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Abstract: This paper addresses robust feature tracking. The aim is to track point features in a sequence of images and to identify unreliable
features resulting from occlusions, perspective distortions and strong intensity changes. We extend the well-known Shi–Tomasi–Kanade
tracker by introducing an automatic scheme for rejecting spurious features. We employ a simple and efficient outliers rejection rule, called
X84, and prove that its theoretical assumptions are satisfied in the feature tracking scenario. Experiments with real and synthetic images
confirm that our algorithm consistently discards unreliable features; we show a quantitative example of the benefits introduced by the
algorithm for the case of fundamental matrix estimation. The complete code of the robust tracker is available via ftp.
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1. INTRODUCTION

Much work on structure from motion [1] has assumed that
correspondences through a sequence of images could be
recovered. Feature tracking finds matches by selecting image
features and tracks these as they move from frame to frame.
It can be seen as an instance of the general problem of
computing the optical flow, that is, the vector’s field that
describes how the image is changing with time, at relatively
sparse image positions [2–4]. Methods based on the detection
of two-dimensional features (such as corners) have the
advantage that the full optical flow is known at every
measurement position, because they do not suffer from the
aperture problem effect (a discussion on this subject can be
found elsewhere [5]). Work on tracking two-dimensional
features can be found elsewhere [6–10].

Robust tracking means automatically detecting unreliable
matches, or outliers, over an image sequence (see elsewhere
[11] for a survey of robust methods in Computer Vision).
Recent examples of such robust algorithms include reference
12, which identifies tracking outliers while estimating the
fundamental matrix, and reference 13, which adopts a RAN-
SAC [14] approach to eliminate outliers for estimating the
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trifocal tensor. Such approaches increase the computational
cost of tracking significantly, as they are based on the robust
estimation of 3D motion via iterative algorithms. Black and
Jepson [15] describe a method for tracking objects using
eigen-representations. The matching between the eigenspace
(which represents the object) and the image is done using
robust regression.

This paper concentrates on the well-known Shi–Tomasi–
Kanade tracker, and proposes a robust version based on an
efficient outlier rejection scheme. Building on results from
Lucas and Kanade [6], Tomasi and Kanade [16] introduced
a feature tracker based on SSD matching and assuming
translational frame-to-frame displacements. Subsequently,
Shi and Tomasi [17] proposed an affine model, which proved
adequate for region matching over longer time spans. Their
system classified a tracked feature as good (reliable) or bad
(unreliable) according to the residual of the match between
the associated image region in the first and current frames;
if the residual exceeded a user-defined threshold, the feature
was rejected. Visual inspection of the results demonstrated
good discrimination between good and bad features, but the
authors did not specify how to reject bad features automati-
cally.

This is the problem that our method solves. We extend
the Shi–Tomasi–Kanade tracker (Section 2) by introducing
an automatic scheme for rejecting spurious features. We
employ a simple, efficient outlier rejection rule, called X84,
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and prove that its assumptions are satisfied in the feature
tracking scenario (Section 3). Our robust tracking algorithm
is summarised in Section 4. Experiments with real and
synthetic images confirm that our algorithm makes good
features track better, in the sense that outliers are located
reliably (Section 5). We illustrate quantitatively the benefits
introduced by the algorithm with the example of fundamen-
tal matrix estimation. Image sequences with results and the
source code of the robust tracker are available on-line
(http://www.dimi.uniud.it/˜fusiello/demo-rtr/).

2. SHI–TOMASI–KANADE TRACKER

In this section the Shi–Tomasi–Kanade tracker [17,16] will
be briefly described. Consider an image sequence I(x,t),
where x 5 [u,v]Á are the coordinates of an image point. If
the time sampling frequency (that is, the frame rate) is
sufficiently high, we can assume that small image regions
undergo a geometric transformation, but their intensities
remain unchanged:

I(x,t) 5 I(d(x),t 1 t) (1)

where d(·) is the motion field, specifying the warping that is
applied to image points. The fast-sampling hypothesis allows
us to approximate the motion with a translation, i.e.

d(x) 5 x 1 d (2)

where d is a displacement vector. The tracker’s task is to
compute d for a number of automatically selected point
features for each pair of successive frames in the sequence.
As the image motion model is not perfect, and because of
image noise, Eq. (1) is not satisfied exactly. The problem
is then finding the displacement d which minimises the
SSD residual

e 5 O
W

[I(x 1 d,t 1 t) 2 I(x,t)]2 (3)

where W is a given feature window centred on the point
x. In the following we will solve this problem by means of
a Newton–Raphson iterative search.

