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Abstract
Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency 
matrix is fixed and the receptive field is small, which results in bias representation for skeleton intrinsic information. In 
addition, the operation of mean pooling on spatio-temporal features in classification layer will result in losing information 
and degrade recognition accuracy. To this end, the Decoupled Adaptive Graph Convolutional Network (DAGCN) is pro-
posed. Specifically, a multi-level adaptive adjacency matrix is designed, which can dynamically obtain the rich correlation 
information among the skeleton nodes by a non-local adaptive algorithm. Whereafter, a new Residual Multi-scale Tem-
poral Convolution Network (RMTCN) is proposed to fully extract temporal feature of the above decoupled skeleton dada. 
For the second problem in classification, we decompose the spatio-temporal features into three parts as spatial, temporal, 
spatio-temporal information, they are averagely pooled respectively, and added together for classification, denoted as STMP 
(spatio-temporal mean pooling) module. Experimental results show that our algorithm achieves accuracy of 96.5%, 90.6%, 
96.4% on NTU-RGB+D60, NTU-RGB+D120 and NW-UCLA data sets respectively.

Keywords  Decoupled adaptive graph convolutional network · Residual multi-scale temporal convolution network · 
Decoupled head of classification lay · Skeleton based action recognition

1  Introduction

Skeleton based behavior recognition is an important research 
field in computer vision. Compared with the behavior rec-
ognition of RGB video, it can filter the non-limb dynamic 
information interference in the image and has strong robust-
ness in complex background. However, the skeleton data 
extracted from the video belongs to Non-Euclidean data, 

and how to effectively extract their features is the core for 
skeleton behavior recognition.

Deep learning based methods often manually convert 
skeleton data into a sequence of joint coordinate vectors or 
pseudo-images for easy feature representation. RNN or CNN 
based methods [1–5] are effective in processing Euclidean 
data, but can not explicitly processing skeleton graphic data. 
For this reason, graph convolutional network (GCNs) is 
designed to obtain its non-Euclidean data features, typically, 
Spatio-Temporal Graph Convolutional Networks (ST-GCNs) 
[6] become the popular ways. Their core idea is to combine 
GCN graph convolution with spatiotemporal convolution, 
which sets the configuration of skeleton topological graph 
manually based on the physical structure of human body, 
and then define its graph adjacency matrix to extract spa-
tial–temporal feature for skeleton sequences. In short, the 
quality of feature representation is mainly dependent on how 
well designing on the adjacency matrix in ST-GCNs.

How to construct ST-GCNs mostly relies on the artificial 
prior knowledge, which usually leads to the defects of rigid 
structure and solidified correlation information between 
nodes. Researchers have a number of improved algorithms 
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for this. Among them, the two-flow adaptive graph convolu-
tion structure (2 s-AGCNs) [7] uses the Non-Local idea to 
design the adaptive adjacency matrix, and obtains the auto-
correlation matrix by calculating the relationship between 
the two matrix vectors in time or space. In the graph convo-
lution operation, the adaptive adjacency matrix can dynami-
cally converge node information.

However, AGCNs can only obtain the adjacency matrix 
of a single channel by non-local operation, which is unrea-
sonable to use it to aggregate information at a specific node 
with multiple channels feature. To overcome this flaw, 
inspired by the decoupling idea proposed by [8] and the 
multi-headed self-attention proposed by [9–11], we think 
that decoupling can be considered as an multi-attention pro-
cess, which can decompose one complicated feature into 
multi-feature norms corresponding to several intra-class 
variations. Therefore, the decouple adaptive graph convo-
lutional structure layer is proposed in this paper, and its 
structure can also be regarded as a variant of Transformer 
Encode. Its relevant topologies can be obtained through 
multi-head adaptive convolution, and the expression of dif-
ferent behaviors on nodes in dynamic situations can be well 
described comprehensively. Further, in the temporal con-
volution layer, we adopt the idea of multi-scale temporal 
convolution network MSTCN [12], and modify its model 
structure to the proposed residual multi-scale time convo-
lution, thus, it can achieve a larger field of view and better 
granularity. In addition, in the final average pooling layer, 
the spatio-temporal feature map is decomposed into three 
dimensions of space, time and space–time, their loss func-
tions of the three dimensions are added together and then the 
inverse derivation is obtained, finally they are merged as a 
whole for behavior classification.

In short, our innovations can be summarized as follows:

1	 A Decoupled Adaptive Graph Convolutional Network 
(DAGCN) layer is proposed, by which, an adaptive spa-
tial aggregation kernel is designed to obtain multi-chan-
nel data, and learns their topology of GCN layers and 
skeleton data in different channels through self-attention 
mechanism, so as to extract the multi-leveled feature 
information of skeleton data more effectively.

2	 A new Multi-Scale Time Convolution Network 
(MSTCN) is proposed, which uses residual multi-scale 
convolution kernel and dilated convolution to achieve a 
larger field of view.

3	 Spatial Temporal Mean Pooling (STMP) is proposed 
in the final average pooling layer, that is, the spatial–
temporal feature is decoupled into three components as 
spatial, temporal, and spatial–temporal feature, they are 
added after individually averaged pooling for classifica-
tion, which helps to improve the classification accuracy.

