operators. The topmost 12 keywords and their
percentage of occurrences are given in Table 2.

4. DETECTION OF ME AREAS

Earlier, we discussed that an ME can appear either as a
separate line or as part of running text lines. In ME recog-
nition the first step is to detect the location of the ME in
the document. Though the problem of processing MEs has

attracted the attention of many scientists, very few studies
have addressed this detection problem.

Among the earlier reports, Lee and Wang [19] presented
a method of extracting MEs where they exploited some
basic expression forms, but did not provide any detail. More
recently, Toumit et al [20] proposed an approach for the
separation of mathematical formulas from standard text using
a character matching technique and propagating the label-
ling process of mathematical components around special
mathematical symbols. In other work, Kacem et al [21]
presented a method for formula extraction without character
recognition. Their method is based on finding the location
of the most significant symbol, and then extension to the
adjoining symbols is done using contextual rules. A fuzzy-
logic based labelling technique is also used.

In our approach, the MEs printed in separate lines are
detected without any character recognition. At first, the
text lines are detected by finding the valleys of the projce-
tion profile computed by a row-wise sum of grey values.
The position between two lines where the projection profile
height is at a minimum denotes the boundary between two
text lines. In this way, the MEs printed in separate lines
are also extracted as text lines.

Next, for a text line T, simple connected component
analysis gives us all the symbols present in that line. Let Yi

be the y co-ordinate (taking the top left-most pixel of the
document image as the origin) of the bottom-most row of
symbol SI, and n be the total number of symbols in T, then
the mean and Standard Deviation (SD) of Yi values are
calculated as follows:

124 B. B. Chaudhuri and U. Garain

Yi 5
1
n On

i 5 1

Yi

SD 5 !1
n O (Yi 2 Yi)2

Since, in a simple English text line, the bottom-most
rows of the majority of the symbols (except those having
descending parts) are nearly aligned on the base line, leading
to a small SD value. On the other hand, the symbols for
an ME (printed in a separate line) are generally scattered
over the region. So, these symbols contribute to a very large
SD. For computational ease, we calculate SSD instead of
SD as follows:

SSD 5
1
n On

i 5 1

Yi
2 2 S 1

n On

i 5 1

Yi D2

This SD value is a good measure for distinguishing an
ME from a text line. For example, Fig. 4 shows three text
lines of a document, where the first line contains normal
text; there is an embedded ME mixed with normal text in
the second line, and the third line contains only an ME.
The SD values are 2.44 and 3.72 for the first two lines,
respectively, whereas it is 16.37 for the third line.

So, if a text line Tm shows a SD value greater than a
predefined threshold, it is suspected that Tm contains an
ME. The presence of ME is further confirmed by testing
another property. The MEs printed in a separate line are
surrounded by wide white spaces.

For detecting embedded MEs (MEs mixed with normal
text) we employ a character recognition approach. Each
text line (except Tm9s) is checked to find one or more of
the mathematical symbols listed in Table 1. To avoid false
acceptance due to mis-recognition, some heuristics are used.
For example, sometimes the character ‘(’ may be confused
with ‘C’ , while ‘[’ may be mis-recognised as ‘E’. To avoid
this, both the left and right parentheses are searched. Simi-
larly, to decide that a text line contains square brackets,
both left ‘[’ and right ‘]’ brackets have to be detected. The

Fig. 4. Identification of MEs printed in separate lines. (a) Line (with
normal text only) having SD 5 2.44; (b) Line (with ME mixed
with normal text) having SD 5 3.72; (c) ME printed in a separate
line having SD 5 16.37.

presence of curly brackets ‘{’ and ‘}’ is also confirmed in a
similar way. When a binary operator like ‘5’, ‘1’, ‘3’, or
‘,’, etc. is detected in a text line, its presence is confirmed
by checking the left and right side of the operator. Normally,
the sides contain symbols from the English or Greek alpha-
bet, or numerals.

Once an embedded ME is found in a text line Tn, the
ME area is detected and extracted from the Tn. Let W1 be
the first word (words of a text line are distinguished by
looking at the vertical projection profile where gaps between
the words show up a reasonable long minima) from the left-
hand side that contains one or more mathematical symbols
in Tn. Construction of the ME area is started by including
W1. Next, the ME area is grown towards the left and right
sides by following the rules given below:
I If W1 contains only a binary operator, then both the

immediate left and right side words are included in the
ME area.

