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Abstract: This paper presents a system for invariant face recognition. A combined classifier uses the generalisation capabilities of both
Learning Vector Quantisation (LVQ) and Radial Basis Function (RBF) neural networks to build a representative model of a face from a
variety of training patterns with different poses, details and facial expressions. The combined generalisation error of the classifier is found
to be lower than that of each individual classifier. A new face synthesis method is implemented for reducing the false acceptance rate
and enhancing the rejection capability of the classifier. The system is capable of recognising a face in less than one second. The well-
known ORL database is used for testing the combined classifier. Comparisons with several other systems show that our system compares
favourably with the state-of-the-art systems. In the case of the ORL database, a correct recognition rate of 99.5% at 0.5% rejection rate
is achieved.
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1. INTRODUCTION

Invariant face recognition is a challenging task, especially
in the absence of highly controlled environments and recog-
nition constraints. Recent progress of computer technology
has made us expect that the face will play a key rule in
future human-machine interaction and advanced communi-
cations, such as multimedia and low-bandwidth video-tel-
ephony. This work is concerned with the task of face
classification only. Face detection is beyond the scope of
this study. In Hoogenboom [1], Daugman [2], Rowley et al
[3] and Sung and Poggio [4], excellent face detection results
were reported. A detailed overview of face recognition
approaches can be found in the extensive surveys by Chel-
lapa et al [5], Valentin et al [6] and Samal and Iyanger [7].
Recent research focuses on pose invariant face recognition.
In this paper, we present a neural network-based combined
classifier for invariant recognition. Combining component
classifiers into a composite classifier have been successfully
used in various application fields such as handwritten charac-
ter recognition [8], and face recognition [9,10]. Combined
classifiers could be broadly categorised as:
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1. category-based classifiers (heterogeneous classifiers that
come from different model classes), and

2. parameter-based classifiers (homogeneous classifiers that
come from the same model classes).

The homogeneous classifiers could be trained on different
feature vectors. Heterogeneous classifiers could be trained
either on the same feature vectors or on different feature
vectors.

The combined classifier results in better generalisation
and higher accuracy than the most accurate component
classifiers under the condition that the component classifiers
are independent and unbiased. Selection of the component
classifiers is not yet well known [11]. Most of the recent
research work in this field tries to combine the most power-
ful components. An exception is the approach described in
Chuanyi and Sheng [12], where a learning method based
on combination of weak classifiers (linear perceptrons) is
reported. The goal is to obtain classification systems with
both good generalisation performance and efficiency in space
and time. To select the component classifiers, a randomised
algorithm is proposed. A majority vote is then used to
combine the selected weak classifiers. Experiments demon-
strated a combination of weak classifiers with good generalis-
ation performance and a fast training time on a variety of
test problems and real applications. The price paid to achi-
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eve this is a larger space-complexity compared to that of a
well-trained classifier.

The classifier that is implemented in this paper is a
category-based classifier that combines the generalisation
characteristics of both the LVQ and RBF classifier networks.
The problem which must be solved is that the two compo-
nent classifiers always agree on the final decision during the
test phase. This leads to a useless combination. To overcome
this problem, the problem of separating familiar from non-
familiar faces, will be addressed. Separating the training set
into two sets of familiar and non-familiar faces, and training
one of the classifiers on the first set and the second classifier
on the second set, helped in improving the generalisation
capability of the combined classifier. Generating new faces
from combinations of the faces, which confuse the classifiers
using a LVQ classifier, enhances the rejection performance
of the individual classifiers.

In the following sections, we describe each component of
the proposed system. Section 2 gives a short overview of
the previous face recognition techniques, specifically those
applied to the ORL database [13]. Section 3 described the
ORL database used in this research, and the preprocessing
of face images. Section 4 presents the individual classifiers
(Learning Vector Quantisation classifier and Radial Basis
Function classifier) and the combined classifier. The experi-
mental results of both the individual and combined classifiers
are presented and discussed in Section 5. In Section 6, a
comparison is performed between the proposed system and
the previously reported systems in the literature. Finally, the
summary and conclusions are given in Section 7.

2. OVERVIEW

Face recognition approaches could be categorised into two
major categories: feature-based approaches and holistic
approaches. Figure 1 shows the different sub-categories of
each approach. A detailed overview of face recognition
approaches can be found in several extensive surveys [5–7].
In this section, the review is restricted to the discussion of
those approaches that were applied to the ORL image
database, which was developed at the Olivetti Research
Laboratory in Cambridge [13].

Fig. 1. Face recognition techniques.

2.1. Holistic Approaches for Face Recognition

The eigenface approach described by Turk and Pentland
[14] is one of the most popular approaches for face recog-
nition. The principal component analysis is applied on the
training set of faces. The eigenface approach assumes that
the set of all possible face images occupies a low-dimensional
subspace, derived from the original high-dimensional input
image space. The eigenface space is an approximation of
face patterns in the training set using data clusters and their
principal components. An unknown face is classified if its
distance to the clusters is below a certain threshold, using
an appropriate classifier. Turk and Pentland [14] reported a
correct recognition rate of 95% in the case of the FERRET
database, containing about 3000 different faces. The tested
face images seem to be taken with little variation in view-
point and lighting, although with significant variation in
facial expression. The major drawback of the eigenface
approach is that the scatter being maximised is due not
only to the ‘between-class scatter’ that is useful for classi-
fication, but also to the ‘within-class scatter’ that, for classi-
fication purposes, is unwanted information [15].

Many other researchers have implemented the eigenface
approach for comparison purposes. Belhumeur et al [16] used
the Fisherface method to project face images into a three-
dimensional linear subspace. The projection is based on
Fisher’s Linear Discriminant in order to maximise the
‘between-class scatter’ while minimising the ‘within-class
scatter’. This approach is proved to be more efficient than
the eigenface approach, especially in the case of variable
illumination. The experiments were performed on only 150
faces from 15 subjects selected from the ORL database. The
results show that the eigenface approach is quite robust when
dealing with glasses and facial expressions, but sensitive to
scale, pose and illumination. The correct recognition rate
achieved is 95% for only 150 images, selected from the 400
images of the ORL database.

In Lawrence et al [15], testing the eigenface method on
the ORL database resulted in 89.5% correct recognition
rate. Both a convolutional neural network and a self-organis-
ing feature map classifier were used for invariant face recog-
nition. This system was tested on the ORL database, and
resulted in a correct recognition rate of 96.2% for the case
of a training set, including five faces per person and a test
set including five faces per person.

