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Abstract
Subspace clustering methods, employing sparse and low-rank models, have demonstrated efficacy in clustering high-dimen-
sional data. These approaches typically assume the separability of input data into distinct subspaces, a premise that does not 
hold true in general. Furthermore, prevalent low-rank and sparse methods relying on self-expression exhibit effectiveness 
primarily with linear structure data, facing limitations in processing datasets with intricate nonlinear structures. While kernel 
subspace clustering methods excel in handling nonlinear structures, they may compromise similarity information during 
the reconstruction of original data in kernel space. Additionally, these methods may fall short of attaining an affinity matrix 
with an optimal block-diagonal property. In response to these challenges, this paper introduces a novel subspace clustering 
approach named Similarity Preserving Kernel Block Diagonal Representation based Transformed Subspace Clustering 
(KBD-TSC). KBD-TSC contributes in three key aspects: (1) integration of a kernelized version of transform learning within 
a subspace clustering framework, introducing a block diagonal representation term to generate an affinity matrix with a 
block-diagonal structure. (2) Construction and integration of a similarity preserving regularizer into the model by minimiz-
ing the discrepancy between inner products of the original data and those of the reconstructed data in kernel space. This 
facilitates enhanced preservation of similarity information between the original data points. (3) Proposal of KBD-TSC by 
integrating the block diagonal representation term and similarity preserving regularizer into a kernel self-expressing model. 
The optimization of the proposed model is efficiently addressed through the alternating direction method of multipliers. 
This study validates the effectiveness of the proposed KBD-TSC method through experimental results obtained from nine 
datasets, showcasing its potential in addressing the limitations of existing subspace clustering techniques.

Keywords  Block diagonal representation · Kernel representations · Non-linear subspace clustering · Similarity preserving · 
Transformed subspace clustering

1  Introduction

In recent research endeavors, considerable attention has 
been directed towards the development of subspace cluster-
ing methods, addressing the efficient processing of high-
dimensional data. Subspace clustering serves as a valuable 
technique for grouping high-dimensional data distributed 

across a union of subspaces. The fundamental premise of 
subspace clustering posits that data samples within the same 
cluster should reside in a common subspace. Widely applied 
across various domains such as computer vision, face clus-
tering [24, 55, 75], video analysis [66], image representa-
tion and compression [14], hyperspectral image process-
ing [73], saliency detection [6], motion segmentation [65], 
and domain adaptation task [28], subspace clustering has 
become a versatile tool.

Existing subspace clustering methods fall into five broad 
categories [60]: iterative models [13], algebraic models [62], 
statistical models [8], spectral clustering-based models [6, 
23, 30, 66], and deep learning-based models [15, 17, 18, 
42, 78]. Among these, spectral clustering-based subspace 
clustering stands out as the most renowned due to its exten-
sive exploration and practical applications [6, 54, 71]. The 
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spectral clustering-based subspace clustering primarily con-
sists of two components: (1) the construction of an affinity 
matrix and (2) spectral clustering [53]. Recently, diverse 
forms of affinity matrices have surfaced, depending on the 
regularization term incorporated. The most notable mod-
els include sparse subspace clustering (SSC) [4, 5, 59] and 
clustering based on low-rank representation (LRR) [3, 12, 
26, 63, 72, 77]. These approaches, rooted in sparse or low-
rank representation techniques, acquire a coefficient matrix 
through a self-expression model. SSC enforces an l1 norm 
constraint on coefficients, while LRR employs l∗ norm or 
nuclear norm constraints on coefficients. Several works 
focused on enhancing the robustness of subspace clustering 
algorithms by employing a multi-objective framework and 
subspace optimization techniques [41], integrating subspace 
fuzzy clustering techniques [64] or adjusting the threshold 
based on the distribution of data points within subspaces 
[22].

Various techniques for subspace clustering have been 
developed, each employing distinct constraints to derive an 
optimal affinity matrix [1, 2, 30, 44, 56, 61, 71]. However, 
these methods are limited to processing linear subspaces, 
proving inadequate for handling the prevalent nonlinear 
structures found in real-world data [21, 52]. Another con-
straint is the assumption that data can be separated into dis-
tinct subspaces. Recently, techniques based on multiview 
clustering [11, 45–47, 57, 58, 74, 76] have also gained 
attention.

To address the limitations associated with linear subspace 
clustering on nonlinear data, kernel self-expression methods 
have been introduced [16, 27, 38–40, 66]. Kernelized SSC 
(KSSC) [40] and kernelized LRR (KLRR) [37, 66] are two 
prominent methods that capture nonlinear structure informa-
tion in the input space, exhibiting significant advancements 
in various applications. Despite their efficiency in processing 
nonlinear data, these kernel subspace clustering methods 
may lose some similarity information between samples dur-
ing the reconstruction of the original data in kernel space.

Recently, transform learning-based approaches for sub-
space clustering [9, 10, 33–35] have garnered attention. 
These methods operate on data originally deemed insepara-
ble into subspaces, transforming it into a high-dimensional 
feature space where linear separability into subspaces is 
achievable. Notably, these methods eliminate the need to 
manually choose a mapping function, as they autonomously 
learn the mapping from the data itself.