Thanks to the fast-sampling assumption, we can approxi-
mate I(x 1 d,t 1 t) with its first-order Taylor expansion:

I(x1d,t1t) < I(x,t) 1 =I(x,t)Ád1It(x,t)t (4)

where

=IÁ 5 [Iu,Iv] 5 [I/u,I/v] and It 5 I/t.

We can then rewrite the residual (3) as

e < O
W

(=I(x,t)Ád 1 It(x,t)t)2 (5)

To minimise the residual (5), we differentiate it with respect
to the unknown displacement d and set the result to zero,
obtaining the linear system

Cd 5 g (6)

where

C 5 O
W

F I2
u IuIv

IuIv I2
v

G (7)

g 5 2 tO
W

It[IuIv]Á (8)

If dk 5 C21g is the displacement estimate at iteration k,
and assuming a unit time interval between frames, the
algorithm for minimising (5) is the following:

5
d0 5 0

dk11 5 dk 1 C21O
W

F(I(x,t) 2 I(x 1 dk,t 1 1)) =I(x,t)G
2.1. Feature Extraction

A feature is defined as a region that can be tracked easily
from one frame to the other. In this framework, a feature
can be tracked reliably if a numerically stable solution to
Eq. (6) can be found, which requires that C is well-
conditioned and its entries are well above the noise level.
In practice, since the larger eigenvalue is bound by the
maximum allowable pixel value, the requirement is that the
smaller eigenvalue must be sufficiently large. Calling l1

and l2 the eigenvalues of C, we accept the corresponding
feature if

min(l1,l2) , lt (9)

where lt is a user-defined threshold [17].
This algebraic characterisation of ‘trackable’ features has

an interesting interpretation, as they turn out to be corners,
that is, image features characterised by an intensity disconti-
nuity in two directions. Since the motion of an image
feature can be measured only in its projection on the

Fig. 1. Value of min(l1,l2) for the first frame of ‘Artichoke’. Win-
dow size is 15 pixels. Darker points have a higher minimum eigen-
value.
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brightness gradient (aperture problem), corners are the fea-
tures whose motion can be measured.

Discontinuity can be detected, for instance, using normal-
ised cross-correlation, which measures how well an image
patch matches other portions of the image as it is shifted
from its original location. A patch which has a well-defined
peak in its auto-correlation function can be classified as a
corner. Let us compute the change in intensity as the sum
of squared differences in the direction h for a patch W
centred in x 5 (u,v):

Eh(x) 5 O
dPW

I(x 1 d) 2 I(x 1 d 1 h)2 (10)

Using the Taylor series expansion truncated to the linear
term,

Eh(x) < O
dPW

(=I(x 1 d)Áh)2

5 O
dPW

hÁ(=I(x 1 d))(=I(x 1 d))Áh

5 O
dPW

hÁ S I2
u IuIv

IuIv I2
v
D h (11)

5 hÁ S O
dPW

F I2
u IuIv

IuIv I2
v

GD h

The change in intensity around x is therefore given by

Eh(x) 5 hÁ C h (12)

where C is just the matrix defined in Eq. (7). Elementary
eigenvector theory tells us that, since ihi 5 1, then

l1 , Eh(x) , l2 (13)

where l1 and l2 are the eigenvalues of C. So, if we try every
possible orientation h, the maximum change in intensity we
will find is l2, and the minimum value is l1. We can
therefore classify the structure around each pixel by looking
at the eigenvalues of C:

I no structure: l1 < l2 < 0;
I edge: l1 < 0, l2 À 0;
I corner: l1 e l2 both large and distinct.

Hence, the features selected according to criterion (9) are
to be interpreted as corners. Indeed, this method is very
closely related to some classical corner detectors [18–20].

Figure 1 shows the value of the minimum eigenvalue for
the first frame of the ‘Artichoke’ sequence (see Section 5).