In Lin et al [17], a Probabilistic Decision-Based Neural
Network (PDBNN) is described for face recognition. While
the system performance in the case of the FERRET database
is 99%, its performance for the case of the ORL database
is 94%. The face recognition time is less than 0.1 seconds
on an SGI Indy machine.

In Feitosa et al [18], the performance of both the Linear
Discriminant Analysis (LDS) and a Gaussian Mixture Model
(that is based on the Radial Basis Function (RBF) network)
is compared. Experiments are performed on the ORL datab-
ase. The database is divided into a training set and a testing
set. Each set includes 200 randomly selected images (five
images × 40 subjects). For implementation convenience all
images were first resized to 64 × 64 pixels. Each image is
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then represented by one vector, which is obtained by simply
concatenating the columns of the image matrix. The Princi-
pal Component Analysis (PCA) is first used for dimensional-
ity reduction by keeping only the most significant 50 eigen-
faces. Both LDA and RBF classifiers are then trained on
the most significant eigenfaces. The results indicate that the
more general model underlying the RBF classifier does not
bring any significant performance compared with the LDA
approach. The best average recognition rate (95.5%) of the
RBF approach was obtained for 50 eigenfaces working with
110 neurons in the RBF hidden layer. The average recog-
nition rate for the LDA was 95.7% when using 39 Most
Discriminant Features (MDFs) computed on 50 Most
Expressive Features (MEFs). The ability of the RBF network
to use more than one Gaussian to describe the population of
each group brought no significant performance improvement,
when compared to the less computation intensive LDA
classifier. Training the classifiers on facial feature vectors
does not consider the textural characteristics of the face.
Using the RBF classifier with only 110 hidden neurons
means less generalisation for variability. More neurons mean
a better chance to encompass a wider range of poses and
scales. In addition to that, the training set is selected
randomly, which could lead to unlearned variability situ-
ations.

In Srinivas and Wechsler [9], a hybrid architecture is
used for forensic classification and retrieval tasks. The clas-
sifier consists of an ensemble of RBF networks and inductive
decision trees. Experimental results, proving the feasibility
of the approach yielded 96% accuracy for surveillance, using
a database consisting of 904 images corresponding to 350
subjects. It has been shown that when the connectionist
Ensemble RBF (ERBF) model is coupled with the Inductive
Decision Tree, the performance improves over the case
when only the ERBF module is used.

In Zhang and Flucher [10], a Group-based Adaptive Toler-
ance (GAT) tree of neural networks is described for trans-
lation invariant face recognition. The problem of classifier
fusion is addressed. The tree is capable of handling large
databases with large number of classes and noisy inputs, and
is capable of being upgraded to recognise new tasks without
the need for retraining. The face recognition system locates
the captured faces using MLP neural networks. A GAT tree
is used in the middle level for face recognition, using
normalised facial images. The face is classified either as a
front face, tilted to the left, tilted to the right, rotated to
the left, or rotated to the right. Successful classification is
followed by recognition of translation invariant faces by
adaptively growing new nodes in the GAT tree in tolerance
space. Simultaneously, faces with glasses and/or beards are
classified using the same (GAT tree) technique. A higher
level of recognition used neural networks, fact bases, rule
bases, knowledge bases and reasoning networks to perform
more intelligent recognition. Each node in the tree consists
of a neural-network group. Experiments were performed on
28 × 28 grey level images. For front face recognition, 87
different perspective faces were chosen as training exemplars,
and 693 faces for testing purposes. The GAT tree tests

resulted in only one error case, which corresponds to an
error rate of only 0.15%. Similar experiments were carried
out for tilted and rotated face recognition. After training,
GAT trees were able to recognise titled and rotated faces
with similar confidence levels. Training is performed on 136
faces, and testing with 653 faces. The observed errors for
tilted and rotated face recognition were 0.16% and 0.31%,
respectively. To recognise front beard faces, six faces were
chosen to train each GAT node (three front beard faces,
three non-beard faces), with 70 faces reserved for testing.
The outputs of the network group were all greater than 0.92
for the four front beard face test cases. For the remaining 66
people (not front beard faces), the outputs of one GAT
tree node were less than 0.92. The tolerance of the GAT
tree to noise was tested, and is found to be more than that
of the general trees.

2.2. Feature-Based Approaches for Face
Recognition

In Samaria [13], a Hidden Markov Model (HMM) based
method is described for the extraction of facial features. An
image is first converted into a one-dimensional vector of
pixel intensities. The intensity vector can be used to train
the HMM, which will then partition the sequence into a
number of feature states. An HMM is primarily characterised
by a transition probability matrix A, that records the tran-
sitions from one feature state to another, and an output
probability matrix B, that records the probability of going
from a state to itself. A trained HMM on a sequence
captures different aspects of the face image. Both matrices
provide strong discrimination for the various subjects. A
separate HMM was trained for each subject in the ORL
database, and the resulting models were used to classify
unknown images. The statistical features obtained by the
HMM have been shown to correspond to physical features
as understood by humans when structural information is
used to build the model. Using five training faces per person
resulted in 95% correct recognition.

In Hagen [19], a Fourier Spectrum analysis technique is
used for face recognition. Recognition is done by finding
the closest match between feature vectors containing the
Fourier coefficients at selected frequencies. A template-based
approach uses 27 Fourier coefficients to yield 98% correct
recognition. The coefficients which encompass the highest
variance are selected. Classification of the transform coef-
ficients is performed using the Euclidean minimum distance
classifier. Experiments were performed on the ORL face
database. The author compared the proposed Fourier Spec-
trum technique together with the Euclidean classifier with
both the Back-Propagation (BKP) neural network and the
eigenface method. The three different techniques described
previously indicate that the Fourier Transform based system
shows superior performance (98%) when compared to both
the eigenface (94%) and BKP neural network (96.5%)
methods.

In Ben-Arie and Nandy [20], a Volumetric/iconic Fre-
quency domain Representation (VFR) model-based system
is tested on the ORL database, and resulted in 92.5% correct
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classification for the case of five training faces per individual.
Using eight training faces resulted in 100% correct recog-
nition. The major drawback of this system is that a face
can be recognised in 320 seconds.

