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Abstract: Recognition systems based on a combination of different experts have been widely investigated in the recent past. General
criteria for improving the performance of such systems are based on estimating the reliability associated with the decision of each expert,
so as to suitably weight its response in the combination phase. According to the methods proposed to-date, when the expert assigns a
sample to a class, the reliability of such a decision is estimated on the basis of the recognition rate obtained by the expert on the chosen
class during the training phase. As a consequence, the same reliability value is associated with every decision attributing a sample to a
same class, even though it seems reasonable to take into account its dependence on the quality of the specific sample. We propose a
method for estimating the reliability of each single recognition act of an expert on the basis of information directly derived from its
output. In this way, the reliability value of a decision is more properly estimated, thus allowing a more precise weighting during the
combination phase. The definition of the reliability parameters for widely used classification paradigms is discussed, together with the
combining rules employing them for weighting the expert opinions. The results obtained by combining four experts in order to recognise
handwritten numerals from a standard character database are presented. Comparison with classical combining rules is also reported, and
the advantages of the proposed approach outlined.
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1. INTRODUCTION

In many areas of pattern recognition, especially in the case
of applications characterised by large data variability and
significant amounts of noise, the performance of a given
classification system is sometimes unsatisfactory for the needs
of real applications. In these cases, efforts are generally
devoted to the selection of description methods and classi-
fication algorithms which can keep performance high, even
in the presence of highly distorted samples.

To-date, a large variety of algorithms, providing a sample
description in terms of a vector of numerical features [1] or
in terms of structural primitives [2,3], have been proposed,
together with classification paradigms suitable both for stat-
istical approaches, such as the k-NN [4], the Bayesian [1],
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and the neural [5] methods, and for structural and syntactic
approaches, such as graph-matching algorithms [3] and gram-
mar parsing techniques [2].

However, practical experience suggests that in many appli-
cations, single recognition systems (experts), albeit very
refined, fail to achieve an acceptable performance level. It
happens that a recognition system, on the basis of some
assumptions about the world of patterns to recognise, adopts
description and classification models which, as a whole, are
not equally adequate for all the patterns.

The idea of combining various experts with the aim of
compensating for the weakness of each single expert while
preserving its own strength, has recently been investigated
widely [6,7]. The rationale lies in the assumption that, by
suitably combining the results of a set of experts according
to a rule (combining rule), the performance obtained can
be better than that of any single expert. The successful
implementation of a Multi-Expert System (MES) implies
the use of the most complementary experts possible, and



206 L. P. Cordella et al.

the definition of a combining rule for determining the most
likely class a sample should be attributed to, given the class
to which it is attributed by each single expert.

Preliminary experimental results encouraged the approach,
and various research groups concentrated on different aspects
of the problem [7–9]. Investigations aimed at determining
the complementary nature of experts to be used and their
optimal number, as well as the optimal combination top-
ology, are reported in the literature [10–13]. Most of the
research has been devoted to finding different combining
rules able to solve the conflicts, i.e. to determine the most
likely class on the basis of the responses of the experts in
the case of discordance [14–17]. A quite different approach,
specifically developed in the field of neural computation, is
to combine different experts each of which is defined over
a local region of the input space. Jacobs et al [18] introduced
such a strategy with their ‘mixture of experts’ architecture.
It involves a set of function approximators (‘expert
networks’) that are combined by a classifier (‘gating
network’). These networks are trained simultaneously so as
to split the input space into regions where particular experts
can specialise. Jordan and Jacobs [19,20] extended this
approach to a recursively-defined architecture (the so-called
‘hierarchical mixture of experts’), in which a tree of gating
networks combines the expert networks into successively
larger groupings that are defined over nested regions of the
input space. The learning process of the experts is thus
carried out in a coupled manner, and the combining scheme
is a competitive one, as only one expert at a time can be
selected for each input sample.

In every case, the mixture of experts approach does not
make it possible to exploit the different information coming
from different descriptions of the same sample, as all the
experts work on the same input space, i.e. on the same
description.