In practical scenarios, real-world data exhibiting manifold 
structures often entails complexities beyond mere sparsity 
or low-rank characteristics. Consequently, it becomes cru-
cial to formulate a representation that can adeptly capture 

the intricate structural information inherent in the original 
data. Numerous methodologies have been devised to uncover 
underlying structures by delving into data relationships 
[33–35]. Recently introduced subspace clustering method-
ologies grounded in structure learning comprise Similarity 
Learning via Kernel-Preserving Embedding (SLKE) [20] 
and Structure Learning with Similarity Preserving (SLSP) 
[19]. SLKE constructs a model that preserves similarity 
information among data, resulting in improved performance. 
In contrast, SLSP establishes a structure learning framework 
that integrates the similarity information of the original data, 
addressing potential drawbacks associated with the SLKE 
algorithm, which could lead to the loss of certain low-order 
information. Despite these methods exhibiting commendable 
performance, their effectiveness is dependent on a learned 
similarity matrix that might lack an optimal block diagonal 
structure for spectral clustering.

In the literature, diverse norm regularization terms have 
been utilized in self-expressive models to acquire a block 
diagonal coefficient matrix. These terms include the 1-norm, 
l2-norm, and nuclear norm. However, these regularization 
techniques exhibit two shortcomings: an inability to con-
trol the number of blocks in the coefficient matrix and the 
potential suboptimality of the learned coefficient matrix due 
to data noise. Addressing these limitations, Block Diago-
nal Representation (BDR) subspace clustering algorithms 
[30, 70] have been introduced, aiming to attain a good block 
diagonal structure in the coefficient matrix. For example, 
Implicit Block Diagonal Low-Rank Representation (IBDLR) 
integrates block diagonal priors and implicit feature repre-
sentation into the low-rank representation model, progres-
sively enhancing clustering performance [67]. Notably, these 
BDR-based subspace clustering methods, while effective, 
have not been integrated into similarity-preserving mecha-
nisms. The kernelized version of transform learning was 
introduced in [32].

This work proposes “Similarity Preserving Kernel Block 
Diagonal Representation based Transformed Subspace 
Clustering (KBD-TSC)” that leverages the kernel self-
expressing framework. Kernelized transformed subspace 
clustering accounts for the data that is not originally sepa-
rable into subspaces by leveraging kernel self-expression-
based transform learning. The proposed method transforms 
the data into high-dimensional feature spaces where they 
are linearly separable into subspaces. It doesn’t suffer from 
choosing the mapping function, as it learns the mapping 
from the data itself. Although the kernel subspace cluster-
ing methods based on kernel self-expression can efficiently 
process the nonlinear structure data, some similarity infor-
mation between samples may be lost when reconstructing 
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the original data in kernel space. The integration of simi-
larity preserving regularizer and block diagonal regularizer 
into the proposed model facilitates enhanced preservation 
of similarity information between the original data points. 
Experimental results on nine datasets validate the effective-
ness and robustness of the proposed KBD-TSC method.

The principal contributions of this paper are as follows:

•	 A novel subspace clustering approach is proposed which 
accounts for the data that is not originally separable into 
subspaces by leveraging kernel self-expression-based 
transform learning.

•	 A similarity preserving regularizer is incorporated in the 
proposed model to facilitate enhanced preservation of 
similarity information between the original data points.

•	 The integration of a block diagonal representation into 
the proposed model aims to derive a similarity matrix 
characterized by an optimal block diagonal structure. 
This helps in achieving the desired optimal block diago-
nal matrix.

•	 The proposed KBD-TSC model is evaluated on nine 
datasets featuring different types of manifolds, includ-
ing handwritten digits clustering, face image clustering, 
object clustering, and text clustering. The experiments 
involved comparing the proposed model with several 
state-of-the-art approaches. The results strongly support 
the effectiveness of our proposed model.

The structure of the remaining paper is organized as fol-
lows: Sect. 2 provides a review of basic concepts in related 
work. Section 3 elaborates on the proposed algorithms and 
their solutions. Subsequently, Sect. 4 discusses experimental 
results, and Sect. 5 concludes the paper.

2 � Background

2.1 � Subspace clustering

The standard subspace clustering techniques are self-expres-
sion-oriented, where the aim is to express every single data 
point in terms of the linear combination of the rest of other 
data points that lie under the same subspace. The data must 
hold the basic pre-requisite of being separable into various 
subspaces. Let X = [x1, x2,⋯ , xN] ∈ ℜd×N be the matrix of 
data points where every column vector xi is drawn from a 
union of lower-dimensional subspaces 

�
S1

⋃
S2

⋃
⋯Sn

�
 

that have dimensions 
{
dk
}n

k=1
 where n is the total number 

of manifolds. The subspace clustering technique targets to 
segments each set Xk of Nk points that basically belong to 
the same subspace Sk of dimension d − k.

where Ω(Z) is the regularization term and 𝜆 > 0 denotes 
the hyperparameter. ‖Z‖∗ , ‖Z‖1 , ‖Z‖2F are three common 
regularizers. Then an affinity matrix is constructed using Z , 
which applies any graph-cut technique to compute clusters.

2.2 � Kernelized subspace clustering

The kernelized version for the subspace clustering is backed 
by mapping a kernel function as follows:

where ker(X) is the kernel mapping function, K is the 
kernel matrix where each matrix element is calculated as 
Ki,j = ker(Xi)

⊤ ker(Xj).