In Kin-Man and Hong [21], an analytic-to-holistic
approach is introduced for identification of faces at different
perspective variations. The ORL-database is used in the
experiments. Only one upright frontal face is selected for
each of 40 individuals. Among the rest of the faces, they
selected 160 images as a testing set. About half of the faces
are upright and have a small rotation on the y-axis. The
other half show different amounts of perspective variations.
Fifteen feature points are located on a face. A head model
is proposed, and the rotation of the face can be estimated
using geometrical measurements. The positions of the feature
points are adjusted so that their corresponding positions for
the frontal view are approximated. A similarity transform is
then used to compare the feature points with pre-stored
features. In addition to that, eyes, nose and mouth are
correlated with corresponding patterns in a database. Under
different perspective variations, the overall recognition rates
are over 84% and 96% for the first and the first three likely
matched faces, respectively.

In Li and Lu [22], a classification method, called the
Nearest Feature Line (NFL), is proposed for face recognition.
The line passing through two feature points in the eigen-
space of the same class is used to generalise any two feature-
points of the same class. The derived FL can capture more
variations of face images than the original points. A nearest
distance-based classifier is used. The nearest feature line
method achieved an error rate of 3.125%, and the authors
claim that it is the lowest reported rate for the ORL
database. The authors expect this improvement to be due
to the feature lines’ ability to expand the representational
capacity of available feature points, and to account for new
conditions not represented by original prototype face images.
The error rate of the proposed method is 43.7–65.4% of
that of the standard eigenface method.

In Sutherland et al [23], an input image containing the
entire face is broken up into eight features of interest: the
eyes, the bridge of the nose, nostrils, mouth, chin, hair and
the entire face. The Vector Quantisation (VQ) of the facial
features is performed after these features have been extracted
from the entire image. One vector quantiser is dedicated to
each of the eight features used. The vector quantisers are
used here for data reduction. The VQ process thus yields a
set of indices for all eight features, representing the most
likely vectors used to code the subject face. The VQ algor-
ithm was first trained on 300 images acquired from 30
subjects. Another 300 images were used for testing. The
images were frontal face information only, and the size and
orientation were kept approximately constant throughout
the experiment. Ten images of each person were used to
construct the database of signatures. Some facial parts (entire
face, hair, chin and some parts of the nose) are spatially
sub-sampled due to their relative unimportance in frontal
face recognition. An additional image of each person was
manually segmented and used to form the vector quantiser

codebook for each feature. The facial features of a test
vector are used to obtain a probability measure for those
features belonging to a particular individual. A multiplicative
accumulation is used to obtain the probability that all
eight features present are a plausible representation of the
individual under test. The highest probability score is then
used to locate the most likely match for the test face.
The data regarding facial inter-relationships has not been
integrated in the VQ coefficient analysis. The test results
for 300 test images were 89.19%. The VQ technique
described above suffers from the following deficiencies:

1. Manual intervention for preparation of eight training
facial features.

2. Elimination of the inter-relations between the eight
facial features.

3. Only frontal faces were considered in the database.

In Wiskott et al [24], an elastic graph-matching algorithm
is used with a neural network for face recognition. Faces
are stored as flexible graphs or grids with characteristic
visual features (Gabor features) attached to the nodes of
the graph (labelled graphs). The Gabor features are based
on the wavelet transform, and have been shown to provide a
robust information coding for object recognition (invariance
against intensity or contrast changes). Furthermore, Gabor-
features are less affected by pose, size and facial expression
than raw grey level features. For image matching against a
stored graph, the graph location in the image is optimised.
It has been shown that Elastic Graph Matching can success-
fully recognise faces from facial line drawings. The efficiency
of the Gabor-wavelets in recognising line drawings is due
to the fact that line drawings have dominant orientations
of bars and step edges, and the Gabor-code is also dominated
by orientation features. Gender classifications experiments
performed on line drawings resulted in a correct-decision
rate of better than 90%.

2.3. Summary and Discussion of Previous Work

Table 1 summarises the results of the previously described
approaches. The previous overview leads to the following
conclusions:

1. Early research in the face recognition field concentrated
on the extraction of geometrical features for a description
of the shape of facial components like the mouth, eyes
and muscle motion [5]. Since faces are dynamic objects
that undergo a vast number of non-rigid deformations,
which may vary from one person to the other, geometrical
features are not a suitable measure for a well-defined
description of such deformations.

2. Although eigenfaces provide a compact representation of
whole faces, they do not provide invariance over changes
in scale, head orientation and lighting conditions [15,25].
The internal representations in the auto-associative
Multi-Layer Perceptron (MLP) are essentially equivalent
to the principal components [26, p. 316]. However, in the
case of feed-forward neural networks, the face subspace is
identified according to the training stage and is appli-
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Table 1. Summary of face recognition approaches when
applied to the ORL database

Approach Reference and notes PCR
(%)

Eigenfaces Lawrence et al [15] 89.5
Hagen [19] 94.0
Wei et al [25] 95.0

Fisherfaces Feitosa et al [18] 95.7

Feature-Based Ben-Arie et al [20] 92.5
(Geometrical features)
Kim-Man et al [21] 84.0
(Geometrical features)
Hagen [19] (2D-FTT + 98.0
Nearest Neighbour Classifier)

Graph Matching Li et al [22] (Nearest 96.8
Feature Line)

Hidden Markov Samaria [13] (Hidden 95.0
Model Markov Model)

Neural Networks Hagen [19] (MLP) 96.5
Lin et al [17] (PDBNN) 94.0
Lawrence et al [15] 96.2
(SOM + CNN)
Tolba and Abu-Rezq (this paper) 99.0
(LVQ)
Tolba and Abu-Rezq (this paper) 98.0
(RBF)
Tolba and Abu-Rezq (this paper) 99.5
(Combined LVQ, RBF)

cation specific. The relationship between the internal
representation of knowledge in neural networks and the
eigenvector decomposition was studied by several authors
[27,28], who have proved that the neural network learn-
ing can approximate an eigenvector description of the
data presented. In Valentin and Abdi [27], it has been
shown that using the auto-associative memory model to
store and retrieve faces is equivalent to computing the
eigen-decomposition of the set of the faces as a weighted
sum of eigenvectors.

3. Radial Basis Function Network [18], Convolutional Net-
works and Self-Organising Maps [15] were not extensively
studied to explore their actual generalisation capability
in the context of invariant face recognition. Although
the RBF networks are computationally favourable com-
pared to the other neural networks, the results reported
to-date are not satisfactory [18].

4. The face recognition approaches such as eigenfaces [14]
and PDBNN [17], which resulted in high recognition
rates (95% and 99%, respectively) when applied to the
FERRET database (3000 faces), result in inferior perform-
ance (89.5–95.5% and 94%, respectively) when applied
to the ORL database.

