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Abstract
Hidden Markov models (HMMs) are popular methods for continuous sequential data modeling and classification tasks. In 
such applications, the observation emission densities of the HMM hidden states are generally continuous, can vary from 
one model to the other, and are typically modeled by elliptically contoured distributions, namely Gaussians or Student’s 
t-distributions. In this context, this paper proposes a novel HMM with Bounded Asymmetric Student’s t-Mixture Model 
(BASMM) emissions. Our new BASMMHMM is introduced in the light of the added robustness guaranteed by the BASMM 
in comparison to other popular emission distributions such as the Gaussian Mixture Model (GMM). In fact, GMMs gener-
ally have a limited performance with outliers in the data sets (observations) that the HMM is fitted to. Also, GMMs cannot 
sufficiently model skewed populations, which are typical in many fields, such as financial or signal processing-related data 
sets. An excellent alternative to solve this problem is found in Student’s t-mixture models. They have similar behaviour and 
shape to GMMs, but with heavier tails. This allows to have more tolerance towards data sets that span extensive ranges and 
include outliers. Asymmetry and bounded support are also important features that can further extend the model’s flexibility 
and fit the imperfections of real-world data. This leads us to explore the effectiveness of the BASMM as an observation 
emission distribution in HMMs, hence the proposed BASMMHMM. We will also demonstrate the improved robustness of 
our model by presenting the results of three different experiments: occupancy estimation, stock price prediction, and human 
activity recognition.

Keywords  Hidden Markov models · Multivariate student’s t-mixture · Bounded asymmetric student’s t · Prediction · 
Recognition

1  Introduction

HMMs [1] are a simple, yet powerful, tool to represent 
and predict sequential events [2] and are widely used in 
many types of data-driven tasks. The concept of HMMs 

is primarily based on Markov Chains [3, 4] (proposed by 
Andrey Markov in the early 20th century) but was formally 
developed later in many works. The key idea of HMMs is 
that a latent variable or state variable evolves according to a 
discrete, first-order Markov process. More specifically, the 
modeled process/data is a sequence of states or values that 
are unknown (hidden), where each hidden state depends on 
the past hidden state in the sequence. This Markov Chain of 
hidden states is associated with an equal sequence of known 
values (observations). Every hidden state emits an observa-
tion that follows a well-defined probability distribution in 
the space of observations, and each observation is condition-
ally independent of every other observation, given the value 
of its associated hidden state. By their structure, HMMs are 
generally able to solve a variety of tasks mainly with three 
main functionalities [5, 6]: evaluation, decoding (inference), 
and learning. The evaluation is the computation of the prob-
ability of an observation sequence given an HMM. Decoding 
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is the task of inferring the most probable sequence of hidden 
states given a defined HMM and a sequence of known obser-
vations. As for learning, it is the search for the best param-
eters of the HMM (learning the HMM) given an observation 
sequence and the set of possible hidden states in the model.

By their definition, HMMs are an excellent choice to 
tackle data tasks that involve non-observable sequential 
values, as their structure allows inferring these latent values 
from the observable signals or even predicting their future 
trends. This high flexibility makes HMMs a strong candidate 
to deal with a variety of applications such as genetics and 
biomedical engineering [7, 8], climate modeling [9], signal 
processing [10], stock market prediction [11], speech [12], 
video recognition [13], and information retrieval systems 
[14] to name a few.

The observation emission, i.e., the formulation of the 
conditional dependence between the observations and the 
hidden states of the HMM is generally a deciding factor for 
the behaviour of the model, and is also our area of interest 
in this paper. For continuous data, the observation emission 
probability distributions associated with the hidden states 
often have a specific form from a parametric class such 
as Gaussian, Gamma, or Poisson. In this regard, multiple 
works have further explored the emission distributions and 
introduced the mixture models as an alternative [15]. This 
has led to some very useful variants of HMMs, perhaps the 
most popular one being the Gaussian mixture model HMM 
(GMMHMM). This prevalence of the GMMHMMs stems 
from the convenience of the GMM, as it provides a natural 
way to cluster the data and has relatively simple implemen-
tations and parameters. However, Gaussian-based distribu-
tions do not account for multiple natural characteristics of 
real-world data sets, including the presence of outliers [16], 
their asymmetry, and their specific location in space. Ergo, 
HMMs with Gaussian-based emissions can be limited when 
dealing with outlier-heavy, or significantly asymmetric data, 
which is often the case. Some of these issues have been 
tackled in [17] by introducing a bounded asymmetric Gauss-
ian mixture [18] as an emission distribution for the HMM, 
but the low outlier tolerance of the Gaussian distribution 
remains a problem.

On this matter, the Student’s t-distribution [19] is an 
excellent alternative to the Gaussian when fitting skewed 
or heavy-tailed populations, thus, the multivariate finite 
Student’s t-Mixture Model (SMM) [20] can provide a more 
robust fit than the GMM in the presence of significant 
proportions of outliers in the data. Multiple articles have 
explored the potential of the HMMs with SMM emissions 
as in [21–23], but the idea of customizing this model within 
the HMM to better fit the real-world data has not been exam-
ined yet. In fact, while SMMs are an excellent solution for 

handling outliers, they assume, by their mathematical defi-
nition, that the examined data is symmetric and spans over 
an unbounded range, which is not a realistic depiction of 
most data sets.