I Words adjacent to W1 (on the immediate left and right)
are included in the ME area, provided they contain:
—One or more mathematical symbols (including
brackets).
—Superscript or subscripts.
—Single or a series of dots.
—Numerals.
Figure 5(a) shows a document containing both embedded

and separate MEs. Figure 5(b) shows the extracted ME areas.

5. SYMBOL RECOGNITION

The design of a recognition system for mathematical symbols
is difficult because it has to deal with a large character set.
The set consists of Roman and Greek letters, operator
symbols with a variety of typefaces (normal, bold or italic),
brackets and abbreviation symbols (e.g. symbols for for all,
there exist). Different font sizes are used to designate
superscripts, subscripts and limit expressions. Martin [22]
presented a brief list of notational conventions found in
technical publications.

We employ the traditional character recognition approach
for the recognition of mathematical symbols. Approaches to
character recognition are popularly grouped into two categor-
ies, namely template matching and stroke feature-based rec-
ognition. Both approaches have their own advantages and
disadvantages. Template matching can be very accurate and
efficient if the test characters are identical with the stored
templates in shape and size. However, the approach can be
sensitive to positional changes and less flexible to font size
and style variations. On the other hand, stroke feature-
based approaches are flexible to font size and style variation,
but less reliable if the strokes are not correctly segmented
from the characters.

5.1. Grouping of Mathematical Symbols

For the purpose of recognition, we partition the mathemat-
ical symbols into two groups. The first group named group-

125Recognition and Interpretation of Mathematical Expressions

Fig. 5. Extraction of mathematical expressions. (a) Document page; (b) extracted MEs.

1 includes 50 symbols listed in Fig. 6. The second group
called group-2 includes another 100 symbols most of which
are mainly the Greek, Roman alphabets and numerals. The
group-1 symbols have relatively simpler shapes compared to
those of group-2 symbols and our recognition approaches are
different for these two groups.

Recognition of group-1 symbols is more important because
most of the group-1 symbols have very high rate of occur-
rence in MEs. Moreover, the embedded MEs are detected
through recognition of a few mathematical symbols belong-
ing to group-1. Hence, errors in recognising the group-1
symbols would affect the overall symbol recognition rate, as
well as the efficiency of detecting the embedded ME areas.

Fig. 6. List of group-1 symbols.

5.2. Recognition of group-1 Symbols

For the recognition of group-1 symbols, we use a feature-
based approach that is flexible to character font size and
style variation. Moreover, because of the shape simplicity of
these symbols, the stroke feature-based approach is robust
and efficient.

The features are chosen with the following consideration:
(a) robustness, accuracy and simplicity of detection;
(b) speed of computation; (c) independence of fonts; and
(d) needs for the classifier design. We consider simple stroke
features like (i) vertical line, (ii) horizontal line, (iii) V-
shape, (iv) VU-shape, (v) circle, (vi) circular arc, etc. Apart
from these strokes, other secondary features like (i) aspect
ratio of the symbol bounding box, (ii) slant angle of a
straight line, (iii) angle between two touching straight lines,
(iv) radius of a circle, etc., are also calculated.

For an input symbol S, the presence of the stroke features
is checked one by one. Secondary features like aspect ratio,
slant angle, etc., are also computed for S. Primary classi-
fication is done based on the stroke features present in S.
As more than one symbol (e.g. a ‘minus’ sign and a ‘fraction
line’) may belong to a single class, S is finally recognised
based on the secondary features. It may be noted that these
features are simple (mostly linear) in structure, and hence
quick and easy to detect. Their distortion due to noise can

126 B. B. Chaudhuri and U. Garain

be easily taken care of. They are quite stable with respect
to font variation.

5.3. Recognition of group-2 Symbols

The group-2 symbols mostly includes the Roman and Greek
letters. These symbols have more complex stroke patterns
than that of group-1 symbols. We have employed a hybrid
technique that can combine the positive aspects of the
feature- and template-based approaches.