2 � Related work

Compared with RGB image sequences as inputs for indi-
vidual behavior recognition, a human skeleton representa-
tion only requires the three-dimensional coordinates and 
confidence score of each joint, which is usually less than 
30 joints, so skeleton data can alleviate storage burden and 
computation cost significantly. Moreover, Human skeleton 
data can be easily obtained by multi real-time extractors, 
such as Openpose, HR net, Google PoseNet and Nuitrack. 
Additionally, compared with RGB image-based action 
recognition methods, skeleton-based algorithms are more 
robust to illumination variation, dynamic backgrounds, 
differences in color, and different subjects etc. So skel-
eton-based action recognition becomes a main stream on 
computer vision field. Generally, it undergoes three typi-
cal developing stages, which are Convolutional Neural Net-
works (CNN) based methods, Recurrent Neural Networks 
(RNN) based method, and Graph Neural Networks (GNNs) 
based method, especially with graph convolution networks 
(GCNs) framework.

2.1 � CNN‑based skeleton data action recognition

Specifically, 2D CNN can not capture temporal feature from 
a skeleton sequence, so CNN-based methods usually con-
vert it into a “spatially arranged map”. Du et al. [13] par-
allelly transformed the node coordinates on the time axis 
into a matrix “image”, and solved the problem of inconsist-
ent length of action sequences through this normalization. 
Finally, the “image” was input to a CNN network for feature 
extraction and recognition. Wang et al. [14] proposed the 
human skeletal joint trajectory motion, by projecting the 
coordinate trajectory of motion nodes into HSV space, the 
space–time information was transformed into a multi-view 
joint trajectory. Finally, features were extracted through pre-
training network with ImageNet for classification process-
ing. As the type of an action is mostly determined by its 
local joint movements, Zhu et al. [15] proposed a cuboid 
model for action recognition based on skeleton data. Its 
cuboid arrangement strategy is to obtain a representation of 
cuboid actions by organizing paired displacements between 
all body joints, which was suitable to apply deep CNN mod-
els to analyse actions.

In short, the above CNN-based methods have explored 
the ways to process skeleton data with convolution frame-
work, and gained rather good performances, but their net-
work structures are weak to to well describe temporal infor-
mation within skeleton sequence.
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2.2 � RNN‑based skeleton data action recognition

RNN and its relevant variants, such as LSTM and GRU, 
are applied to improve skeleton-based action recognition by 
their better temporal information modelling. Du et al. [16] 
proposed a hierarchical recursive neural network for skeleton 
data action recognition. They divided the human skeleton 
into five parts based on the physical structure of the human 
body, and modeled them using five subnets. The representa-
tions extracted from these subnets were layered and fused 
as inputs to higher levels. Via a fully connected layer and a 
softmax layer on the final representation, they could obtain 
action classifications. Liu et al. [17] introduced a global con-
text aware LSTM network to handle skeleton data. Their first 
LSTM layer encodes the skeleton sequence and generates an 
initial global context representation for the action sequence. 
The second layer achieves sequence attention representation 
by using global contextual memory units to perform atten-
tion on the input. Then, attention representation is used to 
refine the global context. By paying attention to multiple 
iterations, gradually the global context memory is improved. 
Finally, they use refined global contextual information for 
classification. Wei et al. [18] proposed a new high-order 
joint relative motion feature (JRMF) and a new human bone 
tree RNN network (HST-RNN). The JRMF of each skeleton 
joint was composed of the relative position, velocity, and 
acceleration of that joint and all its descendants. It better 
described the instantaneous state of skeleton joints than joint 
position. The HST-RNN network was constructed using the 
same tree structure as the human skeletal joints. Each node 
in the tree was a gated recurrent unit (GRU), representing a 
skeleton joint. Its child nodes and corresponding JRMF out-
puts were connected and fed into each GRU. This network 
combined low-level features and extracted high-level fea-
tures from leaf nodes to root nodes in a hierarchical manner 
based on the body structure of the human body.

In all, compared to the above CNN-based algorithms, 
RNN-based methods are good at describing temporal 
dynamics of joint sequences, but they are difficult to learn 
correlations of skeletal joints in the spatial domain. To this 
end, Graph Neural Networks (GNNs) based methods are 
developed.

2.3 � GNN‑based skeleton data action recognition

The human skeleton is essentially a kind of graphic structure 
data, Graph Neural Networks (GNNs), especially graph con-
volution networks (GCNs) and its variants, demonstrate their 
power to discover the intrinsic relations between skeleton 
joints. In the following, we mainly summarize three kinds 
of methods concerning feature extraction from skeleton 
data, which are primitive GCN related methods; correlation 

modeling among disconnected far joints; adaptive adjacent 
matrix based algorithms.

2.3.1 � Primitive GCN related methods

At early stage, GCN as a basic network is explored and 
exploited for skeleton data feature extraction. Typically, 
Si et al. [19] proposed an Attention enhanced Graph Con-
volutional LSTM network (AGC-LSTM) for skeleton data 
action recognition. They designed a linear layer converting 
the coordinates of each joint into spatial features, and then 
connected this spatial feature with the difference between 
two consecutive frames, denoted as augmented features; fur-
ther applied three AGC-LSTM layers to model its inherent 
spatiotemporal characteristics, finally, obtained the global 
features of all joints and the local features for action pre-
diction. Yan et al. [20] proposed Spatial Temporal Graph 
Convolutional Networks (ST-GCN), namely, they took the 
spatial topology in traditional GCN as the basic structure, 
then new continuous temporal step edges were constructed 
from the each nodes, aiming to form a multi-layered spa-
tiotemporal graph convolutional architecture, which could 
automatically achieve the integration and description of 
skeleton data information along the spatial dimension and 
time dimension simultaneously. This is a milestone achieve-
ment in skeleton data action recognition. But, there are some 
disadvantages for primitive GCN to process skeleton data, 
such as, its graphical topology is fixed, and is weak to model 
correlations between disconnected far joints, which is not 
optimal for spatial feature representation of body joints.