This motivated us to introduce BASMMHMM, a HMM 
with Bounded Asymmetric Mixture Model (BASMM) 
emissions. This model is an amelioration of the drawbacks 
observed in the previously proposed HMMs, as the emis-
sions’ distributions will not only fit observed data outliers 
(with heavy distribution tails), but also tolerate the natu-
ral imperfections of the data (with asymmetry) and take 
into account the fact that the data usually spans only finite 
regions of its space. We train our BASMMHMM using the 
Baum–Welch Expectation Maximization (EM) algorithm, 
and we apply it on a selection of popular real-world tasks, 
where the HMMs are a very efficient recourse: occupancy 
estimation [24], stock price prediction and human activity 
recognition [25].

This paper is laid out as follows: in the first section, 
we introduce the general scope and the motivations for 
this work. In the second section, we present the emission 
distribution of our proposed HMM, which is the multi-
variate Bounded Asymmetric Student’s-t Mixture Model 
(BASMM). In the third section, we review the neces-
sary mathematical definitions and present the HMM with 
BASMM emissions. The fourth section features experiments 
using the proposed model as well as their results. Follow-
ing the experiments’ results, we also establish a comparison 
between our proposed model and the other types of HMMs a 
variety of emissions. Finally, the fifth section concludes this 
work and discusses eventual paths of improvement.

The mathematical variables’ notations used for the rest of 
the paper are detailed in Table 1.

2 � Multivariate bounded asymmetric 
student’s‑t Mixture Model

The BASMM [26] is a generalized format of the SMM 
where the specific location of the modeled data in the space 
(bounded support) and its natural asymmetry are taken into 
consideration. Being based on the multivariate Student’s 
t-distribution, the BASMM, and SMM are more robust than 
other popular mixture models like the GMM. In fact, unlike 
the Gaussian density function, the Student’s t-density func-
tion has an additional parameter -the degrees of freedom � - 
which is a robustness tuning parameter. As a result, the t-dis-
tribution provides a heavy-tailed alternative to the Gaussian 
distribution (see Fig. 1) for potential outliers in the data and 
therefore, the SMM can produce a clustering algorithm that 
is more outlier-tolerant than the GMM.
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2.1 � Multivariate bounded asymmetric student’s 
t‑distribution

We begin this section by building up the mathematical 
definitions that hold the basis for our model, starting with 
the multivariate Student’s t-distribution, and leading up 
to the BASMM.

Let t  be a multivariate Student’s-t probability density 
function with the following parameters: a mean � , a covar-
iance matrix Σ , and � degrees of freedom. For a multivari-
ate vector x of dimension d , and given the aforementioned 
parameters, Student’s-t can be written as follows [27]:

where Γ(x) is the Gamma function and Δ(x,�;Σ) is the 
squared Mahalanobis distance. Both functions have the fol-
lowing definitions, respectively:

(1)t(x|�,Σ, �) =
Γ
( �+d

2

)
|Σ|−1∕2(��)−d∕2

Γ(�∕2)[1 + �−1Δ(x,�;Σ)](�+d)∕2

It is worth noting that the definition of the t-distribution den-
sity function differs from a univariate to a multivariate popu-
lation. Considering that most of the real-world data-related 
tasks feature multivariate observations, we will not tackle 
the univariate case in this paper. Hence, all the probability 
density functions, as well as the rest of the mathematical 
construction of our model are presented for a multivariate 
random variable x . If we add the asymmetry to the multivari-
ate t, where we have a left covariance Σl and a right covari-
ance Σr , we would have the following density function T :

(2)Γ(y) = ∫
∞

0

xy−1e−x dx ; y > 0

(3)Δ(x,�;Σ) = (x − �)TΣ−1(x − �)

(4)T(x|�,Σl,Σr, �) =

{
t(x|�,Σl, �) if x ≤ 0

t(x|�,Σr, �) otherwise

Table 1   BASMMHMM 
notations

Notation Definition

BASMMHMM Bounded asymmetric student’s-t mixture model hidden Markov model

M =
{
�
t0
i
, �i,j, sj, yt

}N,N,L

i,j,t=1
Full definition of a BASMMHMM M

N Number of hidden states
L Length of the Markov chain / observation sequence
K Number of t-mixture components for every hidden state emission
S Student’s t-density function
Y = {yt}

L
t=1

Set of observations
si = {�i,k,�i,k,Σi,k, �i,k}

K
k=1

Parameters of the kth component ith hidden state’s t-mixture for k ∈ {1,… ,K}

� = (�i,j)1≤i,j≤N N × N matrix, where �i,j is the transition probability from state si to sj
�t0 = (�t0

i
)1≤i≤N Vector of initial probabilities of hidden states at t = 0

�i(yt) Emission function of the observation yt by the state sj

Fig. 1   Student’s-t versus Gauss-
ian probability density functions 
(univariate case)
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We determine whether the multivariate vector x is less than 
the zero of ℝd by calculating the sum A of all the compo-
nents of the x:

If A < 0 , then x < 0 , otherwise we consider x ≥ 0 . When 
we add bounded support Ω to the multivariate asymmetric 
t density function, we get the following probability density 
function S:

where h is an indicator function that bounds the multivariate 
t by Ω ∈ ℝ

d and is defined as follows:

where � = {�,Σl,Σr, �,Ω} is the set of parameters that fully 
define the multivariate bounded asymmetric t-distribution.

2.2 � Relation to the multivariate Gaussian 
distribution

According to [27, 28], the multivariate t-distribution is condi-
tionally related to the normal distribution: if the random vari-
able x follows multivariate t-distribution with a mean � , a 
covariance matrix Σ , and � degrees of freedom, then given a 
precision parameter � , x follows a multivariate Gaussian dis-
tribution n with mean � and covariance Σ

�
 and where the param-

eter � is a Gamma-distributed [29] variable with both scale 
and shape parameters equal to �

2
 : � ∼ G(

�

2
,
�

2
) (See Eq. 8)).