2.2. Affine Model

The translational model cannot account for certain trans-
formations of the feature window, for instance rotation,
scaling and shear. An affine motion field is a more accurate
model [17], i.e.

d(x) 5 Mx 1 d (14)

where d is the displacement and M is a 2 3 2 matrix

accounting for affine warping, and can be written as M 5
1 1 D, with D 5 (dij] a deformation matrix and 1 the
identity matrix. Similar to the translational case, one esti-
mates the motion parameters, D and d, by minimizing
the residual

e 5 O
W

[I(Mx 1 d,t 1 t) 2 I(x,t)]2 (15)

By plugging the first-order Taylor expansion of I(Mx 1 d,t
1 t) into Eq. (15), and imposing that the derivatives with
respect to D and d are zero, we obtain the linear system

Bz 5 f, (16)

in which z 5 [d11 d12 d21 d22 d1 d2]Á contains the unknown
motion parameters, and

f 5 2tO
W

It[uIu uIv vIu vIv Iu Iv]T

B 5 O
W

F U V

VÁ C
G

with

U 5 3
u2I2

u u2IuIv uvI2
u uvIuIv

u2IuIv u2I2
v uvIuIv uv2

v

uvI2
u uvIuIv v2I2

u v2IuIv

uvIuIv uvI2
v v2IuIv v2I2

v

4
VÁ 5 F uI2

u uIuIv vI2
u vIuIv

uIuIv uI2
v vIuIv vI2

v
G

Again, Eq. (15) is solved for z using a Newton–Raphson
iterative scheme.

If frame-to-frame affine deformations are negligible, the
pure translation model is preferable (the matrix M is assumed
to be the identity). The affine model is used for comparing
features between frames separated by significant time inter-
vals to monitor the quality of tracking.

3. ROBUST MONITORING

In order to monitor the quality of the features tracked, the
tracker checks the residuals between the first and the current
frame: high residuals indicate bad features which must be
rejected. Following Shi and Tomasi [17], we adopt the affine
model, as a pure translational model would not work well
with long sequences: too many good features are likely to
undergo significant rotation, scaling or shearing, and would
be incorrectly discarded. Non-affine warping, which will
yield high residuals, is caused by occlusions, perspective dis-
tortions and strong intensity changes (e.g. specular
reflections). This section introduces our method for selecting
a robust rejection threshold automatically.
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3.1. Distribution of the Residuals

We begin by establishing which distribution is to be
expected for the residuals when comparing good features,
i.e. almost identical regions. We assume that the intensity
I(d(x),t) of each pixel in the current-frame region is equal
to the intensity of the corresponding pixel in the first frame
I(x,0) plus some Gaussian noise n ; h(0,1)1. Hence

I(d(x),t) 2 I(x,0) ; h(0,1)

Since the square of a Gaussian random variable has a chi-
square distribution, we obtain

[I(d(x),t) 2 I(x,0)]2; x2(1)

The sum of n chi-square random variables with one degree
of freedom is distributed as a chi-square with n degrees of
freedom (as it is easy to see by considering the moment-
generating functions). Therefore, the residual computed
according to Eq. (3) over a N 3 N window W is distributed
as a chi-square with N2 degrees of freedom:

e 5 O
W

(I(d(x),t) 2 I(x,0)]2 ; x2(N2) (17)

As the number of degrees of freedom increases, the chi-
square distribution approaches a Gaussian, which is in fact
used to approximate the chi-square with more than 30
degrees of freedom. Therefore, since the window W associa-
ted with each feature is at least 7 3 7, we can safely assume
a Gaussian distribution of the residual for the good features:

e ; h(N2,2N2)

3.2. The X84 Rejection Rule

When the two regions over which we compute the residual
are bad features (that is, they are not warped by an affine

Fig. 2. Chi-square density functions with 3, 5, 7, 15 and 30 degrees
of freedom (from left to right).

1 ; means that the variable to the left has the probability distribution
specified to the right.

transformation), the residual is not a sample from the Gaus-
sian distribution of good features: it is an outlier. Hence,
the detection of bad features reduces to a problem of outlier
detection. This is equivalent to the problem of estimating
the mean and variance of the underlying Gaussian distri-
bution from the corrupted data ei, the residuals (given by
Eq. (3)) between the ith feature in the last frame and the
same feature in the first frame. To do this, we employ a
simple but effective rejection rule, X84 [21], which uses
robust estimates for location and scale to set a rejection
threshold. The median is a robust location estimator, and
the Median Absolute Deviation (MAD), defined as