2.3.2 � Correlation modeling among disconnected far joints

Traditional adjacent matrix in GCN is of limited perceive 
field, it can only measure correlations among neighbouring 
joints, but not good at describing relations among far none 
connected joints, which is also essential and important to 
fully represent the dynamics of an action. This problem has 
aroused much attention in the research of skeleton-based 
action recognition.

Lee et al. [21] proposed a Hierarchical Decomposition 
graph (HD Graph) convolutional network, aiming to well 
model relationships between distant nodes. Specifically, HD 
Graph connects all joints in a set of adjacent layered links, 
and describe their relationships between these joints, includ-
ing meaningful adjacent nodes and remote joint nodes. In 
addition, joint correlations, which could not be captured with 
HD Graph, were considered by their Spatial EdgeConv layer 
based on hierarchical attention oriented aggregation solu-
tion. Also, Yang et al. [22] proposed a hybrid diffusion graph 
convolution model, aiming to combine diffusion graphs and 
graph convolutions to achieve more comprehensive infor-
mation diffusion. Specifically, they used diffusion maps to 
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facilitate information diffusion between nodes with similar 
features in the feature space. Then, using graph convolution 
models to promote information spreading between adjacent 
nodes through adjacency matrices; Importantly, their hybrid 
diffusion graph decomposes all joints through a hierarchical 
decomposition structure, which can capture the dependency 
relationships between distant joints.

Similarly, Zhang et al. [23] designed Spatial Transformer 
Blocks and Directional Temporal Transformer Blocks to 
model skeleton data in both spatial and temporal dimensions. 
Namely, their Temporal Transformer generated a global 
attention map that spanned the entire skeleton sequence to 
capture relative changes in poses along the time dimension, 
thereby better perceiving the relative positional relationships 
between frames. On the other hand, the design of spatial 
transformer was to capture the spatial relationships between 
joints in spatial domain, but they used a shared adjacency 
matrix when dealing with multi-channel, i.e., the aggrega-
tion of joint features in different channels was carried out 
with the same topology structure, which limited the learning 
of topological relationships between distant far joints. There-
fore, researchers attempt to design an adaptive adjacency 
matrix to adapt to the dynamic changes of various actions.

2.3.3 � Adaptive adjacent matrix designing

Due to the flexibility and high accuracy of adaptive adjacent 
matrix in modeling spatial feature for skeleton-based action 
recognition, it becomes an attractive research spot recently.

Wei et al. [24] proposed combining static and dynamic 
hypergraphs to model skeleton data. Specifically, their 
dynamic hypergraphs consisted of two important com-
ponents: dynamic joint weights and dynamic topology. 
Dynamic joint weighting could assign different coefficients 
based on the movement distance of each joint point, which 
was more conducive to the aggregation of joint features; The 
dynamic topology structure improved the flexibility of the 
topology structure. Compared with traditional skeleton maps 
[19, 20], this scheme can generate more topological struc-
tures for different samples and deeply mine the implicit asso-
ciation information between joint points. But the network 
has a high computational cost in the process of obtaining 
dynamic hypergraphs. In addition, assigning joint weights in 
the hypergraph based on the distance of joint movement may 
lead to biased weight issues, that is, if some joints move sig-
nificantly more than others, the weight associated with these 
joints may increase. Therefore, the model overly focuses on 
joints with higher weights, which affects the overall perfor-
mance of the model.

From another perspective, Shi et al. [7] proposed a dual 
stream adaptive graph convolutional network (2 s-AGCN), 
in which they designed three sub matrices named A, B, and 
C. The submatrix A was defined as the physical structure 

of the human body. The submatrix B is data-driven learn-
ing entirely based on training data and worked as a global 
graphic. The submatrix C is a data dependent graph, which 
is specific for each sample. Finally, the sum of A, B, and C 
is used for spatial feature extraction.

But, 2 s-AGCN uses temporal convolution network (TCN) 
with fixed receptive fields to simulate joint-level motion in a 
specific time range, ignoring the benefits of modeling multi-
level motion patterns in dynamic receptive fields. Differently, 
Duan et al. [25] proposed a Dynamic Group Time ConvNet 
with different receptive fields to model spatial–temporal 
feature from skeleton data. For spatial feature mining, they 
designed their spatial matrix consisting of one static sub-
matrix and two dynamic matrices, among them, the static sub-
matrix was learned based on the whole training data-set, and 
proved to play dominant role in spatial feature extraction; on 
the other hand, the other two dynamic matrices were learned 
in a data-dependent manner, which were channel invariant and 
channel specific respectively, and worked as auxiliary com-
ponents in spatial feature description. In terms of temporal 
feature representation, different form TCN in 2 s-AGCN [7], 
they modeled joint-level and skeleton-level features in parallel 
using multiple sets of temporal kernels. However, this method 
is only used for time modeling under the same joint, and can 
not effectively capture the correlation between different joints 
in continuous frames.