By applying Bayes’ theorem, we find that the multivariate 
t-density function is the product of the Gaussian distribution 
and the Gamma distribution with the parameters explained 
above, which gives us Eq. 9).

where G is the Gamma probability density function with 
both scale and shape parameters equal to �

2
:

(5)A =

d∑

i=1

xi

(6)S(x|�) =
T(x|�,Σl,Σr, �) × h(x,Ω)

∫
Ω
T(y|�,Σl,Σr, �) dy

(7)h(x,Ω) =

{
1 if x ∈ Ω

0 otherwise

(8)
x ∼ t(�,Σ, �) ⟺ x|� ∼ n

(
�,

Σ

�

)
and

� ∼ G
(
�

2
,
�

2

)

(9)t(x|�,Σ, �) = n
(
x|�, Σ

�

)
× G(�)

(10)G(�) =

(��

2

) �

2 exp
(−��

2

)

�Γ( �
2
)

As for the multivariate Gaussian distribution with a mean 
vector � and a covariance matrix Σ , the probability density 
function is:

Suppose we want to add bounded support and asymmetry to 
this definition of the multivariate Student’s t. In that case, we 
can base it on an asymmetric multivariate Gaussian density 
function, then multiply it by the indicator function h (see 
Eq. 7)) and divide it by the integral over bounded the sup-
port region Ω , which yields the following density function:

where T  is the asymmetric multivariate t-probability den-
sity function (as presented in Eq. 13)), and where N  is the 
asymmetric multivariate Gaussian density function, which 
takes as parameters a mean vector, a left covariance matrix, 
and a right covariance matrix. In order to define this density 
function, we follow the same approach stated in Sect. 2.1 for 
the multivariate asymmetric t:

Building up these definitions of the multivariate Bounded 
Asymmetric Student’s t-probability density function helps us 
understand the HMM observation emission probability that 
we will employ, to construct the entire model well.

2.3 � Multivariate bounded asymmetric t‑mixture 
model

Representing the distribution of a dataset X as a BASMM 
with K components implies that for every vector xi of the 
dataset, the marginal probability density function of xi is 
written as follows:

where ck and �k are the mixing proportion and the set 
of parameters for the kth mixture component respec-
tively, and finally, the mixture’s full set of parameters is 
Θ = {�1,… , �K ;c1,… , cK} . The mixing proportion ck rep-
resents the prior probability that xi belongs to the kth com-
ponent, thus satisfies:

(11)n(x��,Σ) =
exp

�
−

1

2
(x − �)TΣ−1(x − �)

�

√
(2�)k�Σ�

(12)S(x|�) =
N
(
x|�, Σl

�
,
Σr

�

)
× G(�) × h(x,Ω)

∫
Ω
T(y|�,Σl,Σr, �) dy

(13)N(x|�,Σl,Σr) =

{
n(x|�,Σl) if x ≤ 0

n(x|�,Σr) otherwise

(14)
f (xi|Θ) =

K∑

k=1

ck × S(xi|�k) =
K∑

k=1

ck

× S(xi|�k,Σl,k,Σr,k, �k,Ωk)
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2.4 � Fitting the mixture model

Now to ensure that the mixture model fits the data in the most 
optimal way, we perform the EM algorithm [30] to adjust the 
parameters of the model Θ to find the closest representation 
to the modeled data. As its name suggests, the EM algorithm 
comprises two main steps: Expectation and Maximization.

2.4.1 � Expectation step

The Expectation step consists of estimating the log-likelihood 
of the mixture model, i.e., how accurate is the representation 
of the data by the model with the current initialized set of 
parameters Θ . Here, at iteration t of the EM algorithm, we 
define the log-likelihood as the logarithm of the BASMM’s 
probability density function of the data x . Since the data points 
are considered independent and identically distributed (IID), 
the BASMM’s density function is the product over all the mar-
ginal density function values of the data vectors (xi)i=Ni=1

 . Thus 
the BASMM’s log-likelihood is defined as follows:

w h e r e  Θ = {�1,… , �K ;c1,… , cK}  a n d 
�k = {�k,Σk,l,Σk,r, �k,Ωk} for 1 ≤ k ≤ K . In the same expec-
tation step, we define by zik the posterior probability that the 
vector xi belongs to the kth component for i ∈ {1,… ,N} 
and k ∈ {1,… ,K} . These posterior probabilities are called 
responsibilities in mixture models terminology. They signify 
how responsible a mixture component (a simple bounded 
asymmetric t-distribution in the case of BASMM) is for a 
data vector xi , i.e., the amount of contribution of a distribu-
tion/mixture component �k over the quantity produced by 
the BASMM. At each iteration t  of the Expectation step, 
the responsibility values 

(
z
(t)

ik

)i=N,k=K
i=k=1

 are computed by the 
following equation:

2.4.2 � Maximization step

The goal of the Maximization step in the EM algorithm is 
to update the model parameters to maximize the previously 

(15)ck ≥ 0 and

K∑

k=1

ck = 1

(16)

L(Θ) = log
( N∏

i=1

f (xi|Θ)
)

=

N∑

i=1

log
( K∑

k=1

ckP(xi|�k)
)

(17)z
(t)

ik
=

c
(t)

k
P(xi��

(t)

k
)

∑K

j=1
c
(t)

j
P(xi��

(t)

j
)

calculated log-likelihood function [31]. As the logarithm is 
monotonically increasing, it is more suitable to minimize 
the negative log-likelihood function J(Θ) = −L(Θ) . The fol-
lowed logic here is to calculate the partial derivatives of J(Θ) 
with respect to the different parameters and update those 
parameters as the solution to the equation:

All solutions to this equation with respect to each parameter 
of the BASMM will require the knowledge of the responsi-
bilities/posterior probabilities zik calculated in the expecta-
tion step. In turn, the responsibilities depend on the knowl-
edge of the parameters of each mixture component �k . This 
explains the iterative nature of the EM algorithm. The M 
step of this algorithm, as well as the updated parameters’ 
definitions are elaborated in details in [26].