In the following, we focus our attention on a MES made
up of experts which generally employ different descriptions
of the input sample; in this case, the main problem is how
to solve the conflicts arising among the different responses
of the experts on the basis of a suitably defined combining
rule. One of the simplest combining rules, the ‘Majority
Voting’ rule [11,21], assigns the input sample to the class
for which a relative or absolute majority of experts agrees;
otherwise, the sample is rejected. More sophisticated criteria
for resolving conflicts among the experts require the intro-
duction of a measure of the reliability associated with the
response of each expert. For instance, the ‘Weighted Voting’
methods [8,22] are mainly based on this idea: the votes of
all the experts are collected, and the input sample is assigned
to the class for which the sum of the votes, each weighted
by the estimated reliability of the corresponding expert, is
the highest. In a similar way, the reliability could be effec-
tively used for solving the ties occurring in the ‘Majority
Voting’ rule. If two or more classes receive the same number
of votes, the tie may be solved by considering the reliability
of the experts.

A well-known approach for defining a reliability parameter
for a given expert is based on the evaluation of its recog-

nition performance on the training set [14]. For example, if
an expert assigns the input sample to the ith class, the
decision is attributed a reliability proportional to the recog-
nition rate of the training set samples attributed to the ith
class. A drawback of such a definition is that every decision
attributing a sample to a same class is assigned the same
reliability regardless of the quality of the sample, and thus
of the reliability of the specific decision. The average per-
formance of an expert on the training set, for each given
class, is undoubtedly significant for a sample whose represen-
tation is similar to that of the majority of samples of that
class, but this value does not necessarily reflect the actual
reliability of each single classification act.

To overcome this problem, we propose a method to
evaluate the reliability of each classification act performed
by a given expert, and to use this value to weight its vote
in a MES. The definition of the parameter measuring the
classification reliability is made on the basis of information
directly derived from the output of the expert. Namely, a
correspondence can be established between the state of the
expert’s output and the situations in the feature space which
can give rise to unreliable classifications. The operating
definition of the parameter which allows us to detect such
situations and to quantify classification reliability will depend
upon the classifier architecture considered.

To evaluate the effectiveness of the approach, several
multi-expert systems have been considered. Each system was
obtained by combining various experts according to different
combining rules. The experts are handwritten character rec-
ognisers made of different descriptor-classifier pairs. In fact,
the performance of a recognition system depends not only
upon its classification section, but also upon the quality of
the descriptions of the samples to be recognised, which
are computed by the description section the classifier is
provided with.

Tests have been carried out using the digits of the NIST
Database 19 [23]. Results obtained with classical combining
rules are also reported, and the advantages of our
approach outlined.

In Section 2 some widely used criteria for combining
experts are briefly reviewed, while in Section 3 our approach
is presented: the proposed reliability parameters are defined
and their use for improving the performance of some well-
known combining rules is discussed. Finally, in Section 4
experimental results obtained by using different multi-experts
for handwritten character recognition are presented.

2. COMBINING CRITERIA

As mentioned in the introduction, many ways to combine
expert decisions have been proposed in the recent past.
Some of them are based on heuristic approaches, such as
voting or ranking strategies, while others are based on
probability theory, e.g. the Bayesian method [7].

From a theoretical point of view, given a set of experts,
the performance of the combining scheme should improve
with the amount of information provided by each single
expert. In the literature, the various classification algorithms
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are divided into three types, depending on the output infor-
mation they are able to supply [14]. Type 1 classifiers output
a unique label, i.e. the label of the presumed class; they are
also known as classifiers that work at an abstract level. Type
2 classifiers, which work at a rank level, rank all the classes
in a queue where the class at the top is the first choice,
while Type 3 classifiers, which work at a measurement level,
attribute each class a measurement value to represent the
degree that the input sample belongs to that class.

Almost all the combining rules are defined with reference
to Type 1 classifiers. On the other hand, combining schemes
that exploit information from the classifiers at the measure-
ment level allow us to define combining rules that are more
sophisticated and potentially more effective.

The most common combining rules are the ones based
on a voting strategy, where each expert gives its own
opinion (i.e. a vote) about the class of the input pattern.
The Relative Majority Voting Rule (MV rule) decides that
the input pattern belongs to the ith class Ci if and only if
the relative majority of the classifiers votes for the class Ci.
If two or more classes obtain the same number of votes,
the input sample is rejected. More formally, let us denote
by Yk(x) the output of the kth classifier when the sample x
is submitted to it (Yk will be used when the dependence
on the input sample is evident from the context). If the
vote of the kth classifier for the class Ci is denoted by

Vi
k = H 1 if Yk = i

0 if Yk ± i

the total number of votes received by Ci will be given by

Vi = O
k

Vi
k

If T = {iuVi = maxj Vj} is the set made up of the classes with
the maximum number of votes, the output of an MES using
the MV rule is