MAD 5 mad
i

{uei 2 med
j

eju} (18)

is a robust estimator of the scale (i.e. the spread of the
distribution). It can be seen that, for symmetric (and moder-
ately skewed) distributions, the MAD coincides with the
interquartile range:

MAD =
j3/4 2 j1/4

2
(19)

where jq is the qth quantile of the distribution (for example,
the median is j1/2). For normal distributions we infer the
standard deviation from

MAD 5 F21(3/4)s < 0.6745s (20)

The X84 rule prescribes rejecting values that are more than
k Median Absolute Deviations away from the median. A
value of k55.2, under the hypothesis of Gaussian distri-
bution, is adequate in practice (as reported in Hampel et
al [21]), since it corresponds to about 3.5 standard devi-
ations, and the range [m 2 3.5s,m 1 3.5s] contains more
than the 99.9% of a Gaussian distribution. The rejection
rule X84 has a breakdown point of 50%: any majority of the
data can overrule any minority.

3.3. Photometric Normalisation

Our robust implementation of the Shi–Tomasi–Kanade
tracker also incorporates a normalised SSD matcher for
residual computation. This limits the effects of intensity
changes between frames, by subtracting the average grey
level (mJ,mI) and dividing by the standard deviation (sJ,sI)
in each of the two regions considered:

e 5 O
W

F J(Mx 1 d) 2 mJ

sj
2

I(x) 2 mI

sI
G2

(21)

where J(·)5I(·,t 1 1), I(·)5I(·,t).
It can be easily seen that this normalisation is sufficient

to compensate for intensity changes modelled by J(Mx 1
d) 5 aI(x) 1 b. A more elaborate normalisation is described
in Cox et al [22], whereas Hager and Belhumeur [23] reports
a modification of the Shi–Tomasi–Kanade tracker based on
explicit photometric models.
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4. SUMMARY OF THE ALGORITHM

The RobustTracking algorithm can be summarised as fol-
lows:

1. given an image sequence;
2. filter the sequence with a Gaussian kernel in space and

time (for the selection of the kernel scale see Brandt
[24]);

3. select features to be tracked according to Eq. (9);
4. register features in each pair of consecutive frames in the

sequence, using translational warping (2);
5. in the last frame of the sequence, compute the residuals

between this and the first frame, for each feature, using
affine warping (14);

6. reject outlier features according to the X84 rule (9).

The decision of which frame is deemed to be the last one
is left open; the only, obvious, constraint is that a certain
fraction of the features present in the first frame should be
still visible in the last. On the other hand, monitoring
cannot be done at every frame, because the affine warping
would not be appreciable.

5. EXPERIMENTAL RESULTS

We evaluated our tracker in a series of experiments, of
which we report the most significant

I Platform (Fig. 3, 256 3 256 pixels). A 20-frame synthetic
sequence, simulating a camera rotating in space while
observing a subsea platform sitting on the seabed (real
seabed acquired by a side-scan sonar, rendered as an
intensity image, and texture-mapped onto a plane). This
sequence is part of the SOFA synthetic sequences
(http://www.cee.hw.ac.uk/˜mtc/sofa).

Fig. 3. First (left) and last frame of the ‘Platform’ sequence. In the last frame, filled windows indicate features rejected by the robust tracker.

I Hotel (Fig. 4, 480 3 512 pixels). A static scene observed
by a moving camera rotating and translating (59 frames).
This is a well-known sequence from the CMU VASC
Image Database (http://www.ius.cs.cmu.edu/idb/).

I Stairs (Fig. 5, 512 3 768 pixels). A 60-frame sequence
of a white staircase sitting on a metal base and translating
in space, acquired by a static camera. The base is the
platform of a translation stage operated by a step-by-
step motor under computer control (courtesy of F. Isgrò,
Computer Vision Group, Heriot-Watt University).

I Artichoke (Fig. 6, 480 3 512 pixels). A 99-frame
sequence taken with a camera translating in front of a
static scene. This sequence can be found at the CMU
VASC Image Database, and was used also by Tomasi and
Kanade [25].