3 � Hidden Markov models

3.1 � Bounded asymmetric student’s t‑mixture model 
hidden Markov model (BASMMHMM)

Here we present the main contribution of our model, which 
is the observation emission strategy. As discussed in the 
introduction, we aim to produce an HMM with emissions 
that are more robust to the observable data’s outliers. In 
this context, the Student’s t-distribution has been employed 
in modified versions as a non-Gaussian emission in [22, 
32]. We build on these works by exploring asymmetry and 
bounded support along with the t-mixture for the emission. 
For this particular type of HMM, we consider that at the 
time t , the probability of observing yt given a hidden state 
si follows a probability distribution formed by a mixture of 
bounded asymmetric Student’s t-distributions with K com-
ponents. We also consider that for all the hidden states of the 
HMM, the number of mixture components is the same. As a 
result, the probability of emitting the observation yt from the 
hidden state si is defined in the following equation:

With the definition of the multivariate t is given in Eqs. (1), 
(13). It’s hard and computationally costly to run the EM 
algorithm when fitting the HMM. In this case, we employ 
the definition based on the bounded asymmetric Gaussian 
stated in 2.2. As a result, the probability of emitting the tth 
observation yt by the hidden state si (which corresponds to 

Partial derivative(J) = 0

(18)

P(yt|Θi) =

K∑

k=1

ci,k × S(yt|�i,k)

=

K∑

k=1

ci,k × S(yt|�i,k,Σ
l
i,k
,Σr

i,k
, �i,k,Ωi,k)
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the emission mixture model Θi with the set of parameters (
�i,k = {�i,k,Σl,i,k,Σr,i,k �i,k,Ωi,k}

)K

k=1
 ) is the following:

where �i,k is a precision parameter and �i,k ∼ G(
�

2
,
�

2
) 

(see Sect. 2.2). We define also the observation indicators (
�i,t

)i=I,t=L
i=t=1

 by:

Also, given �i,t = 1 , we define the state-conditional mixture 
component indicators 

(
�i,k,t

)K
k=1

 as follows:

These indicators are latent variables that give information 
about the mixture component that each data point belongs 
to. We don’t have this information, but defining it math-
ematically gives us a complete data representation: yc , thus 
simplifying the equations, i.e., the complete data probability 
density function of each emission mixture:

After calculations, the log-likelihood of the emission mix-
ture for the ith hidden state is given by:

where Σi,k can be the left or the right covariance matrix 
based on whether y ≤ 0 or otherwise.

(19)

P(yt|si) =
K∑

k=1

ci,k ×N
(
yt|�i,k,

Σl,i,k

�i,k

,
Σr,i,k

�i,k

)
× G(�i,k) × h(yt,Ωi,k)

∫
Ωi,k

T(y|�i,k,Σl,i,k,Σr,i,k, �i,k) dy

(20)

�i,t =

{
1 if the observation yt is emitted from the hidden state si
0 otherwise

(21)�i,k,t =

{
1 if yt is emitted from the kth mixture component of the hidden state si
0 otherwise

(22)

P(yc|si) =
K
∏

k=1

[

ci,k ×
(

y|�i,k,
Σl,i,k

�i,k
,
Σr,i,k

�i,k

)

×
(�i,k) × h(y,Ωi,k)

∫Ωi,k
 (y|�i,k,Σl,i,k,Σr,i,k, �i,k) dy

]�i,k,t

(23)

logP(yc|si) = log
[ K∏

k=1

ci,k × S(y|�i,k)�i,k,t
]

=

K∑

k=1

�i,k,t ×

[
− logΓ

(�i,k
2

)
+

�i,k

2

(
log

(�i,k
2

)
− �i,k + log�i,k

)

−
1

2

(
log |Σi,k| + d log(2�) + �i,kΔ(y,�i,k;Σi,k)

)

− log∫Ωi,k

T(y|�i,k,Σl,i,k,Σr,i,k, �i,k) dy

]

3.2 � Defining the log‑likelihood of the BASMMHMM

The likelihood of the BASMMHMM E(M) defines how 
well the model fits the data (set of observations). Thus, 
E(M) is obtained by calculating the joint emission prob-
abilities of the observation sequence Y = {yt}

L
t=1

 by every 
hidden state’s BASMM:

Following this, the log likelihood of the BASMMHMM is 
given by:

3.3 � Training the BASMMHMM

The goal of training the Bounded Asymmetric Student’s-t 
Hidden Markov Model is to find the optimal set of model 
parameters 

{
�i, �i,j, sj

}N,N

i,j=1
 that best fits the sequence of 

observations Y =
(
yt
)L
t=1

 . This is done by maximizing the 
likelihood (see Eq. 25)) in an EM algorithm. let �i,t and �i,j,t 
be the posterior emission probabilities defined as follows:

To perform the training, we use the Baum–Welch algorithm. 
Our purpose here is to tune the parameters of the HMM, 
namely the state transition matrix, the emission matrix, and 
the initial state distribution, such that the model is maxi-
mally like the observed data. In short, Baum–Welch is a sort 

(24)

E(M) =

( N∏

i=1

�
�i,1
i

)

×

( N∏

i=1

N∏

j=1

L−1∏

t=1

�
�i,t×�j,t+1
i,j

)

×

( N∏

j=1

L∏

t=1

P(yc
t
|sj)�j,t

)

(25)

L(M) = log
(
E(M)

)

=

N∑

i=1

(
�i,1 log �i +

N∑

j=1

L−1∑

t=1

�i,t�j,t+1 log �i,j

)

+

N∑

j=1

L∑

t=1

�j,t logP(y
c
t
|sj)

(26)�i,t = P(�i,t = 1|yt)

(27)�i,j,t = P(�j,t+1 = 1, �i,t = 1|yt)
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of EM algorithm, where the E-step consists of forward and 
backward phases [33].