Y = Hi = arg max
j

Vj if card(T) = 1

0 (i.e. reject) otherwise
(1)

A commonly used version of the MV rule virtually elimin-
ates the reject by using a suitably defined reliability para-
meter (often referred to as the confidence degree) to weight
the expert votes when two or more classes receive the
maximum number of votes. If we denote as Dk(x) (Dk for
short) the value of such a reliability parameter for the kth
classifier, the sum of the weighted votes for class Ci is
given by

Wi = O
k

DkVi
k (2)

Thus, the MES output becomes

Y = Hi = arg max
j

Vj if card(T) = 1

i = arg max
jPT

Wj otherwise
(3)

An alternative is to use the parameter Dk not in the

presence of ties only, but in all cases for weighting the
decision of each expert involved in the combination. The
output provided by an MES using this rule, known as
Weighted Voting Rule (WV rule), is

Y = arg max
j

Wj (4)

To evaluate Dk, i.e. the reliability of the vote given by
the kth expert, the most common choice is to use the
confusion matrix Ek [14]. The generic element ek

i,j

(1 # i,j # n, where n is the number of the classes) of Ek

represents the percentage of samples of the class Ci assigned
to the class Cj. A reasonable definition of Dk based on Ek is

Dk =
ek

i,i

O
j

ek
j,i

(5)

given Yk = i. In fact, if Ni is the total number of training
set samples belonging to Ci, then Niek

i,i is the number of
samples of Ci which have been correctly classified by the
kth classifier, and SjNjek

j,i is the total number of samples of
any class assigned to Ci. It follows that Niek

i,i/SjNjek
j,i is an

estimate of the probability that a sample has been correctly
classified if it has been assigned to Ci. Thus, under the
assumption that Ni = Nj ∀i,j, Eq. (5) expresses the a posteriori
probability that the kth classifier gives the correct answer.

It is worth noting that for an MES made of two experts,
Eqs (3) and (4), providing the output of the MES in the
case where the MV and the WV rule are respectively
adopted, can be reduced to the same form, thus implying
that the results obtained in the two cases are the same. In
the general case, when the number M of experts is greater
than two, it can be simply shown that a necessary condition
for the two rules to give different results is

5min
k

Dk ,
M − 2
M + 2

for M even

min
k

Dk ,
M − 1
M + 1

for M odd

(6)

A further alternative is given by the Bayesian Combining
Rule (BC rule), which uses all the information present in
Ek for estimating the a posteriori probability that the input
sample belongs to the ith class. In particular, if we indicate
with (Yk = jk) the event that the kth expert assigns the input
sample x to one of the classes (let us denote its index by
jk), the class Ci selected by the BC rule is the one which
maximises the post-probability:

Y = argmax
i

P(x P CiuY1 = j1,Y2, = j2. . .,YM = jM) (7)

If the experts can be assumed to be independent of each
other and the a priori probability is the same for all the
classes, it can be shown that Eq. (7) can be written as

Y = argmax
i

PM
k=1

P(x P CiuYk = jk) (8)

According to Eq. (5), an estimation of the post-probability
for the kth expert is given by
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P(x P CiuYk = jk) = ek
i,jk

/On

h=1

ek
h,jk

(9)

thus, the class that maximises the post-probability (7) satis-
fies the following relation:

Y = argmax
i

PM
k=1

ek
i,jk

(10)

which can be adopted for implementing the BC rule.

3. RELIABILITY PARAMETERS

The combining approaches described in the previous section
estimate the reliability of the classification by looking at
the global performance of the expert on the training set.
As pointed out in the introduction, more effective solutions
could be obtained by introducing a reliability parameter
which can estimate the accuracy of each single classification
act of an expert.

To better illustrate this point, let us refer to the feature
space representation of a given set of samples. Classification
reliability evaluation requires that the situations in the
feature space which can give rise to unreliable classifications
are characterised and correlated to the state of the classifier
output. The low reliability of a classification can be traced
back to one of the following situations (see Fig. 1): (a) the
sample considered is significantly different from those present
in the training set, i.e. its representative point is located in
a region of the feature space which is far from those
associated with the various classes; (b) the point which
represents the sample considered in the feature space lies
where the regions pertaining to two or more classes overlap,
i.e. where training set samples belonging to more than one
class are present.