In our system, we consider a set of size normalised feature
vectors such as (i) crossing count, (ii) projection profile,
(iii) zonal optical density, (iv) accumulated curvature, etc.
These features have been used by previous researchers [23,24]
for developing OCR systems, and their descriptions are
omitted here for brevity.

A set of training samples of various fonts in different
sizes and styles are taken, and the feature vectors for these
samples are mapped in a multidimensional feature space.
Nearly 2000 training samples (on average, 20 samples per
symbol) that represent typical variations of the characters
are correctly chosen and mapped in this way. Each sample
represents a point in the multidimensional space, and the
clustering of the points is observed. The span of the points
for each character is mapped by a functional form.

In the classification phase, the normalised features corre-
sponding to the input (target) symbol T are computed and
mapped in the feature space. Let ft be the feature vector
for T and fi be the feature vector for the source symbol Si.
In the feature space, we have 100 such fi’s for 100 group-2
symbols. We find a distance d(ft, fi) which is minimum over
all i’s. Finally, T is recognised as Si if d(ft,fi) is less than a
pre-defined threshold (d). Mathematically, T belongs to Si if

d(fs,fi) , d(fs,fj) ∀j and i Þ j

and

d(ft,fi) , d.

To speed up the process, if a character is found inside a
word the recognition engine consults the list of mathemat-
ical keywords (discussed in Section 2) for a quick recognition
of the character. A word is detected inside a ME when
more than one Roman character is found side by side and
the inter-character gap is within a predefined threshold.
During symbol recognition, the system stores some format
information (attributes of class Symbol, as shown in Fig. 3)
against each mathematical symbol regarding its size, relative
position (bounding box coordinates), etc., along with its
recognised shape name. This format information is used to
categorise a symbol as superscript/subscript, upper or lower
limit, etc., as well as to arrange the symbols in a meaning-
ful string.

5.4. Resolving Ambiguities in Symbol Recognition

In MEs, there are symbols that have more than one mean-
ing. For example, a dot can represent a full-stop sign, a
decimal sign, a multiplication symbol, part of a series of

dots to indicate continuation (‘%’), a symbol annotation
(a), part of symbols like ‘[’ or ‘{,’ or noise. Our symbol
recognition procedure tries to resolve such ambiguities by
using some contextual information. The notational conven-
tions for writing MEs define this contextual processing. For
example, a horizontal line segment, say l, is recognised as
(i) a fraction line: if there are symbols above and below l;
(ii) a symbol annotation (‘a’): if there is a symbol(/s) only
below l; (iii) an underscore (‘F’) or a minus sign (‘2’):
confirmed by checking the position of the l’s bounding box
relative to the bounding boxes of its left and right symbols;
(iv) part of another symbol like ‘5’, ‘>’, ‘#’, ‘$’, ‘;’, ‘#’,
or ‘$’ etc.: confirmed by checking the presence of other
shapes like one or more horizontal lines of equal length or
shape like ‘,’, or ‘,’, etc.; (v) a simple horizontal line:
when l does not convey any special meaning, it is understood
that l is a simple horizontal line. Sometimes, such a pure
horizontal line (instead of series of dots or blank spaces)
exists in between the expression and the expression number.

As for another example, a slanted line may convey differ-
ent meanings that are determined as follows: (i) a division
sign (‘/’): if both sides contain symbol(/s); (ii) a symbol
annotation (‘a9’): it gets confirmed by checking its bounding
box position to the bounding box of its left-side symbol
(size information also helps in such case); (iii) seven (‘7’):
sometimes the slant line may be a part of a broken ‘7’. This
is confirmed by checking the presence of other numerals on
its both left and right sides.

6. ARRANGEMENT OF SYMBOLS

At the end of the character recognition stage, a ME is
represented by a list of symbols in random order. So, we need
to arrange these symbols into a character string satisfying the
notational conventions of the 2D language for mathematical
expression. Arrangement of symbols is done in two stages.
In the first stage, the spatial relationships among the symbols
are identified. Small symbol groups (e.g.xy,ai, etc.) are formed
by exploiting the spatial relationships among the symbols.
Once these symbol groups are formed, logical relationships
among these groups are determined. Two or more symbol
groups form small expressions based on the logical relation-
ship they have. These small expressions finally construct the
full expression.