2.3 � Kernelized transform learning

A more recent unsupervised representation learning meth-
odology known as transform learning that functions as a 
dictionary learning method with analysis capabilities. It 
seeks to train the transform matrix and coefficient matrix 
from the input data in such a way that the learned transform 
is capable of analysing the data and ultimately generating 
the coefficients matrix [48–51]. Since we anticipate that the 
input data would be able to be divided into many groups, 
we typically use raw data pixels as input to the clustering 
method. However, transform learning can be applied to any 
high-dimensional data, resulting in the effective representa-
tions of the transform matrix and the coefficients’ matrix 
being learned in latent space. The data’s nonlinearity can be 
handled by the kernel approach in an effective and efficient 
manner. Kernelization can be used if the learned transform 
coefficients are not linearly divided into distinct subspaces. 
The kernel transform learning [32] formulation can be given 
as Eq. 3.

where K = ker(X)⊤ ker(X) is the kernel, � and � are the 
hyperparameters. Constraints introduced in Eq. 3 assist 
prevent trivial solutions. The first constraint − logdet1(A) 

(1)
minimize

Z

1

2
‖X − XZ‖2

F
+ �(Ω(Z)), s.t. diag(Z) = 0, Z ≥ 0.

(2)

minimize
Z

1
2
‖ ker(X) − ker(X)Z‖2F + �(Ω(Z))

≡ minimize
Z

Tr(I − 2Z + Z⊤Z)K + �(Ω(Z)),

s.t. diag(Z) = 0, Z ≥ 0.

(3)

minimize
A,Z

‖AK − Z‖2
F
+ �(‖A‖2

F
− logdet(A)) + �‖Z‖1.

1  logdet(T)= log(singular values). If some singular value ≤ 0 , then 
the log takes + ∞ as output. For the case when T is not square, the 
algorithm solves -logdet(T�

T) + ||T||2
F
.
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guarantees that A is the complete matrix. To prevent it from 
rising to the other extreme, the second restriction ‖A‖2

F
 is 

used. The other restriction, ‖Z‖1 , is used to make the coef-
ficients sparser.

Equation 3. is solved using an alternating minimization 
method. Equation 4. describes how the iterative updating 
procedures for A and Z are carried out alternately.

The update of A is pretty straightforward as it is directly dif-
ferentiable. There are some linear algebraic tricks to solve 
it too which are given in [31]. Equation 5 describes how to 
perform one-step soft thresholding to update Z.2

2.4 � Transformed subspace clustering

Subspace clustering operates on the underlying assump-
tion that the given data can be segmented into numerous 
sub-spaces. Yet, in the context of high-dimensional data, 
this assumption often does not hold true. To address this 
challenge, we employ clustering algorithms on the features 
derived from transform learning. This approach involves 
projecting the data onto a latent space, where we acquire 
separable coefficients that define distinct sub-spaces [34]. 
The modified subspace clustering can be articulated as fol-
lows, focusing on acquiring sparse representations based on 
the transformed features.

Alternate minimization, as described in Eq. 7, is utilised to 
solve Eq. 6. In each cycle, we alternately update A , Z , and C.

After calculating the affinity matrix and applying spectral 
clustering to it to discover clusters, we obtain C . Addition-
ally, to create the kernelized transform subspace clustering 

(4)
A ← minimize

A
‖AK − Z‖2

F
+ �(‖A‖2

F
− log det(A));

Z ← minimize
Z

‖AK − Z‖2
F
+ �‖Z‖1.

(5)Z ← signum(AK). max(0, abs(AK) − �).

(6)
minimize

A,Z,C
‖AX − Z‖2F + �(‖A‖2F − log det(A))

+ �‖Z − ZC‖2F + �(Ω(C)).

(7)

A ← minimize
A

‖AX − Z‖2
F
+ �(‖A‖2

F
− log det(A));

Z ← minimize
Z

‖AX − Z‖2
F
+ �(‖Z − ZC‖2

F
);

C ← minimize
C

‖Z − ZC‖2
F
+ �(Ω(C)).

formulation, the subspace clustering loss is included in 
equation 6.

2.5 � Block diagonal representation

By adding a block-diagonal regularisation term, the BDR 
method [29] completes the block diagonal matrix and 
achieves higher clustering performance. The BDR algo-
rithm’s optimization model is expressed as follows:

Here, X and Z represent data matrix and coefficient matrix 
respectively, while ‖Z‖ m  denotes m-block diagonal 

regularizer.

3 � Proposed method: KBD‑TSC

The fundamental assumption underlying self-expression-
based subspace clustering is the requirement for data to 
be segregable into distinct subspaces. Traditional methods 
also rely on the assumption of an inherent linear structure. 
However, when these assumptions are not met, particularly 
when data samples are non-separable into subspaces and 
linear subspace clustering methods struggle with non-linear 
structures, a more adaptable model is needed. In response 
to this challenge, we present a model designed to generalize 
effectively on non-linear structured data, even when they are 
not easily separable into subspaces.

The proposed Kernel Block Diagonal-based Transformed 
Subspace Clustering (KBD-TSC), is adept at preserving sim-
ilarity information among samples, concurrently achieving 
an optimal block diagonal structure in the obtained similar-
ity matrix. This approach involves embedding a non-linear 
model that integrates kernelized transformed subspace clus-
tering with a kernel self-expression framework to achieve 
the desired objective. Incorporating a block diagonal regu-
larization term into the kernel self-expression framework 
is pivotal for obtaining a similarity matrix characterized by 
a block diagonal structure. Furthermore, the preservation 
of similarity information is secured by minimizing the dis-
tinction between two inner products: one encompassing the 
inner products among original data in kernel space and the 
other involving the inner products of reconstructed data in 

(8)
minimize

Z

1
2
‖Z‖ m + ‖ ker(X) − ker(X)Z‖2F,

s.t.Z ≥ 0,Z⊤ = Z, diag(Z) = 0.