5. In almost all cases, carefully designed neural network

classifiers [15,17] which are trained on raw image pixels
result in superior performance when compared to geo-
metrical feature based methods [20,21].

3. DATABASE AND PREPROCESSING

The investigations described in this paper were performed
using facial images of the ORL database. The ORL image
database [14] was developed at the Olivetti Research Labora-
tory in Cambridge. The data consists of 400 images acquired
from 40 people, some of which were taken at different times
for some of the people. There are variations in facial
expression (open/closed eyes, smiling/non-smiling), and facial
details (glasses/no glasses). All images were taken against a
dark homogenous background with the subjects in an upright
frontal position, with a tolerance for some tilting and
rotation of up to 20 degrees. There is some variation of the
scale of up to about 10%. The images are grey scale with
a resolution of 92 × 112 pixels. The images are size normal-
ised. Figure 2 shows the faces of 40 individuals included in
the ORL database. The whole set of images is re-sampled
to three different sizes: 24 × 24, 32 × 32 and 64 × 64. To
reduce the image size, a low pass filter is applied to the
image before interpolation using the nearest neighbour
interpolation method. This reduces the effect of Moiré pat-
terns and ripple patterns that result from aliasing during
re-sampling. After re-sampling, all images will have the
same size.

4. NEURAL CLASSIFIERS

Although better than the feature-based approaches, almost
all of the previous applications of neural networks to face
recognition resulted in high error rates. Both the convol-
utional neural network combined with the self-organising
map [15] and the probabilistic Decision-based Neural Net-
work (PDBN) [17] resulted in high error rates (3.8% for
the former and 6% for the latter) when applied to the ORL
database. In Hagen [19], the MLP neural network resulted
in an error rate of 4%. In this section, we present the
application of two well-known neural networks (LVQ and
RBF) to the problem of invariant face recognition. The
LVQ aims at defining decision surfaces between the compet-
ing classes. The decision surfaces obtained by a supervised
stochastic learning process of the training data are piecewise-
linear hyper-planes that approximate the Bayesian minimum
classification error probability.

It is well-known that the Radial Basis Function Networks
(RBFN) overcome some of the MLP problems by relying
on a rapid training phase, and presenting systematic low
responses to input patterns that have fallen into regions of
the input space where there are no training samples. Such
characteristics and the intrinsic simplicity of these networks
render RBFN classifiers an interesting alternative to classifi-
ers based on other neural models [27]. However, the classi-
fication error made by the RBFN classifiers strongly depends
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Fig. 2. Samples of faces of the 40 people included in ORL database [13].

upon the selection of the centres and widths of the kernel
functions associated with the hidden neurons if the network.
Selection of the suitable design-parameters of both classifiers
is conducted experimentally after performing an extensive
set of experiments. An iterative technique is used for the
effective selection of the best spread constant of the kernel
function on the basis of the best correct recognition rate.

4.1. Learning Vector Quantisation (LVQ) Classifier

Learning vector quantisation is a supervised classifier that
was first studied by Teuvo Kohonen [29]. Several variations
on the basic LVQ algorithm have been proposed by
Kohonen. The most common are LVQ1, LVQ2 and LVQ3.
All create decision regions that are near-optimal. The basic
LVQ classifier (LVQ1) divides the input space into disjoint
regions. The decision boundaries created by LVQ1 has been
demonstrated to coincide closely with those of a Bayes
classifier. Each region is represented by a prototype vector.
To classify an input vector, it must be compared with all
prototypes. The Euclidean distance metric is used to select
the closest vector to the input vector, and the input vector
is classified to the same class as the nearest prototype.

The LVQ classifier (Fig. 3) consists of an input layer, a
hidden competitive layer, which learns to classify input
vectors into subclasses, and an output linear layer, which
transforms the competitive layer’s classes into target classi-
fications defined by the user. Only the winning neuron of
the linear layer has an output of one, and other neurons
have outputs of zero. The weight vectors of the hidden
layer neurons are the prototypes, the number of which is
usually fixed before training begins. The number of hidden
neurons depends upon the complexity of the input-output

Fig. 3. Architecture of the LVQ classifier.

relationship, and significantly affects the results of classifier
testing. Selection of the number of hidden neurons must be
carefully made, as it highly depends upon the encompassed
variability in the input patterns. Extensive experiments are
performed to conduct the suitable number.

In the case of a training set consisting of n input faces,
each of these faces is labelled as being one of k classes.
The learning phase starts by initialing the weight vectors
of the neurons in the hidden layer. Then, the input vectors
are presented randomly to the network. For each input
vector xi, a winner neuron wi is chosen to adjust its
weight vector:

ixi − wii # ixi − xki for all k (1)

The weight vector Wi(t) is updated to the next step t+1
as follows:

wi(t+1) = wi(t) + a(xi − wi(t)) (2)
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if xi and wi(t) belong to the same class

wi(t+1) = wi(t) − a(xi wi(t)) (3)

if xi and wi belong to different classes

where 0 # a # 1 is the learning rate, which may be kept
constant during training, or may be decreasing monotonically
with time for better convergence [30]. Otherwise, do not
change the weights. The training algorithm is stopped after
reaching a pre-specified mean-squared error limit. During
the testing phase, the distance of an input vector to each
processing element of the hidden layer is computed, and
again the nearest element is declared as the winner. This,
in turn, fires one output neuron, signifying a particular class.

4.2. Radial Basis Function (RBF) Classifier

In theory, the RBFN, like the Multi Layer Perceptron (MLP)
is capable of forming an arbitrary close approximation to
any continuous nonlinear mapping. The RBF network has
been identified as valuable model by a wide range of
researchers [26,31,34]. The main advantages of a RBF net-
work are the computational simplicity and its description
by a well-developed mathematical theory. Radial Basis Func-
tions can be designed in a fraction of the time it takes to
train a standard feed-forward network. They work best when
many training vectors are available.