3.3.1 � Baum–Welch: expectation

1.	 Calculate the forward value � , where �t(i) is the prob-
ability of being in the ith state after the first t observa-
tions of the model, given the set of properties Θ.

2.	 Calculate the backward value � , where �t(i) is the prob-
ability of being in the ith state at the tth timestamp and 
seeing the observations from timestamp t + 1 until the 
end of the sequence, given the set of properties Θ.

3.	 Calculate the posterior transition probabilities �i,j,t : the 
probability of being in state i at time t then being in state 
j at time t + 1 . �i,j,t is calculated using the forward and 
backward values as follows: 

4.	 Calculate the posterior emission values �i,t , i.e., the 
probability of being in the ith state at the time t , given 
the observations Y and the model Θ . We get the emission 
posteriors by summing over the �i,j,t values for all states: 

5.	 Calculate Q(M) , the expectation of the log-likelihood 
of the BASMMHMM: 

3.3.2 � Baum–Welch: maximization

In maximization, we use the variables calculated in the 
expectation step to update the HMM properties: prior 
weights and emission mixtures for each hidden state. We 
proceed in the following steps: 

1.	 Update the initial hidden state probabilities 
(
�
t0
i

)N
i=0

 by 
using the � values: 

(28)

�i,j,t =
�t(i) × �i,jP(yt+1�sj) × �t+1(j)

P(Y�Θ)

=
�t(i) × �i,jP(yt+1�sj) × �t+1(j)

∑N

i=1

∑N

j=1

�
�t(i) × �i,jP(yt+1�sj) × �t+1(j)

�

(29)�i,t =

N∑

j=1

�i,j,t

(30)

() = E(())

=
N
∑

i=1

(

�i,1 log �i +
N
∑

j=1

L−1
∑

t=1
�i,j,t log �i,j

)

+
N
∑

j=1

L
∑

t=1
�j,tE

(

logP(yct |sj)
)

2.	 Update the state transition probabilities: 

3.	 Update the properties of the BASMM for each hidden 
state of the model: the means (�i,k)

i=N,k=K

i=k=1
 , the covari-

ances, the mixing weights and the degrees of freedom. 

where �i,k,t is the ith state’s mixture component membership 
posterior, i.e., the probability that the observation yt is emitted 
from the kth component of the ith hidden state:

And where Ai,k is defined by using a sample of data points 
(Sm)

m=M
m=1

 that is drawn from the kth component of the ith hid-
den state’s mixture:

And ui,k,t is the precision function for an observation yt of 
dimension d:

The mixing weights (ci,k)
i=N,k=K

i=k=1
 are updated by dividing the 

probability of emission from the kth mixture component of 
the ith hidden state by the total probability of being in that 
ith state at any timestamp in the Markov chain:

The covariances (Σi,k)
i=N,k=K

i=k=1
 are updated as follows:

where Bi,k is given by:

(31)�̂
t0
i
= �i,t0 ; i ∈ {1, 2,… ,N}

(32)

�̂i,j =
number of transitions from si to sj

number of transitions from si

=

∑L−1

t=1
�i,j,t

∑L

t=1
�i,t

(33)�̂i,k =

∑L

t=1
�i,k,t(ui,k(yt)yt − Ai,k)
∑L

t=1
�i,k,tui,k(yt)

;

(34)�i,k,t =
�i,tci,kS(yt�si,k)
∑K

j=1
ci,jS(yt�si,j)

(35)Ai,k =

∑M

m=1
(Sm − �i,k)ui,k(Sm)h(Sm,Ωi,k)

∑M

l=1
h(Sl,Ωi,k)

(36)ui,k(yt) =
d + �i,k

�i,k + Δ(yt,�i,k;Σi,k)

(37)

ĉi,k =

∑L

t=1
�i,k,t

∑L

t=1

∑K

l=1
�i,l,t

=

∑L

t=1
�i,k,t

∑L

t=1
�i,t

(38)Σ̂i,k =

∑L

t=1
�i,k,tui,k,t × (yt − �i,k)(yt − �i,k)

T

∑L

t=1
�i,k,t

− Bi,k
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Next, the update of the degrees of freedom for each hidden 
state’s mixture component is the solution to the equation 
below:

where � is the digamma function and g(�, d) is defined as:

There is no closed-form solution to the Eq. 40), so we use 
the Newton Raphson method [34] to derive the optimal 
update of �i,k . Finally, we update the bounds of each hidden 
state’s mixture model by fetching the minimums and maxi-
mums among the observations that were attributed to each 
mixture component in the expectation step.

4 � Experiments and results

In this section, we select a few popular sequential data-
based applications where we attempt to employ the BASM-
MHMM, then evaluate its performance in comparison with 
baseline models among the following:

•	 Gaussian Hidden Markov Model (GHMM)
•	 Gaussian Mixture Hidden Markov Model (GMMHMM)
•	 Student Mixture Hidden Markov Model (SMMHMM)
•	 Student Hidden Markov Model (SHMM)

Our approach is to measure how much the Bounded Asym-
metric Student’s t-Mixture emissions can elevate the HMM’s 
performance. That is why the baseline models mentioned 
above are all variants of HMM with different emission 
distributions.