2  The signum function returns -1 if the argument is negative, 0 if the 
argument is zero, and 1 if the argument is positive.
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kernel space. The resolution of the entire optimization prob-
lem employs alternate minimization techniques.

3.1 � Similarity preserving model

To uphold similarity information among samples, our 
objective is to minimize the difference between two inner 
products. One corresponds to the inner product among the 
original data in kernel space, and the other corresponds to 
the inner product of the reconstructed data in kernel space, 
drawing inspiration from the work of Kang et al. [20].

where K = ker(X)⊤ ker(X) is a positive semi-definite matrix.

3.2 � Proposed algorithm

We introduce a model designed for effective generalization 
on non-linear manifolds. This model integrates kernelized 
self-expression transformed subspace clustering with a 
similarity-preserving kernel block diagonal representation. 
The kernelized component of transform learning character-
izes non-linear data as a linear combination of itself in the 
transform domain. The incorporation of transform learning 
with subspace clustering loss facilitates the separation of 
data into subspaces. To enhance this process, a block diago-
nal regularization term is introduced, aiming to achieve a 
similarity matrix between samples with a block diagonal 
structure. Consequently, our proposed model not only pre-
serves the similarity information among non-linear samples 
in the transform domain but also simultaneously acquires a 
similarity matrix with an optimal block diagonal structure.

The complete joint formulation for the proposed model 
is expressed as Eq. 10.

where �, �, � are positive hyperparameters.
To simplify and separate out the variables, let us intro-

duce an auxiliary matrix B and a regularization term 
‖Z− B‖2

F
 into our proposed model. Thus, the optimization 

problem in equation 10 can be translated to

(9)minimize
Z

1

2
‖K − Z

⊤
KZ‖2

F
.

(10)

minimize
A,Z

⎛
⎜
⎜
⎜⎝

‖AK-Z‖2
F
+ 𝜖(‖A‖2

F
− log det(A))

���������������������������������������������������
Kernelized transform learning

+
1

2
Tr(Z − 2KZ + Z

T
KZ)

���������������������������������
Kernel self expression subspace clustering

+ 𝛼‖K − Z
T
KZ‖2

F
+ 𝛾‖Z‖

k
���������������������������������������

Similarity preserving with block diagonal

⎞
⎟
⎟
⎟
⎟
⎟⎠

s.t. Z ≥ 0, diag(Z) = 0,Z⊤ = Z.

3.3 � Optimization of the proposed KBD‑TSC model

To facilitate the solution of the problem in equation 11, three 
new auxiliary variables are introduced that leads to the fol-
lowing equivalent problem:

We use ADMM for solving equation 12, and its correspond-
ing Lagrangian [25] is given as follows:

where �1, �2, �3 are Lagrangian multipliers and 𝜇 > 0 is 
a penalty parameter. Now, these variables can be updated 
alternately. The updates for all variables are given as follows:

•	 Update A: After keeping other variables fixed, A can be 
updated as follows: 

 For updating transform, given the original data as in 
equation 15, we can use equation 16. 

 The update of the transform matrix T is straightforward, 
as each term is directly differentiable. But, there are bet-
ter ways of solving the update of T by using some linear 
algebraic tricks [51]. 

(11)

minimize
A,Z,B

(‖AK − Z‖2F + �
(

‖A‖2F − log det(A)
)

+ 1
2
Tr
(

K − 2KZ + Z⊤KZ
)

+�‖‖
‖

K − Z⊤KZ‖‖
‖

2

F
+ �

2
‖Z-B‖2F + �‖B‖

k
)

s.t. Z ≥ 0, diag(Z) = 0,Z⊤ = Z.

(12)

minimize
A,Z,B,J,G,H

(‖AK − Z‖2F + �
(

‖A‖2F − log det(A)
)

+ 1
2
Tr
(

K − 2KJ + Z⊤K J
)

+�‖‖
‖

K −G⊤K H‖

‖

‖

2

F
+ �

2
‖J-B‖2F + �‖B‖

k
)

s.t. B ≥ 0, diag(B) = 0,B⊤ = Z,G = Z,H = Z.

(13)

̌
(

Z,J,G,H,B, �1, �2, �3
)

= ‖AK-Z‖2F + �
(

‖A‖2F − log detA
)

+ 1
2Tr

(

K − 2KJ + Z⊤K J
)

+�‖‖
‖

K −G⊤K H‖

‖

‖

2

F
+ �

2 ‖J-B‖
2
F + �‖B‖

k

+ �
2

[

‖

‖

‖

J-Z + �1
�
‖

‖

‖

2

F
+ ‖

‖

‖

G-Z + �2
�
‖

‖

‖

2

F
+ ‖

‖

‖

H-Z + �3
�
‖

‖

‖

2

F

]

.

(14)minimize
A

‖AK-Z‖2
F
+ �

�
‖A‖2

F
− log det(A)

�
.

(15)minimize
T

‖TX-Z‖2
F
+ �(‖T‖2

F
− log det(T)).

(16)

XX
⊤ + 𝜖I = LL

⊤,

L
−1
XZ

⊤ = USV
⊤,

T ←

1

2
U(S + (S2 + 𝜖I)1∕2)V⊤

L
−1.
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 Now, the solution to equation 14 is similar to the update 
of T in equation 16. Here A acts as transform matrix 
T , and instead of passing original samples X , we input 
kernel matrix K.