An RBF network (Fig. 4) consists of three layers: the
input layer, which has a number of units equal to the
dimension n of the input vector; the hidden layer, which
contains a number of RBF neurons that is equal to the
number of training patterns included in the database; and
the output linear layer, which has a number of units m that
depends upon the number of classes of interest. Initially,
the weight vector between an input unit i and the jth RBF
neuron is simply equal to the input vector of the jth sample
of the training set: wj = xj. The output of the ith neuron
of the output layer is then

yi(x) = ON
j=1

wijf (ix − xji) (4)

where f(·) is a decreasing function, x is the input vector,

Fig. 4. Architecture of the RBFN classifier.

and xj are input examples of the training set. The rule of
the training phase is to tune the weights wij between the
RBF units and the input units. The transfer function of the
radial basis function neuron is the Gaussian function

G(x,xj) = exp S−
1

2s2
j

ix − xji2D (5)

The RBF network approximation becomes

f(x) = ON
j=1

wj exp S−
1

2s2
j

ix − xji2D (6)

Chen et al [32] proposed an Orthogonal Least-Squares
(OLS) supervised-algorithm to select, one by one, the best
centres cj within training samples xi, 1 # i # q, as centres:

y(x) = Oq

j=1

wjf(ix − xji) (7)

A RBFN classifier is trained using a set of input vectors
that represent the lexicographically ordered rows of the
facial images in the training set, the vector of target classes,
and a spread constant for the radial basis layers. The spread
constant is the only parameter that has to be adjusted to
ensure that the active regions of the radial basis neurons
overlap enough so that several neurons have fairly large
outputs at any given moment. This makes the network
function smoother, and results in better generalisation for
new input stimuli occurring between input stimuli used in
the training phase.

Training starts by creating one radial basis neuron at a
time. The addition of neurons continues until the sum-
squared error falls beneath an error goal or a maximum
number of neurons has been reached. The input vectors,
which will result in reducing the network error the most,
are used to create a radial basis neuron. The error is checked
after each-iteration, and if low enough, training is finished.
The spread parameter determines the width of an area in
the input space to which each neuron responds. Biases are
set as a function of the spread, such that each neuron
covers a specific area of the input space. The weights and
biases of the linear layer are calculated such that the mini-
mum sum-squared error goal is reached.

4.3. Combined Classifiers

In fact, a growing body of literature [11,12,33] has indicated
that combining a set of classifiers is an effective way of
improving expected generalisation performance. The best
conditions for combining occur when the learned models
are fairly accurate, but fairly independent in the errors they
make. This can be achieved by using different feature vec-
tors, different training sets, different training parameters or
different classifier architectures.

The three criteria which must be fulfilled during the
design of a combined classifier are accuracy of component
classifiers, diversity of component classifiers, and efficiency
of the entire composite classifier.

Many experiments were performed on the individual clas-
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Fig. 5. Familiar faces (misclassified by individual classifiers: LVQ and RBF).

sifiers to obtain the best performer (Section 5). Component
accuracy could be sacrificed in favour of increasing accuracy
[11]. As will be seen in the next section, although different,
the two individual classifiers (LVQ, RBF networks) virtually
agree upon the final decision of classifying the faces in the
ORL database. This means that the diversity criterion is
not satisfied because both classifiers misclassified the test
patterns P100, P171 and P200 in the left-most column of
Fig. 5. The faces to the right of the left-most column belong
to the classes with which the misclassified patterns interfere.
This situation means that these patterns have special attri-
butes, which cause their interference with other classes. The
classes of these patterns, together with the interfering classes,
could be designated as Familiar Classes (FC). The other
correctly recognised classes are designated as Distinctive
Classes (DC). Considering the above diversity problem,
designing a special type of classifier (Fig. 6) is necessary to
resolve the confusion problems caused by the familiar faces.
The classifier design steps are:
1. Train the best performing individual classifier (LVQ) on

the whole training set (200 faces from 40 people).
2. Test the LVQ classifier of step 1 on the whole test set

(other 200 faces from 40 persons).
3. Separate the training set into two groups: the correctly

classified group (DC), and the misclassified group,
together with the classes with which they interfere (FC).

4. Train a new LVQ classifier on the DC faces and a new
RBF classifier on the familiar class of faces (FC).

Fig. 6. Combined Face-Classifier (CFC).

5. Apply a Front-End Classifier (FEC) on the outputs of
the DC and FC classifiers.

The efficiency criteria could be satisfied by avoiding prohibi-
tively expensive classifiers such as the MLP. The RBF net-
work and the LVQ classifiers are much faster than the
MLP classifier.

A second problem which must be solved is the Error-
Reject trade-off in each classifier. This problem is solved
from the beginning for the FEC classifier if it is solved for
the DC and FC classifiers. A reject class is considered during
the training of the classifiers. Faces external to the database
of interest, together with faces merged from faces included
in the confused classes of the database, are included in the
training set for the reject class. Figure 6 shows the architec-
ture of the combined classifier.

5. EXPERIMENTS ON THE ORL
DATABASE

In this section, three experiments were performed to evaluate
the face recognition system. The first two preliminary experi-
ments are performed on the two individual classifiers (LVQ
and RBF) in order to select the best candidates for con-
structing the combined classifier. The third set is made to
test the combined classifier. The investigated aspects of the
experiments are:

1. Selection of the suitable neural network based classifier.
2. Selection of the number of training faces which could

encompass the possible sources of variability such as
different- poses, sizes, detail and facial expressions.

3. Selection of the optimal face image size for compromise
between classifier correct rate and classification time.

4. Selection of the architectural parameters of the individual
neural classifiers.

5. Selection of the optimal training parameters like the
learning rate and number of training epochs.

6. Enhancing the rejection performance of the classifiers
using synthetic faces generated by the LVQ classifier.

7. Testing of the individual and combined classifiers on an
unseen set of 200 test faces.
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5.1. Experiments on the LVQ Classifier

5.1.1. Selection of the LVQ Classifier Parameters. Im-
ages of the ORL database are categorised into two sets: a
training set of 200 faces; and a test set of other unseen 200
faces (five faces × 40 people). The weighting matrices of
both layers of the LVQ neural network are first initialised.
The learning rate is also initialised to a value of 0.5. The
user specifies the target vector including the 40 target classes.
Different experiments were performed to study the effect of
different Training Epochs (TE), numbers of competitive
layer neurons (NH), image sizes, Learning Rate (LR) and
the number of training faces per individual. Table 2 shows
the effect of different aspects of system design on the
Percentage Correct Recognition (PCR) rate.

Table 2 indicates the relative effect of the different para-
meters on the system’s performance. Investigation of the
experimental results lead to the following conclusions:

1. The number of hidden layer neurons significantly affects
the classifier performance (experiment 1 in Table 2). The
number of neurons (1200) in the hidden layers gives a
better chance to the classifier for capturing all the possible
sources of image variability.

2. The learning rate greatly affects the system performance,
and depends upon the selected number of training epochs,
image size and number of hidden layer neurons. There-
fore, there is no rule for selecting a suitable learning
rate (experiment 2 in Table 2). Experiments should be
performed to conduct the suitable rate in the context of
the suitable network architecture.