4.1 � Occupancy estimation

In the field of smart buildings, occupancy estimation is a 
frequently performed operation as it is useful for many tasks, 
namely energy saving, consumption tracking, and employee 
presence monitoring for companies. Therefore, we find that 

(39)

Bi,k =

∑M

m=1

�
Σi,k − (Sm − �i,k)(Sm − �i,k)

Tui,k(Sm)
�
h(Sm,Ωi,k)

∑M

m=1
h(Sm,Ωi,k)

(40)

g(�i,k, d) + 1 + 1
∑L

t=1 �i,k,t

L
∑

t=1
�i,k,t

(

log ui,k(yt) − ui,k(yt)
)

− 1
∑M

m=1 h(Sm,Ωi,k)

M
∑

m=1

(

g(�i,k, d) + 1 + log ui,k(Sm) − ui,k(Sm)
)

= 0

(41)g(�, d) = −�(
�

2
) + log (

�

2
) + �(

� + d

2
) − log (

� + d

2
)

many works have extensively tackled this subject, like [35, 
36]. So in this experiment, we also attempt to estimate the 
number of occupants in one room using signals from non-
intrusive sensors.

4.1.1 � Data

The dataset [37] that we used for this experiment comprises 
signals obtained from seven non-intrusive sensors of five 
different types: temperature, illumination, sound, CO2, and 
passive infrared (PIR). As Fig. 2 shows, sensor nodes S1-S4 
were deployed at the desks (referred to as desk nodes). These 
desk nodes have temperature, light, and sound sensors only. 
Node S5 has a CO2 sensor kept in the middle to get the best 
possible measure in the room. Nodes S6 and S7 only con-
tain PIR sensors and are put on the ceiling at an angle that 
maximizes the sensor’s field of view for motion detection.

The obtained data from these nodes spans 21 days (from 
22 December 2017 to 11 January 2018) and has been 
recorded every 30 s, which gives us a time series of 10129 
timestamps. As for the ground truth room occupancy, it var-
ies between 0 and 3. We model this information as the hid-
den state of our HMM, which would give us 4 hidden states. 
The observations are the signals sent by sensors, in the case 
of this experiment, these observations would be vectors of a 
dimension d = 16 as there are 16 distinct records taken from 
the sensors in total.

Fig. 2   Sensors’ layout in the room
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Fig. 3   Original data versus resampled data

Fig. 4   Data variance depend-
ing on the number of principal 
components
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4.1.2 � Preprocessing

When we observe the labels (number of occupants over 
time), we find a clear imbalance, as for most of the record-
ing time, there’s no one in the room, thus, the number of 
occupants is zero.

We cope with the imbalance by oversampling the minor-
ity classes. For that, we use the SMOTE technique [38]. 
However, we don’t make the classes equally partitioned, 
and this is to keep some outliers and the overall occupancy 
sequence patterns. The results of oversampling are shown 
in the Fig. 3.

After oversampling, we scale the data using the MinMax 
method. We then perform a PCA to reduce the number of 
features and the computation complexity. The number of 
principal components is chosen in a way that keeps the vari-
ance of the data above 0.95. Based on Fig. 4, we choose 
eight principal components.

4.1.3 � Results

We run the BASMMHMM and a selection of other bench-
mark models (SMMHMM, SHMM, GMMHMM, GHMM) 

on the preprocessed data, taking the room occupancy num-
bers as hidden states. When fitting the models, we run the 
EM algorithm for a number of iterations ranging from 1 to 
100, and we take the number of iterations that gives the best 
result for each model. After multiple experiments with the 
different mixture-based HMMs on the data, we take K = 3 
as the number of mixture components, as it produces the best 
fit for the data-set. The weighted averages of the accuracy, 
precision, recall, and F-1 score are presented in the follow-
ing Table 2.

According to the results above, the BASMMHMM 
clearly performed better than the rest, as it produced the 
highest accuracy and F1-score of 0.86, where the second 
best results were an accuracy and an F1-score of 0.82 for 
the SMMHMM. The models based on Student’s-t emissions 
gave better metrics than those based on the Gaussian emis-
sions. This is mainly due to a bad prediction of the outliers 
(hidden states 1, 2 and 3) by the Gaussian-based models 
because as mentioned earlier, there is a dominant label in 
the time series (0 occupants most of the time). What is com-
mon between all the models is that they performed well with 
the majority hidden state 0. The confusion matrix in Fig. 5 
shows that the BASMMHMM predicts well all the classes/
hidden states of the data, despite their imbalance (class 0 is 
more occurrent than the rest). In comparison, the confusion 
matrices of the other models show in Fig. 6 show a limited 
prediction of the non-majority classes. The weighted aver-
ages of the accuracy, precision, recall, and F-1 score when 
using the original data without oversampling are presented 
in Table 3. According to the results, we can see that the 
BASMMHMM still gives relatively good results, consider-
ing the complexity of this highly imbalanced data, while 
outperforming the other models.

4.2 � Stock price prediction

The stock market is an important indicator that reflects 
economic growth: when the economy grows, this typically 
translates into an upward trend in stock prices. In contrast, 
when the economy slows, stock prices tend to be more 
mixed. For traders, it is important to predict the behaviour 
of these numbers (stock prices) to take the appropriate action 
and achieve profit. But this prediction task is not easy, as 
several uncertain parameters like economic conditions, 
policy changes, supply and demand between investors, etc, 
determine the price trend. These parameters vary, thus mak-
ing stock markets volatile.