To distinguish between classifications which are unreliable
because a sample is of type a or b, let us define two
reliability parameters, ca and cb, whose values vary in the
interval [0,1]. It is assumed that parameter values near to 1

Fig. 1. Two cases of unreliable classification. (a) Samples signifi-
cantly different from those of the training set; (b) samples lying in
a confusion region of the feature space.

characterise very reliable classifications, while low values
correspond to unreliable classifications.

The two parameters are associated with each expert, and
each parameter is a function of the expert output vector
(indeed, of the output of its classification section). A para-
meter c providing an inclusive measure of the reliability of
a classification can be computed by combining the values
of ca and cb. The form chosen for c is:

c = min {ca, cb} (11)

This is certainly a conservative choice because it implies
that, for a classification to be considered unreliable, only
one reliability parameter needs to assume a low value,
regardless of the value assumed by the other one. Of course,
other choices could be made (e.g. see the survey on combin-
ing operators presented by Bloch [24]), depending on the
requirements of the application at hand. However, this
matter lies beyond the scope of the present paper, and the
implications of alternative choices will not be considered
here. In Fig. 2 a general scheme describing our approach
is presented.

To exploit the reliability information defined above, we
have used the Majority Voting and the Weighted Voting
rules, choosing Dk = ck (classification reliability of the kth
classifier) in the definition of Wi (see Eq. (2)). In this way,
we have two new combination strategies: the Reliability
Based Majority Voting (RBMV) and the Reliability Based
Weighted Voting (RBWV).

The operating definition of ca and cb depends upon the
particular classifier architecture, and requires the classifier to
work at the measurement level; thus, it is applicable to
Type 3 classifiers. Note that effectively exploiting the infor-
mation held by the output vector of such classifiers is not
a trivial task. In the following, the reliability parameters ca

and cb for the Multi-Layer Perceptron (MLP) [25] and the
Nearest Neighbour (NN) classifier [26] will be defined. These
classifiers have been chosen for our testing purposes because

Fig. 2. A general scheme describing our approach. To obtain the
decision Y of the MES, the decisions Y1,Y2,...,YM of the component
experts are combined according to a rule which takes into account
the reliability parameters c1,c2,. . .,cM evaluated on the basis of the
expert output vectors O1,O2,. . .,OM. In this way, a different value
of the reliability can be associated to each classification act of
an expert.
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they are among the most commonly used. The definition of
the reliability in case of a wider set of neural classifiers can
be found in Cordella et al [27].

The output layer of the MLP classifier is made of the
same number of neurons as classes. From a theoretical point
of view, it is expected that if, during training, a sample
belonging to the kth class is presented to the network input,
the kth output neuron will assume a value equal to 1, while
all the other outputs will assume a value equal to 0 (ideal
output vector). In practice, the status of the output vector
is generally different from the ideal one (i.e. the values of
its elements may be numbers in the interval [0,1]), and the
input sample is attributed to a class according to a given
rule. The simplest rule is Winner-Takes-All, according to
which the input sample is attributed to the class whose
output neuron has the highest value.

This network uses the value of the connection weights
to obtain the hyperplanes defining the decision regions in
the feature space [28]. During the training phase, the net-
work dynamically modifies the decision region boundaries
in such a way as to provide, for each sample, an output
vector as close as possible to the ideal one. Consequently,
test set samples very different from those which contributed
to determine the hyperplanes separating the decision regions
(see case a in Fig. 1) may fall outside every region: in this
case, all the output neurons will provide values near to 0.
Therefore, an effective definition of the reliability parameter
ca can be the following:

ca = Owin (12)

where Owin is the output of the winner neuron. In this way,
the nearer to 0 the value of Owin, the less reliable the
classification is considered.

Samples of type b, lying where two or more decision
regions overlap, typically generate output vectors with two
or more elements having similar values. In these cases, the
risk of a classification error is significantly high. Thus, for
a given Owin, the higher the difference between Owin and
O2win (the output of the neuron having the highest value
after the winner), the safer the decision of attributing the
sample to the winning class. Consequently, a suitable para-
meter for evaluating the reliability of these situations can be

cb = Owin − O2win (13)

Let us note that, since the values of the elements of the
output vector are real numbers in the interval [0,1], the
reliability parameters ca and cb also assume values in the
same interval, as required by their definition.