3. The image size (24 × 24) resulted in inferior system
performance compared to the other sizes (32 × 32 and
64 × 64) sizes for the same learning rate (0.5) and
number of training epochs (8000). The image size (32 ×
32 pixels) is a good compromise between computational
requirements and recognition accuracy (experiment 3 in
Table 2).

4. The network is over-trained for the case of 12,000 train-
ing epochs; this means that the accuracy starts to decrease
slowly (experiment 4 in Table 2). The possible expla-
nation is that the prototype vectors become very specifi-
cally tuned to the training set.

5. The ability of the algorithm to generalise for new data
suffers. Therefore, experiments have to be conducted to

Table 2. Performance of the LVQ classifier on a test set including 200 faces

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

NH PCR LR/TE/Size PCR Size PCR TE PCR Faces PCR

200 96.0 0.05/8000/32 × 32 95.5 24 × 24 93.5 3000 92.5 4 95
400 97.5 0.50/8000/32 × 32 97.5 32 × 32 97.5 4000 95.5 5 99
800 98.0 0.05/8000/64 × 64 97.0 64 × 64 96.5 6000 96.0 6 100
1200 99 0.50/8000/64 × 64 96.5 8000 97.5

12000 94.5

find the suitable number of training epochs, depending
on the training parameters and network architecture.

6. At least five training faces/individual must be used to
achieve acceptable performance level (experiment 5 in
Table 2). Selection of both the number of training faces
and their poses is the most critical factor in solving the
problem of invariant face recognition. Both the training
and testing sets should include representatives for the
frontal face, left turned face and right turned face.

5.1.2. Face Synthesis Using LVQ and Real Faces. A
neural network-based method is used to create new face
images from real ones in order to increase the diversity of
the database that is used for training a classifier, which can
then result in a significant improvement of the generalisation
ability of the recognition system. This approach is parti-
cularly suitable, as the classifier is based on an artificial
neural network, such as an LVQ classifier, which is able to
assimilate the variations of the faces during its training
phase. The face generation mechanism that is inherent in
the structure of the designed LVQ network (Fig. 7(a): 32
× 32 input neurons, 1 hidden neuron and 1 output neuron)
is based only on real facial images. Moreover, the generation
of new images (Fig. 7(b)) from original faces only depends
upon a small number of parameters. This offers the advan-
tage that the parameters of the generating algorithm are
very easy to set out, so as to produce images that are
different enough from the original ones to bring new useful
information, as well as to avoid creation of over-noisy
images. The target for training the LVQ network on both
faces is set to 1, which forces the network to combine the
facial features of both images in the training set. The
resulting faces of Fig. 7(b) indicate that when a neuron
responds to two or more facial images, it generates a blend
of these images, resulting in:

1. A blurred face when the input images nearly have the
same view.

2. A face with multiple noses, eyes or mouths for input
images with different poses.

5.1.3. Visualisation of the Weights of the Competitive
Layer Neurons. The hidden layer neurons in a neural
network, which is trained on a limited set of facial images,
try to generalise to all the possible variations among the
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Fig. 7. (a) LVQ face synthesiser; (b) examples of face merging using LVQ.

whole set of faces so that each face has a representative for
these variations. Figure 8 shows examples of the 25 × 2
faces generated from the training set for two people. From
the automatically generated faces, it is clear that some of
them have degradations, like getting two noses, or they are
highly blurred. Some images represent the integration of
two or three facial poses. Figure 9 shows the ten original
faces included in the ORL database at the top, and the
resulting 25 faces after training the LVQ classifier. The 25
faces are generated by plotting the weight vectors of the
hidden layer neurons, which represent the ten faces. Close
investigation of the 25 faces indicates that some of the
faces seem to have got glasses, although the original faces
had no glasses. This indicates that the LVQ generalises very
well to reflect all the possible sources of variability.

5.1.4. Enhancing the Generalisation and Rejection of the
LVQ Classifier. Image-based synthesis of facial images has
useful application in enhancing the performance of face
classifiers. The faces, which normally interfere with each
other, could be used to form a new set of faces, which are
used as training patterns in the reject class. Faces which
are normally falsely accepted by being assigned to the wrong

Fig. 8. Artificially generated faces using a LVQ network.

class could be assigned to approximately similar faces in the
reject class, as it includes greater similarity to them than the
other faces. To enhance the performance of face recognisers,
synthesised faces are used. Consider an M+1 class classifier
C with a reject class. The patterns of the two classes Ci

and Cj interfere with each other. This means that the two
classes are nearer to each other than to the reject class. To
avoid such confusion, merging pairs of the confused classes
using an LVQ classifier generates new faces. The resulting
faces have a certain degree of similarity to both of the
original faces. Including these newly generated faces in the
reject class attracts the patterns which are normally falsely
accepted as members of other classes into the reject class.
This process is performed after a preliminary test phase on
the test set. The confused classes are then specified to
generate common faces, which are then added to the reject
class. This process results in enhancing the system’s rejection
performance and reducing the false acceptance rate.

5.2. Experiments on the RBF Classifier

The effects of spread constant and image size on the per-
formance of the RBF classifier are studied. The only para-
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Fig. 9. Original faces in the ORL database and the 25 weight vectors generated after training the LVQ classifier.

Table 3. RBF classifier performance (% PCR) for different spread constant (S)

S 1 4 5 5.5 6 7 8 20 30 40 60 100
PCR 0 96 98 97.5 97.5 96.5 95 93 90.5 89.5 88.5 89.5

meter that greatly affects the generalisation performance of
the radial basis function classifier is the spread constant.
Many experiments were performed to conduct the most
suitable constant. Table 3 shows the classifier performance
for different values of the spread constant (S).

Increased image size imposes a heavy computational load,
and needs more training time. Table 4 indicates that the
spread constant of the radial basis neuron is affected by the
size of the training patterns.

To demonstrate the generalisation of the RBF classifier,
the faces generated as the outputs of some RBF neurons are
shown in Fig. 10. These faces indicate the good generalis-
ation capability of RBFs.