•	 Update J: After keeping other variables fixed, J can be 
updated as follows: 

 Taking its first derivative and equating it to 0 gives: 

•	 Update G: After keeping other variables fixed, G can be 
updated as follows: 

 Taking its first derivative and equating to 0 gives: 

•	 Update H: After keeping other variables fixed, H can be 
updated as follows: 

 Taking its first derivative and equating to 0 gives: 

•	 Update Z: After keeping other variables fixed, the sub-
problem becomes: 

 Taking its first derivative and equating to 0 gives: 

(17)

minimize
J

1
2
Tr
(

K − 2KJ+Z⊤KJ
)

+ �
2
‖J-B‖2F + �

2
‖J-Z + �1

�
‖

2
F

s.t. B ≥ 0, diag(B) = 0,B⊤ = B.

(18)J = (K + B + �I)−1
(
K + �Z − �1 + �B

)
.

(19)minimize
G

𝛼‖K-G⊤
KH‖2

F
+

𝜇

2
‖G-Z +

𝜆2

𝜇
‖2
F
.

(20)
G =

(
2𝛼KHH

⊤
K

⊤ + 𝜇I
)−1(

2𝛼KHK
⊤ + 𝜇Z − 𝜆2

)
.

(21)minimize
H

𝛼‖K −G
⊤
KH‖2

F
+

𝜇

2

����
H-Z +

𝜆
3

𝜇

����

2

F

.

(22)
H =

(
2𝛼K⊤

GG
⊤
K + 𝜇I

)−1(
2𝛼K⊤

G K + 𝜇Z − 𝜆3
)
.

(23)

minimize
Z

3�

2

‖‖‖‖‖
Z −

J +G +H + AK +
(
�
1
+ �

2
+ �

3

)
∕�

3

‖‖‖‖‖

2

F

.

•	 Update B: After keeping other variables fixed, B can be 
updated as follows: 

 Using K.Fan theorem [7], equation 25 can be rewritten 
as follows: 

 where S = UU⊤ , U consists of k eigenvectors that cor-
respond to k smallest eigenvalues of diag(B) − B . Now, 
equation 26 can be translated to: 

 Let us define 

Once we obtain the matrix B , the similarity matrix can be 
computed by (B + B⊤)∕2 . After this, the clustering results 
can be obtained by applying spectral clustering on the simi-
larity matrix. The step-by-step algorithm is given as algo-
rithm 1 to understand the entire model better.

(24)Z =
J +G +H + AK +

(
�1 + �2 + �3

)
∕�

3
.

(25)

minimize
B

�
2
‖J − B‖2F + �‖B‖

k
s.t. B ≥ 0, diag(B) = 0,B⊤ = B.

(26)

minimize
B

𝛽

2
‖J − B‖2

F
+ 𝛾⟨diag(B) − B,S⟩

s.t. B ≥ 0, diag(B) = 0,B⊤ = B, 0 < S < I, Tr(S) = k.

(27)minimize
B

1

2

‖‖‖‖
B − J +

𝛾

𝛽

(
diag(S)1⊤ − S

)‖‖‖‖

2

F

.

Q = J − �
�
(

diag(S)1⊤ − S
)

,

Q̃ = Q − Diag(diag(Q)),
then B = max(0, (Q + Q̃)∕2).



Pattern Analysis and Applications          (2024) 27:119 	 Page 7 of 13    119 

Algorithm 1   The proposed algorithm: KBD-TSC

4 � Experimental results and analysis

4.1 � Dataset description

The proposed KBD-TSC algorithm is evaluated on nine 
images datasets which are as follows: 

1.	 Yale3: It consists of 165 facial images of 15 individu-
als in grayscale mode. The images are resized to 32× 32 
pixels.

2.	 Jaffe4: This dataset consists of 213 facial images corre-
sponding to 7 facial expressions. The images are resized 
to 26 × 26 pixels.

3.	 ORL5: It consists of 400 facial images of 40 subjects. 
Each image is of size 26 × 26 pixels.

4.	 ARFaces6: This dataset comprises of 4000 facial images 
of 126 people.

5.	 COIL207: It consists of 1440 images of 20 objects. Each 
image size is 32 × 32 pixels.

6.	 BA8: This dataset contains 1404 images of handwritten 
digits and uppercase alphabets. Each image size is 20 
× 16 pixels.

7.	 tr119: This is a text dataset consists of 414 samples, 6429 
features and 9 classes.

8.	 tr4110: This is a text dataset consists of 878 samples, 
7454 features and 10 classes.

9.	 tr4511: This is a text dataset consists of 690 samples, 
8261 features and 10 classes.

4.2 � Baseline methods

We compare our proposed KBD-TSC method with several 
state-of-the-art methods, including spectral clustering (SC) 

3  http://​cvc.​cs.​yale.​edu/​cvc/​proje​cts/​yalef​aces/​yalef​aces.​html.
4  https://​zenodo.​org/​record/​34515​24.
5  https://​cam-​orl.​co.​uk/​faced​ataba​se.​html.
6  https://​www2.​ece.​ohio-​state.​edu/​~aleix/​ARdat​abase.​html.
7  https://​www.​cs.​colum​bia.​edu/​CAVE/​softw​are/​softl​ib/​coil-​20.​php.

8  https://​cs.​nyu.​edu/​~roweis/​data/.
9  https://​trec.​nist.​gov/.
10  https://​trec.​nist.​gov/.
11  https://​trec.​nist.​gov/.