6.1. Formation of Symbol Groups

Formation of symbol groups is important to recognise an
ME, because same set of symbols conveys different meaning
depending upon the spatial relationships among the symbols.
For example, ‘xy’ and ‘x y’ both involve the same set of
symbols, (i.e. ‘x’ and ‘y’), but in the first case the symbols
belong to a single group (a superscripted variable), whereas
in the second case, the two symbols form two different
groups (two simple variables).

In our approach, spatial relationships among the symbols
are determined by identifying the physical structure of the

127Recognition and Interpretation of Mathematical Expressions

ME. For this purpose, we use the bounding-box coordinates,
the coordinates of the centroids and the size information of
the symbols. Superscripts, subscripts, and upper or lower
limits of a symbol are identified by their size and bounding
box coordinates w.r.t. that symbol. The operations
formFvariable(), formFconstant(), formFoperator() (see Fig. 3)
take care of the formation of variables, constants, oper-
ators, respectively.

6.2. Identification of Logical Relationships

The logical relationship among different symbol groups are
determined to construct the final expression. A number of
intermediate expressions are formed around each operator.
The formFexp() operation of the Expression class (see Fig.
3) forms an expression around an operator. This operation
is guided by a set of rules and the physical layout of the
ME. The rules define whether an expression involving an
operator is valid or not. The rules are made as general as
possible. For example, our system covers 20 forms of inte-
grals, including single integrals, line integrals, double
(surface) integrals, and triple (volume) integrals, all with
various combinations of limits. Similarly, five different types
of summation with various combinations of limits are
covered by the rules. Some of the rules are shown in
Fig. 7.

EXP stands for expression, which includes all general
forms of expression involving variables and constants. It
may be a simple variable, a numeral, or a variable with
subscripts or superscripts, or a function name or statement.
Expressions within parentheses (e.g. (EXP), [EXP], etc.) are
also treated as expressions.

The attribute operator of the class Expression determines
which rule is to be applied to form the expression. The
operation formFexp() constructs an expression and returns a
pointer to the root of a parse tree generated for the
expression. The parse tree involves the operator and its
operands.

The operation codify() of the class ME encodes the
expression in an HTML-like code. Since this operation can
be inherited into other subclasses of ME, classes like Variable,
Expression, Operator, etc. also employ this operation. Hence,
each of the variables, operations, expressions, etc. is encoded
whenever it is identified.

Figure 8(a) shows an equation and Fig. 8(b) shows details
of the object instances created for this equation. For the
sake of simplicity, the instances for the class Symbol are not
shown in this diagram. The parse tree generated for each
of the object instances of the class Expression is shown in
the figure. A codified version for each of the ME units (like
variables, equation number, constants, etc.) are also shown.
The final code for the entire expression is shown separately
in Fig. 8(c). Figure 9 shows the final coding of two more
MEs. Figures 9 (a) and (c) show two expressions, and coding
of these expressions are shown in Figs 9 (b) and (d), respect-
ively.

Fig. 7. Some of the rules used for arrangement of symbols.

7. TEST RESULTS

Algorithms for the detection of ME areas, and the recog-
nition and arrangement of symbols have been tested on 120
technical documents containing 140 MEs. Out of these 120
documents, 20 are taken from the UW-III English/Technical
Document Image Database (prepared by the Intelligent Sys-
tems Laboratory at the Department of Electrical Engineering
352500, University of Washington). Figure 10 presents some
of the test documents. Both clean and degraded versions of
the documents are used. Degraded documents are generated
synthetically by following a model proposed by Kanungo et
al [25].

Our system is implemented on a 166 MHz Pentium PC
with 32 MB RAM. The object-oriented design is
implemented using the C11 language on Microsoft Visual
C11 (ver. 5.0) platform. Documents are scanned at a
resolution of 300 dpi. On average, the document images are
of 300032000 pixels in size. It is observed that the system
is efficient in terms of processing time. On average, it takes

128 B. B. Chaudhuri and U. Garain

Fig. 8. Processing of mathematical expression. (a) A mathematical
expression; (b) the object instances created to process the expression
in (a); (c) final coding of the expression in (a).

Fig. 9. Coding of mathematical expressions.

only 56 seconds to process a document. This also includes
the time required for binarising a grey-level image.