4.2.1 � Data and preprocessing

We use the stock price time-series made available by 
Yahoo Finance API. This API contains records of multiple 

Table 2   Occupancy estimation: accuracy and F1 score weighted aver-
ages for different models

Algorithm Accuracy Precision Recall Average F1

BASMMHMM 0.86 0.87 0.86 0.86
SMMHMM 0.82 0.82 0.82 0.82
SHMM 0.77 0.77 0.77 0.77
GMMHMM 0.74 0.73 0.74 0.73
GHMM 0.71 0.84 0.71 0.69

Fig. 5   Occupancy estimation: confusion matrix of BASMMHMM
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companies’ stock prices spanning long periods of time. 
For our experiment, we select three different compa-
nies’ datasets: Amazon (AMZN), Apple (AAPL), and 
Google (GOOGL). For each of these three companies, the 

Fig. 6   Occupancy estimation: confusion matrices of other HMMs

Table 3   Occupancy estimation: accuracy and F1 score weighted aver-
ages for different models using original data

Algorithm Accuracy Precision Recall Average F1

BASMMHMM 0.74 0.75 0.73 0.73
SMMHMM 0.70 0.69 0.69 0.70
SHMM 0.67 0.65 0.64 0.65
GMMHMM 0.63 0.64 0.63 0.63
GHMM 0.61 0.60 0.61 0.60

Fig. 7   Forecasting the t+1 stock prices based on a sliding window of 
past k days
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time-series that we used spans over the 12 years from 1 
January 2010 to 1 January 2022 and is multivariate with 
four variables: opening price, high price, low price, and 
closing price. As for the preprocessing, we perform a Min-
Max scaling on the data before passing it to the HMM. 
After the forecasting, we unscale the results produced by 
the model, and we compare them to the unscaled ground-
truth data to view the model’s performance.

4.2.2 � Forecasting approach

Our task is to predict the stock prices for a given day t  . 
To do this, we adopt the following method: First, we fit 
the BASMMHMM to the data (the time-series of the until 
the day t − 1 ), then we proceed to predict based on sliding 
time windows Wj of fixed length q (where Wj is the data 
of last q-day sequence ending with the day j ): we calcu-
late the log-likelihood1 of each sliding window, take the 
window with the closest log-likelihood to Wt and calculate 
the day t + 1 predictions based on that chosen window. 

Fig. 8   Predicted time-series calculation

Table 4   AMZN stock price 
prediction: performance metrics 
for different models

Parameter BASMMHMM SMMHMM GMMHMM

MAPE RMSE MAPE RMSE MAPE RMSE

Open price 0.00889 0.41951 0.01292 0.67489 0.01594 0.81723
High price 0.00615 0.06994 0.01054 0.15782 0.01382 0.20840
Low price 0.00951 0.31669 0.01429 0.43916 0.01396 0.39053
Close price 0.00751 0.12392 0.01276 0.27641 0.01520 0.30048

Table 5   AAPL stock price 
prediction: performance metrics 
for different models

Parameter BASMMHMM SMMHMM GMMHMM

MAPE RMSE MAPE RMSE MAPE RMSE

Open price 0.00720 0.01989 0.01135 0.05712 0.01300 0.06293
High price 0.00728 0.15320 0.01027 0.30822 0.00982 0.21833
Low price 0.00925 0.19009 0.01263 0.35702 0.01392 0.29666
Close price 0.00862 0.10429 0.01304 0.23833 0.01328 0.27142

Table 6   GOOGL stock price 
prediction: performance metrics 
for different models

Parameter BASMMHMM SMMHMM GMMHMM

MAPE RMSE MAPE RMSE MAPE RMSE

Open price 0.00674 0.30320 0.01248 0.42088 0.01298 0.48512
High price 0.00602 0.14920 0.02015 0.32612 0.01602 0.37298
Low price 0.00749 0.08447 0.01894 0.31086 0.01978 0.29172
Close price 0.00740 0.03534 0.02381 0.10664 0.02146 0.15840

1  The log-likelihood of a sequence of observations given the BASM-
MHMM that we trained on the data.
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The adopted approach is further explained in Figs. 7 and 
8 below.

4.2.3 � Results

After performing the forecasting, we established a com-
parison between BASMMHMM and a selection of other 
models using the two following performance metrics:

•	 MAPE:  Short for Mean Absolute Percentage Error, 
is the average absolute error between the actual and 
predicted stock values in percentage. The formula is: 

 where n is the length of the time-series, and for 
i ∈ {1, 2,… , n} , yi is the predicted value and xi is the 
actual value.

•	 RMSE: The Root Mean Square Error is the square root 
of the mean of the square of all of the errors between the 
actual and the predicted data. The RMSE is widely used, 
and it is considered an excellent general purpose error 
metric for numerical predictions. Considering the nota-
tions used in Eq. 42), the RMSE formula is the following: 

(42)MAPE =
1

n

n∑

i=1

yi − xi

xi
× 100

Tables 4, 5 and 6 indicate the metrics found after the fore-
casting of the stock prices of Amazon, Apple, and Google, 
respectively. The prediction on multivariate stock price 
data with four variables: Open, High, Low, and Close 
prices, but in the tables, we focus mainly on the High price 
variable. The BASMMHMM has been run with a custom 
number of hidden states N and sliding window size q . The 
BASMMHMM with the combination {N, q} that gives the 
best performance is elected. As for the number of mixture 
components of the emissions, it is selected using the Mini-
mum Message Length criterion [30]. In this experiment, 
the BASMMHMM is compared to the SMMHMM and 
GMMHMM.