Table 1   Details of parameter values w.r.t. different kernel functions

Kernel Function Parameter values

Linear k(xi, xj) = x⊤
i
xj –

Polynomial k(xi, xj) =
(
x⊤
i
xj + a

)b a ∈ {0, 1}, b ∈ {2, 4}

Gaussian
k(xi, xj) = exp

(

−‖‖
‖

xi − xj
‖

‖

‖

2

2
∕2t�2

)

t ∈ {0.01, 0.05, 0.1, }

{1, 10, 50, 100}

http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html
https://zenodo.org/record/3451524
https://cam-orl.co.uk/facedatabase.html
https://www2.ece.ohio-state.edu/%7ealeix/ARdatabase.html
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://cs.nyu.edu/%7eroweis/data/
https://trec.nist.gov/
https://trec.nist.gov/
https://trec.nist.gov/
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[36], kernelized sparse subspace clustering (KSSC) [40], 
Kernel low-rank representation (KLRR) [37], Implicit block 
diagonal low-rank representation (IBDLR) [67], Similarity 
Learning via Kernel Preserving Embedding sparse (SLKEs) 
[20], Similarity Learning via Kernel Preserving Embedding 
low rank (SLKEr) [20], Structure learning with similarity 
preserving sparse (SLSPs) [19], Structure learning with sim-
ilarity preserving low-rank (SLSPr) [19] and Kernel block 

Table 2   Hyperparameter settings

Hyperparameter Value

� {1e − 2, 1e-1, 0.5, 1}

� {1e − 5, 1e − 4, 1e − 3, 1e-2, 0.1, 1}

� {1e − 5, 1e-3, 0.1, 1}

� {1e − 2, 1e-1, 1, 10, 30, 50}

Table 4   Comparison of 
clustering results based upon 
NMI score

Dataset SC KSSC KLRR SKLEs SKLEr SLSPs SLSPr IBDLR KBDSP KBD-TSC

YALE 0.4859 0.4761 0.4882 0.3799 0.5047 0.4030 0.5425 0.5122 0.5662 0.5771
JAFFE 0.6069 0.7145 0.7414 0.7847 0.7691 0.7656 0.8991 0.8971 0.9178 0.9191
ORL 0.6981 0.6094 0.5461 0.5614 0.7580 0.5304 0.7758 0.7696 0.7964 0.8015
AR 0.5797 0.6687 0.7131 0.6022 0.5616 0.6750 0.7466 0.7484 0.6954 0.7477
COIL-20 0.5381 0.7050 0.6888 0.6047 0.6657 0.6628 0.6649 0.7877 0.7977 0.8015
BA 0.4387 0.5249 0.4501 0.5278 0.5361 0.5441 0.5461 0.4997 0.5704 0.5789
TR11 0.3142 0.3863 0.2375 0.2831 0.4408 0.2744 0.4576 0.4372 0.4752 0.4856
TR41 0.3657 0.4438 0.4642 0.3635 0.3691 0.3170 0.5345 0.4462 0.5453 0.5644
TR45 0.3310 0.3909 0.4084 0.4773 0.4995 0.4430 0.5394 0.4570 0.6027 0.6215
Avg 0.4843 0.5466 0.5264 0.5094 0.5672 0.5128 0.6341 0.6172 0.6630 0.6775

Table 5   Comparison of 
clustering results based upon 
purity

Dataset SC KSSC KLRR SKLEs SKLEr SLSPs SLSPr IBDLR KBDSP KBD-TSC

YALE 0.4665 0.5379 0.5862 0.6323 0.5747 0.6313 0.6138 0.5212 0.6394 0.6514
JAFFE 0.5798 0.8389 0.8955 0.8108 0.8187 0.9345 0.9253 0.9369 0.9362 0.9368
ORL 0.5387 0.6372 0.6421 0.6302 0.6812 0.7044 0.7013 0.6765 0.7110 0.7232
AR 0.2558 0.5090 0.5659 0.3992 0.4545 0.5749 0.5870 0.5502 0.5833 0.5870
COIL-20 0.4559 0.6751 0.6611 0.7190 0.7420 0.7241 0.6106 0.7442 0.7578 0.7626
BA 0.3095 0.4219 0.4383 0.5093 0.5163 0.4573 0.4749 0.5102 0.5386 0.5512
TR11 0.5043 0.6417 0.5064 0.6254 0.6860 0.6409 0.6886 0.6749 0.6747 0.6881
TR41 0.5672 0.5934 0.6359 0.6472 0.6361 0.6412 0.6724 0.5966 0.6501 0.6711
TR45 0.5059 0.6221 0.6781 0.6449 0.6617 0.6989 0.7014 0.6563 0.7060 0.7218
Avg 0.4648 0.6086 0.6233 0.6243 0.6412 0.6675 0.6639 0.6519 0.6886 0.6992

Table 3   Comparison of 
clustering results based upon 
accuracy

Dataset SC KSSC KLRR SKLEs SKLEr SLSPs SLSPr IBDLR KBDSP KBD-TSC

YALE 0.4425 0.4715 0.4569 0.3404 0.4768 0.3768 0.5286 0.4727 0.5626 0.5819
JAFFE 0.5563 0.7691 0.7358 0.6625 0.7409 0.7514 0.9031 0.9081 0.9091 0.9192
ORL 0.4948 0.4573 0.4971 0.3696 0.5865 0.3858 0.6075 0.6071 0.6340 0.6542
AR 0.2205 0.4116 0.4888 0.2866 0.2479 0.4247 0.5056 0.5010 0.5083 0.5383
COIL-20 0.4205 0.5744 0.5776 0.4537 0.5236 0.5341 0.5362 0.6922 0.7119 0.7318
BA 0.2785 0.3711 0.3280 0.3533 0.4088 0.4103 0.4128 0.3643 0.4252 0.4452
TR11 0.4335 0.4443 0.3364 0.4443 0.4986 0.4016 0.5135 0.5183 0.5234 0.5537
TR41 0.4452 0.5179 0.5344 0.3885 0.4588 0.4192 0.5555 0.4964 0.5558 0.5688
TR45 0.4561 0.4771 0.4953 0.5594 0.5632 0.5319 0.6025 0.5284 0.6492 0.6277
Avg 0.4164 0.4994 0.4945 0.4243 0.5006 0.4706 0.5739 0.5654 0.6088 0.6245
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diagonal representation subspace clustering with similarity 
preservation (KBDSP) [68].