Our algorithm for detecting ME areas properly finds 132
MEs (both separate and embedded, i.e. mixed with text) in
the documents. This shows about a 94.29% accuracy.

Detailed results are given in Table 3. Among the eight
unidentified MEs, six are embedded MEs only. The other
two MEs are missed because of the complicated structure of
the documents, although they are printed in separate lines.
In these cases, our algorithm fails to analyse the document
structure itself. On the other hand, for three cases a part
of normal text line is misidentified as embedded MEs, where
some text symbols are wrongly recognised as mathematical
symbols. We manually detected and extracted the eight MEs
(not identified automatically) to test the remaining modules
of the system.

Our system achieves a high accuracy in recognising both
the group-1 and group-2 symbols. The overall correct symbol
recognition rate is 97.50%. Details of the recognition results
are given in Table 4. The recognition rate for the group-1
and group-2 symbols is 98.10% and 97.12%, respectively. It
is observed that the stroke/feature analysis approach performs
better than the feature-based template matching techniques.
We have identified two reasons behind this: (i) the number
of group-1 symbols is less than that of group-2 symbols; and
(ii) the group-1 symbols have simpler shapes than those of
the group-2 symbols. The recognition errors are mainly
because (i) the character font is quite different from the
commonly used fonts; (ii) the quality of the documents’
paper is poor; and (iii) poor print quality.

The arrangement of symbols is somewhat difficult. It is
even more difficult to quantify the success rate for the
arrangement of symbols. Out of 140 MEs considered for
testing the system, 113 MEs are coded (or arranged) prop-
erly. This shows an overall 80.71% success rate in processing
MEs. However, the performance of the symbol arrangement
module should not be judged in this way, because an
incorrect arrangement of only one or two symbols changes
the meaning of the expression drastically. For a wrongly
arranged ME, we measure the symbol placement error, which

Table 3. ME identification results

ME type #MEs Correct Wrong #False
detection detection detection

Embedded 60 64 6 3
Separately 80 78 2 nil
printed
Total 140 132 8 3

Table 4. Symbol recognition results (results taken on 140
expressions)

Symbol #Symbols Correct Mis- Rejection
type recognition recognition

Group-1 942 924 15 3
Group-2 1530 1486 36 8
Total 2472 2410 51 11

129Recognition and Interpretation of Mathematical Expressions

Fig. 10. Some typical test documents.

is defined as the number of symbols not properly arranged
for that ME. It is observed that the symbol placement error
lies between 2 and 4, while the average number of symbols
per ME is 17.65. For details, see Table 5.

The errors in the symbol arrangement phase are due to
the following factors: (i) mis-recognition (or rejection) of
the symbols during the symbol recognition phase; and
(ii) incorrect interpretation of the ME structure, or error in

identification of the logical relationship among a group of
symbols. The first factor is termed as a recognition error, and
the second as a parsing error. The effect of these two types
of errors is shown in Table 6. Since some of the MEs are
affected by both errors, the total number of MEs affected
by these errors is not 27 as it is in Table 5.

An example where our system fails to analyse the ME
properly is Πiai. Here, the system misinterprets ai as a

130 B. B. Chaudhuri and U. Garain

Table 5. Symbol arrangement results

#ME #Properly #Wrongly #MEs with N symbol placement errors
arranged arranged

N 5 1 N 5 2 N 5 3 N 5 4 N . 4

140 113 27 2 7 8 7 3

Table 6. Effect of recognition and parsing errors

Error type #Symbols affected #MEs affected

Recognition error 62 23
Parsing error 27 14

superscript of i of the product sign, and codes the ME as
the product over iai. Similarly, our system represents ah/w as
a quantity that is a times h divided by w (ah/w), rather
than a raised to power h divided by w.

In some cases, a symbol recognition error leads to an
incorrect arrangement. As a simple example, the symbol ‘u’
in ui is occasionally mis-recognised as the numeral zero
(‘0’). Since no numeral can be subscripted, the variable is
incorrectly interpreted as ‘0i’ (i.e. zero into i). Here a warning
can be issued that this is a meaningless interpretation. Such
a warning can be issued in all situations.