Comparably, Shi et al. [26] proposed a Multi-Stream 
Attention-enhanced Adaptive Graph Convolutional Neural 
network (MS-AAGCN), which is the upgraded version of 
2 s-AGCN [7] with the same authors. Firstly, for final spa-
tial adjacent matrix definition, they did not use sub-matrix 
A, instead, they chose B+αC, the parameterized coefficient 
α was learned and updated under their Gating mechanism. 
Secondly, for temporal feature modelling, they designed a 
Spatial–Temporal channel attention module (STC-attention 
module), which consisted of three sub-modules: spatial 
attention module, temporal attention module and channel 
attention module. Similar to [26], Shi et al. [27] also used 
the attention mechanism to model the spatio-temporal cor-
relation among joints, without considering the position rela-
tionship between joints, and without relying on any graph 
topologies. Specifically, their DSTA-Net (Decoupled Spa-
tial–Temporal Attention Network) network used spatio-tem-
poral attention decoupling module to decompose the spatio-
temporal features into spatial features and temporal features, 
then they modeled the spatio-temporal dependence of the 
joints respectively through the self-attention mechanism.

Although DSTA-Net enhances the global modeling abil-
ity of joint data, it adopts attention mechanism to extract 
the spatial and temporal features of joints in space and time 
dimensions, it does not take into account the differences 
of skeleton data in space and time dimensions. This differ-
ence refers to the temporal dimension of joint sequences 
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emphasizing more characteristics related to movement, for 
example, the speed, frequency, and rhythm of movement of 
different body parts may be different. To this end, we pro-
pose our decoupled adaptive graph convolutional networks, 
it is explained as follows.

3 � The proposed method

As shown in Fig. 1, our algorithm framework inherits the 
serial structure of ST-GCN, which consists of two parts: 
Backbone module and Decouple Head. The skeleton 
sequence with the N number of batches, C channels, T time 
frames and V nodes is arranged into a spatiotemporal map 
and input to the backbone module. Our backbone consists 
of two sub-modules: DAGCN and RMTCN. The DAGCN 
can learn the graph convolution kernel adaptively and extract 
the spatial features of multiple channels effectively, while 
the RMTCN module is designed to effectively extract multi-
scale temporal information.

The feature information extracted by Backbone includes 
spatial and temporal information, the previous methods, such 
as AGC-LSTM [19], ST-GCN [20], and 2 s-AGCN [7], MS-
AAGCN [26], etc., only simply take Mean pooling to merge 
the information, which causes the loss of detailed spatio-
temporal feature. To this end, Decoupled Head is designed 
to decompose the spatio-temporal feature into three compo-
nents as space, time and space–time, they are respectively 
averaged and then added together for classification. The new 
average pooling layer can effectively reduce the noise, and 
weaken the sensitivity to abnormal data, which can improve 
the robustness and stability of the model. The above three 
key parts are introduced in detail as follows.

3.1 � Decoupled adaptive graph convolutional 
network

In the GCN-based skeleton behavior recognition, when 
designing its graphic convolutional kernel, it is crucial to 

measure the relations among adjacent nodes, as well as 
important cross-correlations and mutual influences among 
non-adjacent nodes. Take “running” for an example, there 
are close interactions and coordination between the hands 
and feet, even though they are not physically adjacent joints. 
For more details to explain their coordination, when a per-
son steps with the left foot, usually his right hand will wave 
forward to ensure the balance of the body. However, pre-
sent algorithms [4, 6, 21–23] fail to capture this correlation 
diversity when constructing the adjacency matrix, which 
results in an inability to accurately represent the movement 
of an action. Therefore, a new model structure is proposed as 
shown in Fig. 2, which can obtain more abundant dynamic 
association information. The specific method is as follows.

Firstly, DAGCN input data Xin ∈ RN×C×T×V is normal-
ized via the BN module; Secondly, three 1 × 1 convolutions 
are used for feature embedding to obtain three third-order 
tensors respectively as Xq,Xk

,Xv ∈ RH×T×V . The adaptive 
adjacency matrix Aatt ∈ RH×V×V can be obtained according 
to the non-local operation shown in formula (1), it is merged 
with the predefined adjacency matrix A0 , which is derived 
from the human body physical connected joints, addressed 
as strong correlation matrix or explicit correlation matrix, 
as used in ST-GCN related methods. Thirdly, the merged 
adjacency matrix performs adaptive graph convolution 
operation, as shown in formula (2), to obtain unbiased spa-
tial feature representation. Finally, SENet is used to assign 
weights to the channel layer and output the final spatial fea-
ture results.

formula (1) and (2) are explained as follows respectively:

(1)

A
(m)
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Fig. 1   The overall structure of DAGCN-RMTCN algorithm
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where Aatt ∈ RH×V×V essentially is the multi-head adjacency 
matrix, Xin ∈ RN×C×T×V is the input data; Wq ∈ RH×Cin×1×1

,Wk ∈ RH×Cin×1×1 and Wv ∈ RH×Cin×1×1 are expressed as the 
weight parameters of the 1 × 1 convolution kernel respec-
tively, they are multiplied with X to get three tensors 
respectively as Xq,Xk

,Xv ∈ RH×T×V  ; H is the number of 
multi-heads of the attention mechanism, we use the number 
of channels transformed by Conv2D 1 × 1 as its number; 
and dk is the number of nodes; m is the index number of 
layers in the intermediate process, M equalizes 9 as indi-
cated in Fig. 1. The output of DAGCN in Fig. 2 is Xout with 
the dimension of N × C� × T × V , C′ is the output channel 
number.