‘Platform’ is the only synthetic sequence shown here. No
features become occluded, but notice the strong effects of
the coarse spatial resolution on straight lines. We plotted
the residuals of all features against the frame number (Fig.
7). All features stay under the threshold computed automati-
cally by X84, apart from one that is corrupted by the
interference of the background. In ‘Stairs’, some of the
features picked up in the first frame are specular reflections
from the metal platform, the intensity of which changes
constantly during motion. The residuals for such features
therefore become very high (Fig. 9). All these features are
rejected correctly. Only one good feature is dropped
erroneously (the bottom left corner of the internal triangle),
because of the strong intensity change of the inside of the
block. In the ‘Hotel’ sequence (Fig. 8), all good features
but one are preserved. The one incorrect rejection (bottom
centre, corner of right balcony) is due to the warping caused
by the camera motion, too large to be accommodated by
the affine model. The only spurious feature present (on the
right-hand side of the stepped-house front) is rejected cor-
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Fig. 4. First (left) and last frame of the ‘Hotel’ sequence. In the last frame, filled windows indicate features rejected by the robust tracker.

Fig. 5. First (left) and last frame of the ‘Stairs’ sequence. In the last frame, filled windows indicate features rejected by the robust tracker.

Fig. 6. First (left) and last frame of the ‘Artichoke’ sequence. In the last frame, filled windows indicate features rejected by the robust tracker.
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Fig. 7. Residuals magnitude against frame number for ‘Platform’. The
arrows indicate the threshold set automatically by X84 (0.397189).

Fig. 8. Residuals magnitude against frame number for ‘Hotel’. The
arrows indicate the threshold set automatically by X84 (0.142806).

rectly. All features involved in occlusions in the ‘Artichoke’
sequence (Fig. 10) are identified and rejected correctly. Four
good features out of 54 are also rejected (on the signpost
on the right), owing to a marked contrast change in time
between the pedestrian figure and the signpost in the back-
ground.

In our tests on a SPARCServer 10 running Solaris 2.5,
the initial feature extraction phase took 38 s for ‘Platform’
and 186 s for ‘Artichoke’, with a 15 3 15 window. The
tracking phase took, on average, 1.6 s per frame, indepen-
dently from frame dimensions. As expected, extraction is
very computationally demanding, since the eigenvalues of
the C matrix are to be computed for each pixel. However,
this process can be implemented on a parallel architecture,
thereby achieving real-time performance (30 Hz), as reported
in Benedetti and Perona [26].

5.1. Quantifying Improvement: An Example

To illustrate quantitatively the benefits of our robust tracker,
we used the feature tracked by robust and non-robust ver-
sions of the tracker to compute the fundamental matrix

Fig. 9. Residuals magnitude against frame number for ‘Stairs’. The
arrows indicate the threshold set automatically by X84 (0.081363).

Fig. 10. Residuals magnitude against frame number for ‘Artichoke’.
The arrows indicate the threshold set automatically by X84
(0.034511).

between the first and last frames of each sequence, then
computed the RMS distance of the tracked points from the
corresponding epipolar lines, using Zhang’s implementation
[27] of the 8-point algorithm. If the epipolar geometry is
estimated exactly, all points should lie on epipolar lines.
The results are shown in Table 1. The robust tracker always
brings a decrease in the RMS distance. Notice the limited
decrease and high residual for ‘Platform’; this is due to the
significant spatial quantisation and smaller resolution, which
worsens the accuracy of feature localisation.

Table 1. RMS distance of points from epipolar lines. The
first row gives the distance using all the features tracked
(non-robust tracker), the second using only the features kept
by X84 (robust tracker)

Artichoke Hotel Stairs Platform

All 1.40 0.59 0.66 1.49
X84 0.19 0.59 0.15 1.49
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6. CONCLUSIONS

We have presented a robust extension of the Shi–Tomasi–
Kanade tracker, based on the X84 outlier rejection rule.
Features are rejected according to their grey-level structure,
rather than according to their fit to a 3D motion model,
as elsewhere [11,13]. The computational cost (O(n), where
n is the number of features) is much less than that of
schemes based on robust regression like RANSAC or LMedS
(whose complexity is O(np11 log n), where p is the number
of regression parameters). Yet experiments indicate good
reliability in the presence of non-affine feature warping
(most correct features preserved, all incorrect features
rejected). Our experiments have also pointed out the pro-
nounced sensitivity of the Shi–Tomasi–Kanade tracker to
illumination changes.

Our robust tracker has been applied to underwater uncali-
brated reconstruction [28], and we believe that it can be
useful to the large community of researchers needing efficient
and reliable trackers. To facilitate dissemination and enable
direct comparisons and experimentation, we have made the
code available on the Internet.
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