8. CONCLUSIONS

In this paper, we have presented a system for processing
mathematical expressions in printed documents. The
approach is built upon the structural features and the formats
of the MEs found in technical documents. The method of
finding expressions in a document offers the option of
creating a database of mathematical expressions after scan-
ning a large volume of technical documents. To arrange the
recognised symbols, we use their bounding-box coordinates,
size information and the coordinates of the centroids, and
apply some predefined rules to form meaningful symbol
groups. These rules can easily be updated to accommodate
any new form of such symbol groups. Proper arrangement
of the symbols along with their size and style information
helps in re-composing the MEs more faithfully. Moreover,
the system outputs a coded version of the MEs that helps
in converting a paper-based document into its hypertext ver-
sion.

Object-oriented methodologies have been used to
implement the system. This makes the maintenance and
enhancement of the system easier than the traditional pro-
cedure oriented approach. Reusability is another advantage
of the proposed system.

As an extension of the present study, we are in the
process of designing an approach to automate the system
performance evaluation, and to do the comparison among

the different systems proposed for recognising MEs. In this
context, a database containing a considerable number of
documents of mathematical expressions with proper
groundtruth would be very helpful. The UW-III
English/Technical Document Image Database (prepared by
the Intelligent Systems Laboratory at the Department of
Electrical Engineering, University of Washington) contains
25 pages of mathematical formulae and groundtruth in XFIG
and LaTeX. This could be a starting point for evaluating
the system performance.

References

1. Blostein D, Grbavec A. Recognition of mathematical notation.
In: H Bunke, PSP Wang (eds). Handbook of Character Recog-
nition and Document Image Analysis. World Scientific, 1997:
557–582

2. Anderson RH. Syntax-directed recognition of handprinted 2-D
mathematics. PhD Dissertation, Harvard University, Cambridge,
MA, 1968

3. Belaid A, Haton J. A syntactic approach for handwritten math-
ematical formula recognition. IEEE Trans Pattern Analysis and
Machine Intelligence 1984; 6(1):105–111

4. Chang SK. A method for the structural analysis of 2-D math-
ematical expressions. Information Sciences 1970; 2(3):253–272

5. Okamoto M, Twaakyondo H. Structure Analysis and Recog-
nition of Mathematical Expressions. IEEE Press 1995: 430–437

6. Okamoto M, Miyazawa H. An experimental implementation of
a document recognition system for papers containing mathemat-
ical expressions. In: Structured Document Image Analysis.
Springer-Verlag, 1992: 36–53

7. Grbavec A, Blostein D. Mathematics recognition using graph
rewriting. Proceedings of Third International Conference on
Document Analysis and Recognition 1995: 417–421

8. Larvirotte S, Pottier L. Mathematical formula recognition using
graph grammar. Proceedings of SPIE 1998; 3305

9. Lee H, Lee M. Understanding mathematical expressions using
procedure-oriented transformation. Pattern Recognition 1994;
27(3):447–457

10. Faure C, Wang Z. Automatic perception of the structure of
handwritten mathematical expressions. In: Computer Processing
of Handwriting. World Scientific, 1990: 337–361

11. Chou P. Recognition of equations using a two-dimensional
context-free grammar. Proceedings of SPIE Visual Communi-
cation and Image Processing IV 1989: 852–863

12. Berard EV. Essays on Object-Oriented Software Engineering.
Addison-Wesley, 1993

13. Sengupta P, Chaudhuri BB. Object-Oriented Programming: Fun-
damentals and Applications. Prentice Hall, 1998

14. Rambaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W.
Object-Oriented Modeling and Design. Prentice-Hall, 1991

15. Bellinzona R, Gugini MG, Pernici B. Reusing Specifications in
OO Applications. IEEE Software 1995: 65–75

131Recognition and Interpretation of Mathematical Expressions

16. LATEX: A document Presentation System. Addison-Wesley,
1986

17. Microsoft Word 97: Copyright  1983–1996. Microsoft Cor-
poration, USA

18. Chaudhuri BB, Garain U. An approach for processing Math-
ematical Expressions in printed document. In: Seong-Whan Lee,
Y. Nakano (eds) Lecture Notes in Computer Science, Vol.
1655, Document Analysis Systems: Theory and Practice.
Springer-Verlag, 1998: 310–321