In conclusion, the classification reliability of the MLP
classifier can be measured by

c = min{ca,cb} = min{Owin, Owin − O2win}
= Owin − O2win = cb (14)

The Nearest Neighbour classifier assigns the input sample
x to the class including the training set sample with the
smallest distance from x. Note that the training set in the
case of an NN classifier is usually referred to as the reference
set, since there is no explicit training phase of the NN clas-
sifier.

Let us indicate as Oi the minimum distance between x
and the set of the reference samples belonging to class Ci.
Thus, the smallest distance of x from a reference samples,
say Owin, is:

Owin = min
i

Oi = min
i

(min
rijPCi

d(rij,x)) (15)

where rij is the jth reference sample of the ith class.
Obviously, test set samples that are significantly different

from those present in the reference set will have a significant
distance from all the samples of the latter set. Therefore,
the reliability parameter ca can be defined as

ca = 1−
Owin

Omax
(16)

where the value of Omax is the highest among the values
of Owin obtained for samples taken from a set (training-test
set) disjoint from both the reference set and the test set.

As it is to be expected that the value of Owin is higher
for samples of type a, these will be classified with a low
reliability (low values of ca). According to the above defi-
nition, the value of ca lies certainly between 0 and 1 only
for the samples belonging to the set on which the value of
Omax has been computed, since the relation Owin # Omax

may not hold true for other samples. Therefore, to make the
definition applicable, the previous expression must become

ca = maxH1 −
Owin

Omax
, 0J (17)

On the other hand, samples of type b have comparable
distances from at least two reference samples belonging to
different classes. Consequently, the reliability parameter cb

must be a function of both Owin and O2win, where O2win is
the distance between x and the reference sample with the
second smallest distance from x among all the reference set
samples belonging to a class which is different from that of
Owin (i.e. O2win = minj±k Oj, where k = arg mini Oi):

cb = 1 −
Owin

O2win
(18)

According to this definition, cb assumes values ranging
from 0 to 1, and the larger the difference O2win − Owin, the
higher the values of cb.

The classification reliability for the NN classifier is there-
fore given by

c = min{ca,cb} = (19)

minHmaxH1 −
Owin

Omax
, 0J, 1 −

Owin

O2win
J

4. TESTING THE APPROACH

To validate our approach, the performance of several multi-
expert systems using the combination strategies illustrated
in Section 2 and based on different definitions of reliability,
including ours, was tested. The experts making up each
MES are handwritten digit recognition systems. They have
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been selected not so much because they achieved best
performances in the field (systems performing better have
been reported in the literature), but rather because they
represent a variety of approaches to recognition, and thus
can a priori be relied on to have some degree of comp-
lementarity. Indeed, we are interested in demonstrating that
a suitable combination of experts makes it possible to achi-
eve a better performance than that of the best expert in
the pool.

All the tests were performed using the NIST Database
19 [23]. It contains eight sets of images extracted from 3699
Handwriting Sample Forms and digitised at 300 dpi. Each
form is composed of 34 fields containing digits, upper-case
and lower-case letters, both constrained and unconstrained.
Form writers were people on the staff of the U.S. Census
Bureau and high school students. Each character, segmented
and labelled, is represented by a 128 × 128 bit-map. NIST
strongly suggests using the hsf 4 set as standard OCR
reporting set, and allows all other sets to be used as training
sets. A cross validation study [23] has demonstrated that
hsf 4 is significantly more difficult, from the recognition
point of view, than the other sets.

4.1. The Experts Adopted

Each of the experts adopted is made of a descriptor, which
characterises the pattern to be recognised as a function of
a set of features, and of a classifier which assigns the pattern
to one of the possible classes, on the basis of the knowledge
acquired during the training phase. To ensure that the
experts were as uncorrelated as possible, different descriptor-
classifier pairs were chosen.

As regards description, there are two main approaches in
the field of handwritten character recognition: in the first
(here on called geometric) the character is described by
means of a set of measurements (features) directly extracted
from the bit map. The second approach (here on called
structural) assumes that the character to be recognised can
be decomposed into simpler components, and then described
in terms of appropriate attributes of the components and of
their topological relations. Hybrid techniques that combine
the two approaches have also been employed.

We have taken into account four description schemes:
two of them are representative of the geometric approach,
while the others refer to the structural and the hybrid
approach, respectively.

The first geometric description method employed assumes
an 8 3 8 matrix of real numbers in the range [0,1] as
character representation. It is obtained by superimposing an
8 3 8 grid on the character bit-map (see Fig. 3(a)) and
computing the average value of the pixels falling in each
area. The matrix obtained is finally coded as a 64-element
vector (see Fig. 3(b)).