In summary, Compared with the adaptive adjacency 
matrix of AGCN [7] and MS-AAGCN [26], this paper has a 
decoupling method to design multi-channel adaptive adja-
cency matrices. It can figure out a more diversified adaptive 
adjacency matrix, which can obtain more connection rela-
tions of nodes under the behavior change, so that the graph 
has a stronger ability to convolve and aggregate node infor-
mation. Further, compared with the traditional Transformer 
method [23], our method proposed in this paper is simpler 
and more flexible in reducing the original two-dimensional 
skeleton sequences to one-dimensional sequences for adap-
tive adjacency matrix calculation.

3.2 � Residual multi‑scale time convolutional 
network module

Traditional Temporal Convolution Network (TCN) uses 
k×1 convolution kernel to aggregate temporal informa-
tion in the time dimension of data. Due to the fixed scale 
of its convolution kernel, it is difficult to extract temporal 

features comprehensively. Classical multi-scale time con-
volution based on Inception structure can obtain more time 
sequence information, but there are some problems. For 
example, Liu et al. [28] proposed MS-TCN to obtain long 
distance time information by setting different void rates. 
Although the range of sensitivity field is expanded, the cor-
relation between the information obtained by long distance 
convolution is weak due to sparse sampling input informa-
tion of void convolution, thus obtaining incoherent global 
information. Take the “standing up” action for an instance, 
its duration time is short, i.e. 0.5 s or so. If employing dilated 
convolution, only the information at 0.1 s and 0.3 s can be 
sampled, but missing the most important information at 
0.2 s. Therefore, inspired by Res2net and Inception struc-
tures, residual multi-scale time convolution (RMTCN) is 
proposed in this paper as Fig. 3. Its specific methods are 
explained as follows.

As shown in Fig. 3, RMTCN mainly consists of two 
scales of convolution kernel = {3 × 1, 5 × 1} and one 
dilation = {1 × 2} kernel, which can reach the receptive field 
of 7 × 1 and 13 × 1 respectively. Besides, we add residual 
structure to solve the problem of network degradation. In 
this paper, the DAGCN output features are equally divided 
into S = 4 sub-groups as the inputs to the four sub-branches 
in RMTCN respectively, that is, each subgroup contains a 
quarter of channel numbers. Among them, the first three 
sub-groups are convoluted by 1 × 1 , 3 × 1 , 5 × 1 , kernels 
respectively; while the forth sub-group is processed via a 
3 × 1 Max Pooling. Finally, these four sub-outputs are con-
catenated as a whole spatial–temporal feature into next mod-
ule of STMP for classification.

TN )

)N

)N

0A

inX
attA

outX

qX

kX

vX

C1

)VTH(N

)VTC(N

Fig. 2   Decoupled Adaptive Graph Convolutional Module
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Different from concurrent structures that use different 
convolution kernels and dilated convolutions to improve 
multi-scale capability, we use hierarchical residual-like con-
nections on each branch, which has the advantage that the 
multi-scale structure does not have the problem of gradient 
disappearance and less information loss as the depth of the 
network increases. Our RMTCN uses the standard residual 
mechanism to fuse low-level and high-level temporal fea-
tures. The specific formulas are as follows:

Among them, Fi,j stands for the feature map obtained 
by the Ki convolution and the di dilation rate. FS−1 is the 
Max Pooling and F represents the multi-scale feature map.

(3)Fi, j = Conv
(
Ki × 1, di

)(
Xij

)
+ F(i, j−1)i= 1, 2,…, S−1j=1, 2

(4)FS−1 = pool
(
Conv(3 × 1, d = 1)

(
XS−1

))

(5)F = Concat
([
F0, F1,… , FS−1

])

Fig. 3   Residual multi-scale time convolution network (RMTCN)

inf
outC

outoutout VTC

a b

Fig. 4   Classifier based on STMP (spatio-temporal mean pooling) module
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In short, Using dilation convolution can further increase 
the receptive field of the convolution kernel, while reduc-
ing the number of parameters and computational complex-
ity. By adjusting the sampling rate of the dilation convolu-
tion, the receptive field size of the convolution operation 
can be flexibly controlled to adapt the requirements of 
feature extraction at different scales.

3.3 � Spatio‑temporal decoupling classifier module

The operation of mean pooling on spatio-temporal features 
in classification layer, as shown in Fig. 4a, will result in los-
ing information and degrade recognition accuracy. In order 
to retain more spatio-temporal information and highlight 
the difference of spatio-temporal characteristics in reverse 
derivation after summation of these three loss functions, we 
propose a spatio-temporal decoupling classifier based on 
STMP module, as shown in Fig. 4b.

In backbone, DAGCN and RMTCN modules only aggre-
gate information in space and time domain respectively, we 
suppose their output feature map as Z ∈ RCout×Tout×Vout . In the 
classifier, we modify the traditional global average pool-
ing into the average pooling of space, time and space–time 
in parallel. That is, Z ∈ RCout×Tout×Vout is decomposed as the 
spatial sub-feature ZV ∈ RCout×Vout by a Tout × 1 convolution 
operation, and temporal sub-feature ZT ∈ RCout×Tout by a 
Vout × 1 convolution operation, and spatial–temporal feature 
ZTV ∈ RCout×Tout×Vout as unchanged. because Γ number of spa-
tial–temporal features are disassembled into the same num-
ber of spatial feature and temporal feature respectively, so 
their combining loss function can be written out as follows:

In the process of parameter updating and gradient cal-
culation by backpropagation algorithm, parameter updating 
will be optimized in three dimensions respectively, which 
can help spatio-temporal features obtain richer feature 
information.