19. Lee H, Wang J. Design of a mathematical expression recognition
system. Proceedings of 3rd International Conference on Docu-
ment Analysis and Recognition 1995: 1084–1087

20. Toumit JY, Garcia-Salicetti S, Emtoz H. A hierarchical and
recursive model of mathematical expressions for automatic read-
ing of mathematical documents. Proceedings of Fifth Inter-
national Conference on Document Analysis and Recognition
(ICDAR) 1999: 119–122

21. Kacem A, Belaid A, Ahmed MB. EXTRAFOR: automatic
EXTRAction of mathematical FORmulas. Proceedings of Fifth
International Conference on Document Analysis and Recog-
nition (ICDAR) 1999: 527–530

22. Martin W. Computer input/output of mathematical expressions.
Proceedings of 2nd Symposium on Symbolic and Algebraic
Manipulations 1971; 78–87

23. Bokser M. Omnidocument Technologies. Proceedings of the
IEEE 1992; 80(7):1066–1079

24. Ho T, Baird HS. Perfect Metrics. Proceedings of Int Conf on
Document Analysis and Recognition 1993: 593–597

24. Kanungo T, Haralick RM, Phillips I. Non-linear local and global
document degradation models. Int Journal of Imaging Systems
and Technology 1994; 5(4):220–230

Professor B. B. Chaudhuri received his BSc (Hons), BTech and MTech degrees
from Calcutta University, India in 1969, 1972 and 1974, respectively, and his
PhD degree from the Indian Institute of Technology, Kanpur in 1980. He joined
the Indian Statistical Institute in 1978, where he served as the Project
Co-ordinator and Head of National Nodal Center for Knowledge Based Comput-

ing. Currently, he is the head of Computer Vision and Pattern Recognition Unit
of the institute. His research interests include pattern recognition, image pro-
cessing, computer vision, natural language processing and digital document pro-
cessing, including OCR. He has published about 200 research papers in reputed
international journals, and has authored the books entitled Two Tone Image
Processing and Recognition (Wiley Eastern, 1993) and Object Oriented Programming:
Fundamentals and Applications (Prentice Hall, 1998). He was awarded the Sir J.
C. Bose Memorial Award for the best engineering science oriented paper in
1986, the M. N. Saha Memorial Award (twice) for the best application oriented
papers in 1989 and 1991, the Homi Bhabha Fellowship award in 1992 for OCR
of Indian Languages and computer communication for the blind, the Dr. Vikram
Sarabhai Research Award in 1995 for his outstanding achievements in the fields
of Electronics, Informatics and Telematics, and the C. Achuta Menon Prize in
1996 for computer-based Indian language processing. He worked as a Leverhulme
visiting fellow at Queen’s University, UK in 1981–82, as a visiting scientist at
GSF, Munich, and as a guest in the faculty at the Technical University of
Hannover during 1986-88, and again in 1990–91. He is a Senior Member of the
IEEE, the membership secretary (Indian Section) of the International Academy
of Sciences (India), a Fellow of the International Association of Pattern Recog-
nition, a Fellow of the National Academy of Sciences (India), a Fellow of the
Institution of Electronics and Telecommunication Engineering (India), and a
Fellow of the Indian National Academy of Engineering. He is serving as an
associate editor of Pattern Recognition, Pattern Recognition Letters (Elsevier Science)
and VIVEK, as well as guest editor of a special issue of the Journal IETE on
Fuzzy Systems.

U. Garain received both of his BE and ME in computer science from Jadavpur
University, Calcutta in 1994 and 1997, respectively. He worked in two multi-
national software firms for one and a half years. Later, he joined as research
personnel at the Indian Statistical Institute, Calcutta, where he is now on the
full time faculty. He is one of the key scientists involved in the development of
a bilingual (Devnagari & Bangla) OCR system. His areas of interest include
digital document processing, an OCR system development for Indian language
scripts, document data compression, etc. Over the last two years, Mr Garain has
published several technical papers in reputed international journals and confer-
ences.

Correspondence and offprint requests to: Prof. B.B. Chaudhuri, Computer Vision
and Pattern Recognition Unit, Indian Statistical Institute, 203 B.T. Road,
Calcutta 700 035, India. Email: bbc@www.isical.ac.in