The other geometric description method calculates the
two-dimensional Haar transform [29] of the character bit-
map. The Haar transform, which is a type of wavelet
transform, of a suitably scaled bit-map B of dimensions
N 3 N, where N must be a power of 2, is given by

{hij} = H · B · HT (20)

Fig. 3. The four descriptions employed for the experiments. (a)
Original character bit-map; (b) general scheme of the description
obtained from a scaled grey-level version of a picture; (c) description
scheme based on the Haar transform of the bit-map; (d) structural
decomposition of (a) in terms of circular arcs; (e) structural descrip-
tion of (d) based on Attributed Relational Graphs; (f) hybrid
description scheme based on the evaluation of geometric moments
computed on the structural decomposition.

where H is the Haar matrix:

H = 1
h0(0) h0(1/N) · · · h0((N − 1)/N)

h1(0) h1(1/N) · · · h1((N − 1)/N)

: : :

hN−1(0) hN−1(1/N) · · · hN−1((N − 1)/N)

2
(21)

The hk(x) are the Haar functions, which are defined for
k = 0,. . .,N − 1 and for x P [0,1] by the following equations:

h0(x) =
1

!N

hk(x) =
1

!N

· 5
2p/2 if

−2p/2 if

0 otherwise

q − 1
2p # x ,

q − 1/2
2p

q − 1/2
2p # x ,

q
2p

(22)

where p and q are the unique integers such that k = 2p + q − 1
and 1 # q # 2p.

In our case, the scaled bit-map B has N = 64. The feature
vector used consists of the 64 coefficients
(h00, . . . ,h07,h10, . . .,h77) belonging to the 8 × 8 submatrix
obtained starting from the upper left corner of the transfor-
med image.

The main phases of the process leading to the adopted
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structural description are briefly summarised below. Charac-
ters are first thinned and then, to preserve the original
information on character shape, further processed for cor-
recting the shape distortions introduced by thinning. After
this correction a character is represented by a set of poly-
gonal lines which are then approximated with pieces of
circular arcs (see Fig. 3(d)). The structural description can
be represented by an Attributed Relational Graph (ARG)
whose nodes represent the component arcs and whose edges
represent the relations between the arcs (Fig. 3(e)). Node
attributes specify span, relative size and orientation of the
corresponding arc, while edge attributes specify topologic
relations between arc pair projections on the coordinate
axes. More details can be found elsewhere [30].

The fourth description method refers to a hybrid approach
and consists of geometric features extracted from a structural
decomposition of the character. In particular, after approxi-
mating a character with a set of circular arcs, geometric
moments are computed on them by means of suitably estab-
lished recurrent formulae [31]. The moments up to the 7th
order are considered (from the experiments it has been
noted that the inclusion of higher order moments did not
give a significant improvement of the recognition rate);
however, since moments of order 0 and 1 have been used
to make the remaining moments scale and translation
invariant, the final description is made up of a 33 element
vector (see Fig. 3(f)).

The aim of obtaining experts as independent as possible
has also motivated the choice of the classifiers, which have
been selected on the basis of their different characteristics.
Three classifiers were implemented by means of MLP net-
works, while the fourth classifier chosen is of the Nearest
Neighbour type.

The above classifiers have been combined with the four
previously outlined descriptions, giving rise to the four
experts illustrated below and summarised in Table 1. The
acronyms used to denote the experts specify the classifier
and the associated description type. Only handwritten digits
were considered for the test, thus the number of classes is
ten for every classifier.

I The MLP-GS Expert. The MLP-GS expert combines the
MLP classifier with the geometric description based on

Table 1. The description and classification models adopted
by the experts considered

Expert Description Classifier

MLP-GS Scaled Bit map (8 × 8) Multi-Layer
Perceptron

MLP-GH Haar transform Multi-Layer
coefficients Perceptron

MLP-H Geometrical moments Multi-Layer
on a circular arc-based Perceptron
description

NN-S Attributed Relational Nearest Neighbor
Graphs

the scaled bit-map. Therefore, the input layer of the
classifier is made of 64 neurons, each one associated to
a pixel of the scaled image. The chosen network architec-
ture has a single hidden layer of 30 neurons and an
output layer of 10 neurons corresponding to the ten digits.
The learning algorithm is the standard Backpropagation
one, with a constant learning rate equal to 0.5. The
sigmoidal activation function was chosen for all the neu-
rons.