Among them, the temporal sub-feature undergoes 
a 1 × V convolution kernel, BN layer and Relu out-
put, and averagely pooled in the time dimension, then 
we can obtain its temporal averaged outputZTA ∈ RCout . 
Similarly, we can get spatial averaged pooling output 
ZVA ∈ RCout . But spatial–temporal feature is directly aver-
aged asZTVA ∈ RCout . These three outputs are added as 
a whole for classification. In all, by above processing, 
more abundant meaningful information are retained in 

(6)

H(p, q) = −1
3
[

Γ
∑

i=1
p(ZVi)log(q(ZVi))

+
Γ
∑

i=1
p(ZTi)log(q(ZTi)) +

Γ
∑

i=1
p(ZTVi)log(q(ZTVi))]

each feature domain, while their feature dimensions are 
also reduced accordingly.

4 � Experimental results and their analysis

The proposed algorithm will be tested in this section, 
specifically, in Sect. 4.1, three related skeleton datasets, 
the NTU RGB+D 60 dataset [29], the NTU RGB + D 
120 dataset [30], and the Northwestern-UCLA dataset 
[31], are introduced. In Sect. 4.2, the details of experi-
mental settings and parameter settings are described. In 
Sect. 4.3, ablation experiments are conducted. Afterwards, 
in Sect. 4.4, our algorithm is compared with the latest 
methods, and the results are analyzed in depth. Finally, 
we give our conclusions and talk about limitations of our 
method in Sect. 5.

4.1 � Skeleton behavior recognition datasets

4.1.1 � NTU RGB + D 60

It contains 60 behavior classes, 40 person IDs, and a total 
of 56,880 RGB+D video samples, including RGB video, 
depth sequences, 3D skeleton data, and infrared frames. The 
skeleton information for each sample contains the 3D coor-
dinates of 25 body joints.

The NTU-60 dataset follows two different criteria for 
dividing the training set and the test set. The first is called 
Cross-View (X-View) camera, in which, the second and third 
cameras are divided as training sets with a total of 37,920 
samples, and the first camera is treated as test sets with a 
total of 18,960 test samples. The second criteria is divided 
by personnel ID, which is called Cross-Subject (X-Sub). 
According to ID, it is divided into training set and test set. 
The training set consists of 40,320 training samples and the 
test set consists of 26,560 test samples.

4.1.2 � NTU RGB + D 120

It is an extension of NTU RGB+D 60, which newly adds 
57,367 skeleton sequences representing 60 new behaviors 
for a total of 113,945 videos, and 120 categories from 106 
subjects and 32 camera settings.

There are also two different standards for dividing the 
training and testing sets in NTU-RGB+d120. The first type 
is Cross subject (X-sub120), which is allocated based on 
different subject groups. The training set contains 63,026 
samples, and the test set contains 50,922 samples. The sec-
ond method is Cross setting (X-set120): based on the camera 
ID, the samples are divided into a training set and a testing 
set, where even numbered cameras capture samples as the 
training set and odd numbered cameras capture samples as 
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the testing set. Specifically, the training set contains 5447 
samples, and the testing set contains 59,477 samples.

4.1.3 � Northwestern‑UCLA

The Northwestern-UCLA dataset consists of three Kinect 
cameras capturing video content simultaneously. It has a 
total collection of 1494 video clips covering 10 action cat-
egories. Each action was performed by 10 different subjects. 
According to the method provided in the literature [26] as 
an evaluation protocol: training data containing the first two 
cameras, test data including other camera.

4.2 � Experimental parameter Settings

All experiments are programmed under Pytorch framework 
and conducted with the above three data sets. That is, in 
terms of NTU RGB+D 60 and the NTU RGB+D 120 data-
set, the proposed model is trained with a total of 100 epochs 
with batch size of 32 and SGD as the optimizer, its learning 
rate is set to 0.1 at the beginning and then reduced by a fac-
tor of 10 at epochs {60, 90}, the weight decay is set to 5E-4. 
For Northwestern UCLA dataset, its batch size, epochs, 
learning rate, weight decay and reduced step are set to 64, 
110, 0.2, 4E-4 and {90, 100} respectively. In addition, we 
use an improved version of focal loss to suppress the weights 
of easy to classify samples, and increase the weights of dif-
ficult to classify samples, that is, when PT (positive truth) is 
close to 1, (1-PT) becomes smaller, the weight in calculating 
the loss is also smaller, thus we can reduce the influence of 
easily classified samples on the total loss.

4.3 � Ablation experiments

In this section, the Decouple Adaptive Graph Convolution 
module (DAGCN), Residual Multi-scale Temporal Convo-
lution module (RMTCN), and Spatio-Temporal Mean Pool-
ing module (STMP) are test to evaluate their performance 
respectively with behavior prediction accuracy. The NTU 
RGB+D 60 data set is chosen in the experiments, with 
X-View and X-subject criterion respectively to divide train-
ing and testing samples. The performances of ST-GCN [20], 
AGCN [7] and its counterpart of 2S-AAGCN [26] are com-
pared as baselines. The details are as follows.