4.3 � Evaluation metrics

During experiments, it is typically presumed that the quan-
tity of clusters is already established. Under these circum-
stances, various metrics, including accuracy, Normalized 
Mutual Information (NMI) and Purity, are commonly 
employed [42, 43]. The metrics are described below:

•	 Accuracy: The accuracy is defined as the ratio of the 
number of data instances that are assigned the same clus-
ter as in the ground truth to the total number of data 
instances.

•	 Normalized Mutual Information (NMI): This metric 
computes the normalized measure of similarity between 
the labels of same data instances. The range of NMI is 
[0,1] where 0 signifies no correlation and 1 signifies the 
perfect correlation.

•	 Purity: Purity measures the extent to which data points 
within each cluster are assigned to the same true class 
[69]. A larger purity value indicates better clustering per-
formance.

4.4 � Kernel design

We have designed 12 different kernels in this work, includ-
ing one linear kernel, four polynomial kernels, and seven 
Gaussian kernels (Table 1).

In the case of the Gaussian kernel, � is the maximum 
distance between xi, xj.

4.5 � Computational complexity

In the proposed algorithm, the first part is the construction 
of kernel matrix which is bounded by O(n2) . The second part 
is updating step of different variables, each one of them is 
bounded by O(n3) . Thus, the proposed algorithm has overall 
time complexity of O(tn3) where t and n represents the num-
ber of iterations and number of data samples respectively.

4.6 � Parameter sensitivity analysis

There are four hyper-parameters in the proposed KBD-TSC 
algorithm 11, i.e., �, �, �, � . The parameter � controls the 
good conditioning of the transform. The parameter � bal-
ances the similarity-preserving term ‖‖‖K − ZTKZ

‖‖‖
2

F
 , the 

parameter � is used to control the term ‖Z − B‖2
F
 , the param-

eter � is used to control the block-diagonal structure term 
‖B‖

k
.The YALE and JAFFE datasets are used for param-

eter evaluation using NMI. The parameters �, �, �, � take 
v a l u e s  f r o m  t h e  s e t s  {1e − 2, 1e − 1, 0.5, 1} , 
{1e − 5, 1e − 4, 1e − 3, 1e − 2, 0.1, 1}   , 
{1e − 5, 1e − 3, 0.1, 1} , and {1e − 2, 1e − 1, 1, 10, 30, 50} 
respectively. The best values of the parameters for the opti-
mal clustering performance is 0.1, 0.01, 0.001, 0.1 for 
�, �, �, �  ,  r e s p e c t i ve ly.  T h e r e fo r e ,  we  ke e p 
� = 0.1, � = 0.01, � = 0.001, � = 0.1 in all the experiments 
of this paper. The parameter tuning is done using grid 
searching. The parameter settings of all experiments have 
been given in the Table 2, in which recommended parame-
ters are indicated in bold. We performed parameter sensitiv-
ity analysis on JAFFE Dataset for wide range of � , � and � 
values against NMI score. It is observed that the proposed 
technique is not very sensitive to these hyperparameters. 
Moreover,  when these parameters are set  to 
� = 1e − 2, � = 1e − 3, and� = 1e − 1 , the best clustering 
performance is achieved. Hence, we fixed these values for 
all the experiments.

4.7 � Results and discussion

The experimental results for all the nine datasets are shown 
in terms of Accuracy, NMI, and Purity in Tables 3, 4, and 5 
respectively. We average out the results of all experiments on 
12 kernels. The experimental results are reported by averag-
ing the results of ten iterations in the Tables 3, 4 and 5. From 
the results, it can be observed that the proposed KBD-TSC 
approach outperforms the state-of-the-art methods.

To be more specific in analysis, the results from Tables 3, 
4, 5 are discussed below: 

1.	 Compared to SC algorithm, the proposed KBD-TSC 
method obtains better results regarding all evaluation 
metrics: accuracy, NMI, and purity. From Tables 3, 4, 
5, it can be easily observed that the average value of 
accuracy, NMI, and purity of the proposed method are 
20.81, 19.32, and 23.44 % higher than SC, respectively. 
The reason for the same is that the input to spectral clus-
tering is the learned Z instead of the raw kernel matrix.

2.	 Our proposed KBD-TSC method also outperforms 
the kernel-based methods KSSC and KLLR. This is 
because of the similarity-preserving trick in the trans-
form domain.

3.	 In comparison to SLKEs and SLKEr, our proposed algo-
rithm exhibits superior performance. This improvement 
can be attributed to two key aspects: firstly, the proposed 
framework for kernel self-expression has the capabil-
ity to retain specific low-order details from the input 
data; secondly, the introduction of the term representing 
block diagonal structures in our model, within the latent 
transform space, facilitates the acquisition of a similarity 
matrix characterized by a block diagonal arrangement.
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4.	 SLSPs and SLSPr, which are capable of handling non-
linear datasets and preserving similarity information, 
gives better performance as compared to SC, KSSC, 
KLRR, SLKEs, and SLKEr. However, the proposed 
KBD-TSC algorithm consistently outperforms them in 

most instances. Specifically, average values of accuracy, 
NMI, and purity in Tables 3, 4, and 5 indicate that the 
proposed method surpasses SLSPs by 15.39%, 16.47%, 
and 3.17%, respectively. These findings confirm that the 
introduced term representing block diagonal structures 
significantly contributes to improving performance.