I The MLP-GH Expert. The MLP-GH expert uses the geo-
metric description based on the Haar transform. The
input layer of the MLP classifier is composed of 64
neurons, each one associated to a coefficient of the Haar
transform of the character image. Unlike the previous
one, this network has a single hidden layer of 50 neurons,
while the output layer is again made up of 10 neurons.
The learning algorithm, the learning rate and the acti-
vation function are the same as those of the MLP-
GS expert.

I The MLP-H Expert. In this expert, the classifier works
with the hybrid description. Thus the input layer of the
classifier is made of 33 neurons. All the remaining net-
work parameters are the same used in the MLP-GS expert.

I The NN-S Expert. This uses the structural description
associated to the NN classifier. To attribute a sample to
a class, a metric is defined in the ARG space, according
to which the difference between two characters is meas-
ured by the minimum value of the distances between any
two possible mappings of the corresponding ARGs. The
latter distances are measured as a function of the attribute
values of components and relations. Cases where two
ARGs are made up of a different number of nodes and/or
arcs are also considered. More details about the metric
can be found elsewhere [32]. A subset suitably extracted
from the training set used in the other cases has been
assumed as the reference set: in this way, we have
obtained an endurable computational load for the clas-
sifier, without affecting its performance.

4.2. Experimental Results

In our tests we used both the hsf 3 and hsf 4 sets from
the NIST Database 19. The hsf 3 set was split into two
sets: a training set, composed of 34,644 samples, used for
training the MLP-based experts; and a so-called training-
test set made of 29,252 samples. As already mentioned, a
subset of the training set (8000 samples) was assumed as
the reference set for the NN-S expert. The training-test set
was used both to compute the confusion matrices and to
establish the number of cycles for stopping the learning
phase of the MLP-based experts, in order to avoid overtrain-
ing [33]. The hsf 4 set, made of 58,646 samples, was adopted
as the test set. Figure 4 illustrates a few characters of this set.

Eleven different multi-experts have been considered: one
of them combines four experts, four of them combine three
experts, and each of the remaining six combines two experts.
The multi-experts have been designed so as to test all the
possible combinations of experts, each obtained by pairing
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Fig. 4. Some characters of the test set considered (the hsf 4 set of
the NIST Database 19).

a classifier with a descriptor. The experimental results
obtained with the considered combinations of experts are
summarised in Tables 2 and 3.

In particular Table 2 shows, for each MES considered,
the recognition rate achieved by the best single classifier
and the average recognition rate of the MES component
experts. The last two columns, respectively, show the per-
centage of test set samples that are correctly classified by at
least one expert and the percentage of the test set samples
correctly classified by all the experts considered in the MES.
These parameters represent the performance upper and lower
bounds achievable by the MES considered using the MV or
the WV rules. The MV rule has been implemented in the
version using the definition of Dk given by Eq. (5) for tie
breaking. It is worth noting that, by increasing the number
of experts, the upper bound increases while the lower bound
decreases: in fact, when many experts are considered, the
probability that a sample is recognised by at least one of
them is high, while the probability that all the experts agree
on the same class becomes lower.

Table 2. Some figures characterising the MESs adopted and
their component experts

MES ID No. of Best single Average Upper Lower
experts classifier recognition bound bound
in the rate
MES

A 2 90.74 89.59 93.65 85.53
B 2 90.74 88.19 94.29 82.08
C 2 90.74 87.43 96.05 77.67
D 2 88.44 87.04 93.39 80.69
E 2 88.44 86.28 95.64 75.78
F 2 85.64 84.88 94.65 73.97
G 3 90.74 88.27 95.60 79.09
H 3 90.74 87.76 97.26 73.94
I 3 90.74 86.83 97.11 71.62
J 3 88.44 86.06 97.08 70.46
K 4 90.74 87.23 97.82 69.36