4.3.1 � DAGCN Ablation test

We choose AGCN [7] as the baseline and replace its adap-
tive graph convolution kernel with our DAGCN. The experi-
ments are conducted on dataset of X-View and X-Subject 
respectively with streams of joint and bone (JB-streams), 
so the symbol of JB-AGCN-DAGCN (ours) is used to 
clearly express this testing conditions. For fair evaluations, 

we compare the similar ablation tests of 2S-AAGCN [26], 
which is also take AGCN [7] with JB-streams as the base-
line. Besides, we also compare our results with those of ST-
GCN [20]. The results as shown in Table 1.

In terms of X-View criteria, in order to verify the role of 
the pre-defined human structure based graph convolution 
kernel A0, we remove A0 from DAGCN, that is, DAGCN 
wo/A0, then it is transplanted into AGCN [20] baseline, 
symbolized as JB-AGCN-DAGCN wo/A0 in Table 1, its 
performance is better than JB-ST-GCN [20], but decreases 
by 1.1% in accuracy compared to JB-AGCN-DAGCN (ours) 
with kernel A0, which confirms the importance of shared 
topology A0 in enhancing explicit association information 
among joints.

Comparing to ablations of MS-AAGCN [26], whose adja-
cency matrices of the graph are divided into global graph 
B and individual graph C, its ablations are also based on 
AGCN [20] baseline with JB-streams. Specifically, JB-
AGCN-B [26] is the ablation for sub-graph of B, similarly, 
JB-AGCN-C [26] is the ablation of sub-graph of C, JB-
AGCN-BC [26] is for B+C; JB-AGCN-BC-G [26] is for 
B+αC, where the parameterized coefficient α is learned and 
updated under their gating mechanism, denoted as G. As 
shown in Table 1, JB-AGCN-DAGCN (ours) can surpass all 
the ablation results of MS-AAGCN [26]. Especially, better 
than JB-AGCN-BC-G [26] with 0.5% higher in accuracy, 
which is the optimal combinations of adjacency matrices of 
B and C under its gating mechanism G.

In terms of X-subject criteria, our JB-AGCN-DAGCN 
wo/A0 is better than ST-GCN [20], but inferior to JB-AGCN-
DAGCN (ours), which is with physically defined joint adja-
cent matrix A0. Similarly, comparing to ablations of MS-
AAGCN [26], JB-AGCN-DAGCN (ours) can perform better 
than the best ablation test of JB-AGCN-BC-G [26] with 
0.6% higher in accuracy.

By comparing above experimental results, it can be con-
cluded that our DAGCN module has a significant effect on 
improving the recognition of skeleton behavior, because it 

Table 1   DAGCN ablation tests based on 2S-AGCN baseline in the 
NTU RGB+D 60

Method X-View Acc (%) X-Subject 
Acc (%)

JB-ST-GCN [20] 88.3 81.5
JB-AGCN-B [26] 93.6 86.4
JB-AGCN-C [26] 93.5 86.1
JB-AGCN-BC [26] 94.1 87.0
JB-AGCN-BC-G [26] 94.4 87.4
JB-AGCN-DAGCN wo/A0 93.8 86.7
JB-AGCN-DAGCN (ours) 94.9 88.0
Our (DAGCN+RMTCN+STMP)-JB 96.4 90.7
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can effectively capture the rich internal spatial correlation 
among skeleton joints, even they are not physically con-
nected. At the same time, the use of basic topology A0 can 
further enhance the representation of explicit association 
information.

4.3.2 � RMTCN Ablation test

To verify the performance of our RMTCN in obtaining 
temporal features, AGCN [7] is again used as the baseline, 
its original temporal convolution (TCN) layer is replaced 
by our RMTCN, and the parameters and components of 
RMTCN are adjusted according to the experimental com-
parisons to gain a better recognition accuracy. Additionally, 
MS-AAGCN [26], as a better counterpart of AGCN [7], it 
also designed similar attention mechanism, named Spatial 
Temporal Channel attention module (STC), its adaptive 
adjacent matrices B+αC combining with STC ablation is 
also tested in joint and bone stream, which is denoted as JB-
AAGCN-STC [26] in Table 2, which is compared with our 
DAGCN+RMTCN combination. The detailed experimental 
results are analyzed as follows.

In terms of X-View criteria, for RMTCN with k = 3 
and k = 5 kernels, it can achieve the temporal view of 
the 7 × 1 and 13 × 1 respectively, when configuring their 
2-RMTCN-Pathway into AGCN [7] and cascading it after 
our DAGCN respectively, the accuracy can be improved 
obviously compared to that of single pathway. Further, our 
DAGCN+RMTCN does slightly better than AGCN [7] and 
its counterpart ablation of MS-AAGCN-STC [26].

In terms of X-subject criteria, similarly, 2-RMTCN-
Pathway configured with AGCN and DAGCN respectively, 
can do better than singe RMTCN pathway works. Notice-
ably, our DAGCN+RMTCN with 2-RMTCN-Pathway 
shows obvious superiority compared to AGCN [7] and its 

counterpart ablation of JB-AAGCN-STC [26], which is 0.7% 
and 1.2% respectively higher in accuracy.

4.3.3 � STMP Ablation test

Our STMP test is based on AGCN [7] baseline with joint 
and bone streams in NTU RGB+D 60, also 2-stream JB-
AAGCN [26] and ST-GCN [20] are compared as shown in 
Table 3.