5.3. Experiments of the Combined Classifier

The best performing classifiers are selected for building a
combined classifier (see Fig. 5). A learning vector quantis-

Table 4. RBF classifier performance for different sizes

Image size 32 × 32 64 × 64
Spread constant 5 5
PCR 98 62.5

Fig. 10. Outputs of some trained radial basis neurons.
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Table 5. Performance of different classifiers

Set PCR

LVQ RBF Combined
classifier classifier classsifier

LVQ+RBF+FEC

Training 100 100 100
Test 99.0 98 99.5%

ation network with 1200 hidden neurons resulted in 99%
correct classification. A RBF network trained on the faces
of the confused classes resulted in only one misclassification.
Combining the results of both classifiers, the system perform-
ance is improved to a correct recognition rate of 99.5%,
with a rejection rate of 0.5% based on the following set of
rules, which is used to set the target classes of the front
end classifier:

1. If the pattern is rejected by the LVQ classifier then
reject it (note that rejection performance of LVQ is
the best).

2. If the pattern is assigned to a class by the LVQ and
rejected by the special RBF classifier, then the class is
that class decided by the LVQ classifier.

3. If classified by both the LVQ and the RBF classifiers to
the same class, then accept that class.

4. If both the LVQ classifier and the RBF classifier disagree
about the class assigned to a new pattern, then accept
the class to be that of the RBF classifier.

These rules resulted in 99.5% correct recognition rate at a
rejection rate of 0.5%. Table 5 summarises the results of
the different classifiers.

6. DISCUSSION AND COMPARISON
WITH PREVIOUS TECHNIQUES

Extensive experiments were executed on a 200 MHz Intel
processor with MMX running in a Windows environment.
The average recognition time per face is 0.463 seconds
(Table 6). The disadvantage of the RBF approach is the
linear dependency of computational complexity on the num-

Table 6. Time requirements of the different classifiers

Processing phase Computation Time, Seconds

LVQ RBF Combined
classifier classifier classifier

Size normalisation 0.026 0.026 0.026
Recognition 0.373 0.256 0.437
Total 0.399 0.282 0.463

ber of radial basis neurons (number of training patterns).
The advantage of RBF approach is that the addition of new
training patterns could be easily done without retraining of
the network.

Table 7 also indicates that using several views of the
faces as a training set increases the general recognition
performance of the classifier, as well as its ability to discrimi-
nate between learned faces presented from a new view angle
and new faces. Experiments have shown that at least five
training faces per individual were necessary for acceptable
performance.

7. SUMMARY AND CONCLUSIONS

Invariant face recognition is a challenging task in computer
vision. The selection of stable and representative sets of
features that efficiently discriminate between faces in a huge
database is the major problem. Variability of facial pose,
expressions and lighting conditions render it very difficult
to extract such a representative and stable set of features
using geometrical methods. On the other hand, neural net-
works represent the most suitable way to automatically
extract such a set. A neural network plays a two-fold rule:
feature extractor and classifier at the same time. This paper
presented the design and implementation issues of a practical
system for invariant face recognition. The system showed
an outstanding performance compared to state-of-the-art sys-
tems, which were tested on the ORL database.

In this paper, a category-based combined classifier has
been proposed to improve the generalisation capability, and
hence the system performance. Combining different classifi-
ers can improve the overall system performance, even if the
individual classifiers agree on the wrong classification
decision. In this research, a new idea that is based on
combining two different specialised classifiers is proposed.
The proposed classifier uses the generalisation capabilities of
both the LVQ and RBF classifiers to overcome the limi-
tations of the used individual classifiers. While, the LVQ
classifier is trained on the set of distinctive faces, the RBF
classifier is trained on the set of familiar faces. Training the
RBF classifiers on a rejection class, which includes syn-
thesised faces from the members of the familiar faces class,
results in enhancing the rejection performance of the system.
The inner workings of the neural networks are visualised in
order to get insights about the learning process.

Both the LVQ and the RBF neural networks proved
successful in generalisation for invariant face recognition.
The RBF network is faster than the LVQ network, but the
LVQ performance is slightly better (1.0%) than that of the
RBF network. Although the individual classifiers perform
better than other neural networks reported in the overview,
their combination results in a better performance.

The following conclusions could be drawn:

I Combined classifiers that are based on neural networks
offer significant improvements over the component classi-
fiers.

I The selection of the number and pose of the training
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Table 7. Error rates for different numbers of training faces per subject

Training set/individual 1 2 3 4 5 6 7 8

Convolutional network + SOM [15] 30.0 17.0 11.8 7.1 3.8
VFR-Model [20] 7.5 4.4 3.4 0.0
Eigenfaces – average per class [15] 38.6 28.8 28.9 27.1 26
Eigenfaces – one per image [15] 38.6 20.9 18.2 15.4 10.5
PCA+CNN [15] 34.2 17.2 13.2 12.1 7.5
HMM [13] 5
LVQ (this paper) 5 1 0.0 0.0 0.0
RBF (this paper) 6 2 1 1 0.0
LVQ+RBF+FEC (this paper) 0.5 0.0 0.0 0.0

faces per individual is crucial to the recognition process.
At least five training faces, which encompass all the
possible varieties, are necessary to achieve acceptable
system performance of 99.5% for the ORL database.

I Specialised classifier networks resulted in enhancing the
system performance. The experimental results reported in
this research are consistent with those reported by David
[11]. David [11] suggests that the composite classifiers
which result from combining a small number of compo-
nent classifiers, where each component stores a small
number of prototypical instances, is more accurate than
a classifier that stores all training instances as prototypes.
While in David [11] algorithms that rely primarily on
random sampling are used to select a small number of
prototypes, we used a preliminary training stage for the
LVQ classifier for separating the distinctive faces from
the familiar ones. Each set of faces is used subsequently in
training one of the best performing component classifiers.

I The combined classifier implemented in this research may
be applied to similar recognition tasks.

I The face generation mechanism presented could be
applied to generate faces for the reject class, to enhance
the rejection performance in face recognition systems.

I The ORL database is proved to encompass much varia-
bility than the most widely used FERRET database. The
results reported by other researchers [15,17] indicate that
the approaches, which are highly efficient for recognising
the faces of the FERRET database, fail to cope with the
conditions of the ORL database.

Our future work will focus on extending our system to cope
with large databases, and developing an automatic approach
for optimal selection of the combined classifier components.

Acknowledgements

This work was supported by research grant SP053 received
from the Research Administration in Kuwait University.
The author would like to thank the Olivetti Research
Laboratory and Ferdinando, Samaria for compiling and main-
taining the (ORL) database.