Table 3. MES recognition rates vs. combining rules

MES Majority voting Weighted voting Bayes
ID

MV RBMV DN WV RBWV DN BC

A 90.39 91.12 22.39 90.39 91.12 22.39 90.12
B 90.35 90.90 13.96 90.35 90.90 13.96 90.58
C 90.74 91.58 15.82 90.74 91.58 15.82 90.98
D 87.79 89.94 38.39 87.79 89.94 38.39 87.75
E 88.11 90.74 34.93 88.11 90.74 34.93 89.41
F 86.53 88.24 21.06 86.53 88.24 21.06 87.73
G 91.19 91.42 5.22 91.19 91.47 6.35 91.04
H 92.16 92.61 8.82 92.16 92.27 2.16 92.41
I 92.00 92.47 9.20 92.00 92.20 3.91 92.24
J 90.79 91.73 14.94 90.79 91.25 7.31 91.59
K 92.28 92.63 6.32 92.28 92.36 1.44 92.30

In Table 3 the recognition rates obtained with the
reliability-based combining rules are compared with those
achieved by the corresponding MV and WV rules. It can
be seen that columns MV and WV contain identical values.
This is in accordance with the considerations made in
Section 2; in particular, the conditions expressed by Eq. (6)
are never verified for our systems. Similarly, with MESs
made up of two experts (rows A to F) the RBMV and
RBWV columns contain equal values. This happens because
also in this case the two RBMV and RBWV rules reduce
to the same form.

For each MES and for each combining rule, the recog-
nition percentages together with the value of the parameter
DN are also given. DN is defined as the ratio DR2/DR1 · 100,
where DR1 is the difference between the recognition rate
obtained by the MV (WV) combining rule and the recog-
nition upper bound (fifth column of Table 2), and DR2 is
the difference between the recognition rates obtained using
the RBMV (RBWV) and the MV (WV) combining rules.
The parameter DN gives a measure of the improvement
obtained by introducing the proposed reliability parameter.
This measure is normalised with respect to the maximum
improvement which can be achieved with the pair MES-
combining rule considered. The improvements obtained
range from 5.22% to 38.39% for the MV rule and from
2.16% to 38.39% for the WV rule.

The last column of Table 3 shows the results obtained
with the BC rule which does not make use of any reliability
parameter. Let us recall that this rule uses all the information
available in the confusion matrices of the component
experts, and thus, in principle, it could achieve recognition
rates better than the MV and WV rules. However, the use
of the reliability parameter in the RBMV and in the RBWV
rules allows us to attain better results than those achieved
with the BC rule for most of the multi-expert systems
considered. This improvement is more significant when the
MES is made of two experts due to the fact that ties are
more likely to occur for such systems.

It should be remembered that the recognition systems
considered have been selected not because they have an
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outstanding performance on the database used, but to per-
form the test on systems adopting different description and
classification paradigms. However, the recognition rates
obtained are not especially low, considering the quality of
the characters in the database.

To better characterise the improvement obtained with
the proposed rules, let us consider the comparison between
the MV and RBMV rules. With these rules the use of the
reliability parameter is limited to the case in which a tie
break is needed. In Fig. 5 the percentages of tie breaks
correctly solved when using the MV and the RBMV rules
are shown for all the multi-expert systems considered. It
can be noted that for systems made of two experts, the use
of the RBMV rule allows us to recognise more than 70%
of the cases in which a tie break occurs, about 9% more
than with the MV rule. In the case of systems made of
more than two experts the percentage of samples recognized
by the RBMV decreases to about 48%, but the average
difference between the recognition rates obtained by the
RBMV rule and the MV rule increases to more than 13%,
with a maximum value of 20%.

5. CONCLUSIONS

A novel parameter measuring the reliability of each single
classification act of a recognition system has been intro-
duced, and its use for weighting the votes of the experts
making up a multi-expert system has been demonstrated.

The approach has been tested using four handwritten
character recognition systems, combined in different ways
to form 11 multi-expert systems, on the digits of a large
standard database (NIST 19).

Although it is limited to a few percent, the absolute
recognition rate improvement achieved by the multi-expert
systems when using the two combining rules with the
reliability parameter introduced in Section 3 should be
considered significant. A more appropriate evaluation of the
results obtained should be made by considering that, in a
real multi-expert system, an upper bound for the achievable

Fig. 5. Percentages of tie breaks which are correctly solved when
using the MV and RBMV rules, for each of the multi-expert
systems considered.

recognition rate is determined by the choice of the compo-
nent experts. In particular, in our case, the upper bounds
of the multi-expert systems used are listed in Table 2. The
parameter DN, introduced according to the above consider-
ations, shows that it has been possible to recover up to
about 40% of the maximum theoretically achievable
improvement given by the difference between the upper
bound of the recognition rate and the recognition rate
obtained with the MV (WV) rule.
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