According to the tables above, BASMMHMM generally 
performed better than SMMHMM and GMMHMM. This 
is mainly explained by the outliers and the local minima/
maxima being better predicted by the BASMMHMM. It 
is also worth mentioning that the models based on Stu-
dent’s t-mixture emissions (BASMMHMM, SMMHMM) 
performed better than the GMMHMM, which is based 
on Gaussian mixture emissions. We can see the graphs 
in Figs. 9, 10 and 11 a more clear picture of the predicted 
versus the actual stock prices.

(43)RMSE =

√√√√1

n

n∑

i=1

(yi − xi)
2

Fig. 9   Amazon stock prices: BASMMHMM prediction versus ground truth
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4.3 � Human activity recognition

Human Activity Recognition (HAR) is a popular scien-
tific application that enables machines to recognize human 
body behaviours. HAR is useful for many real-world tasks, 

such as fall detection in elderly healthcare monitoring or 
physical exercise measuring and tracking in sport science. 
In this experiment, we use the dataset provided by UCI 
[39], which is popularly used in many research works.

Fig. 10   Apple stock prices: BASMMHMM prediction versus ground truth

Fig. 11   Google stock prices: BASMMHMM prediction versus ground truth
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4.3.1 � Dataset and preprocessing

The data at hand consists of 10299 records, each record 
having 561 features (features are signals received from 
smartphone sensors). The labels of the data are the differ-
ent activities performed at the time of recording, and they 
are mainly six: Walking, Walking Upstairs, Walking Down-
stairs, Sitting, Standing, and Laying.

The preprocessing consists of MinMax scaling and then 
reducing the features with the Principal Component Analy-
sis method. We perform the PCA in a way that keeps the 
variance of the data above 0.95, which gives us 69 principal 
components.

In this experiment, we use a training sample of 7352 
observations and a testing sample of 2947 observations. 
We create one HMM for every activity, which gives us six 
HMMs in total. The parameters of each HMM are learned 
from the corresponding activity’s training set with the 
Baum–Welch algorithm. In the testing phase, for each part 
of the test set, we calculate all six trained HMMs’ likelihood 
to have generated the observations, and the correspondant 
activity to the HMM with the highest likelihood is selected 
as the prediction label. for all six HMMs, we choose 2 hid-
den states and K = 2 mixture components per hidden state. 
The Fig. 12 summarizes the pipeline of the modeling in this 
experiment.

4.3.2 � Results

Upon performing the prediction of the human activities, we 
calculate the weighted averages of the accuracy, precision, 
recall, and F1 score of the predicted labels. These weighted-
averages are calculated by taking the mean of all per-class 
metrics while considering each class’s support. Support 
refers to the number of actual occurrences of the class in the 

dataset. The ‘weight’ essentially refers to the proportion of 
each class’s support relative to the sum of all support values.

The BASMMHMM did a better performance than the 
rest of the models, as shown in Table 7. The accuracy and 
the F1 score are close to 0.8, which is an improvement com-
pared to the SMMHMM, which gave about 0.7. It is also 
worth mentioning that the models with emissions based on 
the Student’s t-mixture and distribution performed slightly 
better than the ones with emissions based on the Gaussian 
mixture and distribution.

It is noteworthy that the computational complexity of 
each iteration of the Baum–Welch algorithm is O(LN2) 
which shows the practicality and scalability of HMMs in 
general and BASMHMM in particular in real-world applica-
tions, especially in scenarios where computationally hungry 
models are generally avoided (e.g., Federated learning).

5 � Conclusion

In this paper, we proposed the use of bounded asymmetric 
Student’s t-mixture models as the observation emission den-
sities of continuous HMMs to offer a more robust methodol-
ogy for sequential data modeling. We then presented differ-
ent experiments where we applied BASMMHMM, which 

Fig. 12   Human activity recogni-
tion: BASMMHMM framework

Table 7   HAR: Accuracy and F1 score weighted averages for different 
models

Algorithm Accuracy Precision Recall Average F1

BASMMHMM 0.79 0.79 0.79 0.79
SMMHMM 0.71 0.71 0.71 0.71
SHMM 0.68 0.69 0.68 0.68
GMMHMM 0.67 0.67 0.67 0.66
GHMM 0.61 0.62 0.61 0.6
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proved an enhanced performance compared to other bench-
mark HMM-based models. More specifically, the BASM-
MHMM can be a strong candidate for solving data outlier 
and asymmetry problems with its high flexibility.

We can conclude that adding a custom emission to the 
HMM, such as the Bounded Asymmetric Student’s t-Mix-
ture, results in higher adaptability to the model, regardless of 
its applications. We presented the mathematical formulation 
of our model, and backed it up by results of different experi-
ments. Applications such as occupancy estimation, stock 
price prediction and human activity recognition showed a 
better performance for the BASMMHMM in comparison 
to other Student’s t and Gaussian-based HMMs. The data 
anomalies are taken into consideration, thus making the 
BASMMHMM a very useful tool while tackling real world 
datasets. This also can save us the extra preprocessing that 
removes the outliers and might often end up altering the 
data, hence making our modeling "isolated" from the real 
information/experiment.

Finally, there is room to improve the proposed model and 
expand the work on many aspects. For instance, the number 
of emission mixture components is an important parameter 
to tune for the HMM to ensure optimal fit to the data. Intro-
ducing an adequate model selection [40] approach before 
training the HMM can fulfill this tuning. Furthermore, in 
the case of high dimensional observations, it is rigorous to 
implement a feature selection strategy [41] to avoid high 
computational complexity and to elect the parameters that 
represent the data in the most efficient way.
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