5.	 Both IBDLR and the proposed KBD-TSC mthod facili-
tate the acquisition of a desired affinity matrix with an 
optimal block diagonal structure by integrating the block 
diagonal representation term. Tables 3, 4, and 5 demon-
strate that the proposed KBD-TSC method and IBDLR 
outperform other compared algorithms on all datasets. 
This underscores the effectiveness of methods incorpo-
rating the block diagonal representation term, particu-
larly for datasets with multiple classes. Remarkably, in 
the case of COIL20 and BA datasets characterized by a 
larger number of instances, the proposed method dem-
onstrates a performance improvement of almost 15% 
compared to alternative methods, with the exception of 
IBDLR on the COIL20 dataset. Additionally, the sug-
gested KBD-TSC method surpasses the performance of 

Fig. 1   Convergence graph of 
the proposed method with nine 
different datasets in 30 itera-
tions

Table 6   Runtime comparison 
(in seconds)

Dataset SSC KSSC KLRR SKLEs SKLEr SLSPs SLSPr IBDLR KBD-TSC

YALE 77 88 93 92 94 80 82 79 68
JAFFE 62 84 89 87 90 71 74 70 55
ORL 86 97 101 99 103 89 93 88 78
AR 91 113 119 117 122 95 97 94 83
COIL-20 98 117 125 121 128 102 105 100 88
BA 77 89 93 90 94 82 85 80 67
TR11 110 124 130 125 131 115 118 110 96
TR41 121 137 141 139 145 127 131 124 105
TR45 117 129 136 133 137 123 128 120 101

Table 7   Comparison of NMI score of the proposed objective function 
against the objective function without similarity preserving term and 
the objective function without block diagonal term for all the datasets

Dataset Similarity- Block- Proposed

YALE 0.4665 0.5542 0.5771
JAFFE 0.8678 0.8832 0.9191
ORL 0.7798 0.7814 0.8015
AR 0.6872 0.7185 0.7477
COIL-20 0.7112 0.7665 0.8015
BA 0.4887 0.5443 0.5789
TR11 0.4661 0.4727 0.4856
TR41 0.5311 0.5392 0.5644
TR45 0.5991 0.6003 0.6215
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IBDLR specifically on the COIL20 dataset, underscor-
ing the advantages of incorporating a similarity-preserv-
ing strategy in the transform domain.

6.	 In datasets with high-dimensional features such as 
TR11, TR41, and TR45, SLSPr demonstrates superior 
performance to IBDLR, attributed to its integration of a 
similarity-preserving mechanism. Capitalizing on both 
the similarity-preserving strategy and the block diagonal 
representation term, the suggested KBD-TSC consist-
ently outshines IBDLR and even surpasses SLSPr in 
most instances across TR11, TR41, and TR45 datasets. 
These outcomes underscore the effectiveness of the pro-
posed KBD-TSC method in effectively managing data-
sets with intricate features, enabling the extraction of 
inherent data structures.

In a nutshell, the experimental results demonstrate the 
effectiveness of our proposed KBD-TSC method combined 
with similarity preserving regularizer, transform learning-
based kernel self-expressing model, and block diagonal 
representation term.

4.8 � Convergence analysis

The convergence plots of the proposed method is shown in 
Fig. 1. For all the datasets, the proposed method converges 
within 10 iterations.

4.9 � Computational time

The experiments are conducted on a 64-bit Windows sys-
tem with Intel i7 processor and 32GB RAM. The running 
time of the proposed method and the various state-of-the-
art methods for all the datasets are shown in Table 6. From 
Table 6, it can be observed that the proposed KBD-TSC 
method is the fastest among all kernel-based techniques.

4.10 � Ablation experiments

For the ablation experiments, we have compared the NMI 
score of the proposed technique against the objective func-
tion without the similarity preserving term and the objec-
tive function without the block diagonal term. It is observed 
that these terms are important for making clustering effi-
cient. The NMI score gives the best value for all the datasets 
when these terms are included in the objective function. The 
ablation experiment results are discussed in Table 7. The 
objective function without the similarity preserving term is 
labelled as “similarity-” and the objective function without 
the block diagonal term is labelled as “block-.”

5 � Conclusion

This paper presents a novel subspace clustering approach 
that integrates transform learning-based kernel block diago-
nal representation and a similarity-preserving strategy. The 
method exhibits effective performance even when the raw 
data lacks inherent separability into subspaces and demon-
strates robust generalization capabilities for non-linear mani-
folds. The proposed KBD-TSC operates through a three-step 
process. Initially, it captures the non-linear structure of the 
input data by incorporating the kernel self-expressing frame-
work into the transform learning-based framework. The sec-
ond step introduces the block diagonal representation term to 
create a similarity matrix with a block diagonal structure. In 
the final step, the similarity-preserving term is introduced to 
capture pairwise similarity information between various data 
points. The effectiveness of the proposed approach is evalu-
ated on nine benchmark datasets, showcasing its superiority 
over several state-of-the-art methods. In future work, we aim 
to extend the proposed method to multiple kernel learning.
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