References

1. Hoogenboom R. Human Face Detection and Recognition. Mas-
ters Thesis, University of Leiden, 1996

2. Sung KK, Poggio T. Example-based learning for view-based
human face detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence 1997; 20(1):39–51

3. Daugman J. Face and gesture recognition: Overview. IEEE
Transactions on Pattern Analysis and Machine Intelligence
1997; 19(7):675–676

4. Rowley HA, Baluja S, Kanade T. Neural network-based face
detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence 1998; 20(1):23–38

5. Chellappa R, Wilson CL, Sirohey S. Human and machine
recognition of faces: A survey. Proceedings of the IEEE 1995;
83(5):705–740

6. Valentin D, Abdi H, Toole AJO, Cottrell W. Connectionist
models of face processing: a survey. Pattern Recognition 1994;
27:1209–1230

7. Samal A, Iyangar P. Automatic recognition and analysis of
human faces and facial expressions: A survey. Pattern Recog-
nition 1992; 25(1):65–77

8. Ho TK, Hull JJ, Srihari SN. Decision combination in multiclas-
sifier systems. IEEE Transactions on Pattern Analysis and
Machine Intelligence 1996; (I)6:66–75

9. Srinivas G, Wechsler H. Face recognition using hybrid classifiers.
Pattern Recognition 1997; 30(4):539–553

10. Zhang M, Flucher J. Face recognition using artificial neural
network Group-based Adaptive Tolerance (GAT) trees. IEEE
Transactions on Neural Networks 1996; 7(3):555–567

11. David BS. Prototype Selection for Composite Nearest Neighbor
Classifiers. PhD Dissertation, University of Masachusetts
Amherst, 1997

12. Chuanyi JI, Sheng Ma. Combinations of weak classifiers. IEEE
Transactions on Neural Networks, 1997; (8)1:32–42

13. Samaria AS. Face Recognition Using Hidden Markov Models.
PhD Dissertation, Trinity College, University of Cambridge,
UK, 1994

14. Turk M, Pentland A. Eigenfaces for recognition. Journal of
Cognitive Neuroscience 1991; (3)1:71–86

15. Lawrence S, Lee GC, Tsoi AC, Back A. Andrew Face Recog-
nition: A convolutional neural network approach. IEEE Trans-
actions on Neural Networks 1997; (8)1:98–113

16. Belhumeur PN, Hespanha JP, Kreigman DJ. Eigenfaces ve. Fish-
erfaces: Recognition using class specific linear projection. IEEE
Transactions on Pattern Analysis and Machine Intelligence
1997, 18(7):71–720



302 A. S. Tolba and A. N. Abu-Rezq

17. Lin SH, Kung SY, Lin LJ. Face recognition/detection by proba-
bilistic decision-based neural network. IEEE Transactions on
Neural Networks 1997; (8)1:114–132

18. Feitosa RQ, Thomaz CE, Veigo A. Comparing the performance
of the Discriminant Analysis and RBF Neural Network for
Face Recognition. Proceedings 5th International Conference on
Information Systems Analysis and Synthesis, 1999; 6:50–56

19. Hagen S. Face Recognition – a novel technique. Master Thesis,
University of Heidelberg, Germany, 1995

20. Ben-Arie J, Nandy D. A volumetric/iconic frequency domain
representation for objects with application for pose invariant
face recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence 1998; (20)5:449–457

21. Kin-Man L, Hong Y. An analytic-to-holistic approach for face
recognition based on a single frontal view. IEEE Transactions
on Pattern Analysis and Machine Intelligence 1998; (20)7

22. Li SZ, Lu J. Face recognition using the nearest feature line
method. IEEE Transactions on Neural Networks 1999;
(10)2:439–443

23. Sutherland K, Renshaw D, Denyer BP. A novel automatic face
recognition algorithm employing vector quantization. IEEE CDs

24. Wiskott L, Fellous JM, Krueger N, von der Malsburg C. Face
recognition by elastic bunch graph matching. IEEE Transactions
on Pattern Analysis and Machine Intelligence 1997;
19(7):665–779

25. We S. Face Recognition. (http://www.cim.mcgill.ca/|wsun/sa/
project/report.html])

26. Biship CA. Neural Networks for Pattern Recognition. 1st Edi-
tion. Clarendon Press, Oxford, 1995

27. Valentin A, Abdi H. Can a linear autoassociator recognize faces
from new orientations. Journal of Optical Society of America
1996

28. Gross M. Visual Computing. Springer-Verlag, 1995; 289
29. Kohonen T. Self-Organizing Maps. Springer-Verlag, 1995
30. Bandya AS, Macy RB. Pattern Recognition with Neural Net-

works in C++. CRC Press, 1996
31. Hush DR, Horne BG. Progress in supervised neural networks.

IEEE Signal Processing Magazine 1993; 5(1):8–39

32. Chen S, Cowan CFN, Grant PM. Orthogonal least squares
learning algorithm for radial bias function networks. IEEE Trans-
actions on Neural Networks 1991; 2(2):302–309

33. Kittler J, Hatef M, Duin RPW, Matas J. On combining classifi-
ers. IEEE Transactions on Pattern Analysis and Machine Ingel-
ligence 1998; (20)3:226–239

34. Bruzzone L, Pierto DF. A technique for the selection of kernel-
function parameters in RBF neural networks for classification of
remote-sensing images. IEEE Transactions on Geoscience and
Remote sensing 1999; 37(2)

A.S. Tolba received his BSc (with honours) and MSc degrees from the University
of Almansoura, Egypt, in 1978 and 1981, respectively. He received his PhD from
the University of Wuppertal, Germany, in 1988. Since 1994 he has been an
Associate Professor of Computer Engineering at the University of Suez-Canal,
Egypt. He is currently on sabbatical leave to the Department of Physics at the
University of Kuwait. He has done research in compuer vision, biometrics
identification, autonomous vehicles, neural networks and gesture recognition. He
has published more than 40 papers in these areas. He is co-author of two edited
books: Intelligent Robotic Systems (Marcel Dekker, New York, 1991) and Laser
Technology and its Applications (publication of ISESCO, 1997). His most recent
research focus is face recognition and gesture recognition. Dr Tolba is a member
of the IEEE and AMSE societies. He is currently a member of the editorial board
of Modeling, Measurement and Control.

Abdulnasser Abu-Rezq received his BSc degree in applied physics and digital
electronics from Kuwait University in 1980. He received a PhD degree from
Kent University at Canterbury, UK in 1985. He is currently with the Department
of Physics at the University of Kuwait State. His research interests include digital
electronics, image processing, pattern recognition and neural networks. Dr Abu-
Rezq is a member of the IEEE Society.

Correspondence and offprint requests to: A.S. Tolba, Physics Department, Kuwait
University, PO Box 5969, Safat 13060, Kuwait. Email: TolbaKkuc01.kuniv-
.edu.kw