Specifically, in terms of X-View criteria, the classifi-
cation accuracy of AGCN+STMP and DAGCN+STMP 
have been improved significantly by replacing their 
previous global averaging pooling layer with our spa-
tiotemporal averaging pooling module (STMP). In par-
ticular, the recognition accuracy of our proposed model 
DAGCN+RMTCN+STMP is nearly 1.2% raised compared 
with that of DAGCN+RMTCN+MP (mean pooling), which 
is a great improvement. Also, compared to 2-stream JB-
AAGCN [26], our DAGCN+RMTCN+MP, without STMP 
module, is inferior to it with 0.8% lower in accuracy, but our 

Table 2   RMTCN ablation tests 
in baseline AGCN in the NTU 
RGB + D 60

NTU RGB + D60

Model factorized pathway X-View Acc (%) X-subject 
Acc (%)

 JB-AGCN [7] 95.1 88.5
 JB-AAGCN-STC [26] 95.1 88.0

AGCN + RMTCN (factorized pathway)
 With RMTCN ( k = 3, d = (1, 2)) 93.8 87.2
 With RMTCN ( k = 5, d = (1, 2)) 94.0 87.7
 With 2 RMTCN pathways k = (3, 5), d = (1, 2) 94.3 88.2

DAGCN + RMTCN (factorized pathway)
 With RMTCN ( k = 3, d = (1, 2)) 94.0 88.7
 With RMTCN ( k = 5, d = (1, 2)) 94.3 89.4
 With 2 RMTCN pathways k = (3, 5), d = (1, 2) 95.2 90.2

Table 3   STMP Experiment Comparisons with MP

Method X-view Acc (%) X-subject 
Acc (%)

ST-GCN [20] 88.3 81.5
JB-AGCN [7] 95.1 88.5
JB-AGCN [7]+STMP 95.3 89.2
JB-DAGCN 93.9 88.1
JB-DAGCN+STMP 94.1 88.7
JB-AAGCN [26] 96 89.4
JB-(DAGCN+RMTCN+MP) 95.2 90.2
JB-(DAGCN+RMTCN+STMP) 96.4 90.7
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DAGCN+RMTCN+STMP is better than it with a rising of 
0.4% in accuracy.

In terms of X-subject criteria, similarly, AGCN+STMP 
and DAGCN+STMP show quite better performances than 
they do with the previous global averaging pooling layer. 
Also, our 2-stream of DAGCN+RMTCN with STMP is 
0.5% better than it without STMP. Compared to JB-AAGCN 
[26], our 2-stream of DAGCN+RMTCN+STMP is 1.3% 
raised in accuracy, which is a significant improvement.

4.4 � Comparisons with other advanced algorithms

At present, most advanced skeleton-based methods gener-
ally adopt the four-streamed input framework, namely joint, 
joint motion, bone, bone motion. So we compare the per-
formances with them on the following three data sets, NTU 
RGB+D60, NTU RGB+D120, and NW-UCLA with input 
of four streams, but also partially including some methods 
with two-stream input. The details are shown as follows.

4.4.1 � Performance comparisons on NTU‑RGB + D60

Accuracy statistics of various mainstream algorithms are 
displayed in Table 4, which are performed on X-Sub and 
X-View sub-data sets of NTU RGB+D60 respectively. 
In order to make a thorough comparison, we test our 
(DAGCN+RMTCN+STMP) method correspondingly in 
single-stream, double-stream and four-stream, as indicated 
in Table 4 with the different number of ensembles.

Compared with similar two-streamed algorithms [10, 19, 
20, 33–34], and even the well-known methods of 2 s-AGCN 
[7], 2S-AAGCN [26], and newly published methods of [35, 
36], Ours(2 s) performs better than all of them.

In terms of four-streamed methods, ours is better than 
[8, 26, 37, 38, 42, 36] in X-Sub tests, and also superior to 
[26, 38, 39, 41, 42] in X-View test, while equals to [37, 36] 
in X-View test. It is noteworthy that methods of [40, 43, 
44] are all better in both X-Sub and X-View tests in NTU-
RGB+D60, but they are all inferior to ours in both X-Sub 
and X-View tests in NTU-RGB+D120 as shown in Table 5, 
the reasons are analyzed as follows.

Table 4   Comparisons on NTU-
RGBD 60 with the state-of-
the-arts

NTU-RGB+D60

Methods Year Mode X-Sub Acc (%) X-View Acc (%)

ST-GCN [20] 2018 2 ensemble 81.5 88.3
Ind-RNN [32] 2018 2 ensemble 81.8 88.0
HCN [33] 2018 2 ensemble 86.5 91.1
2 s-AGCN [7] 2019 2 ensemble 88.5 95.1
AGC-LSTM [19] 2019 2 ensemble 89.2 95.0
2S-AAGCN [26] 2020 2 ensemble 89.4 96
SGN [34] 2020 2 ensemble 89.0 94.5
ST-TR [10] 2021 2 ensemble 89.9 96.1
SNAS-GCN [35] 2023 2 ensemble 89.0 95.0
MADT-GCN [36] 2024 2 ensemble 89.9 96.1
Shift-GCN [37] 2020 4 ensemble 90.7 96.5
MS-AAGCN [26] 2020 4 ensemble 90.0 96.2
DC-GCN+ADG [8] 2020 4 ensemble 90.8 96.6
PA-ResGCN-B19 [38] 2020 4 ensemble 90.9 96.0
Dynamic GCN [39] 2020 4 ensemble 91.5 96.0
MDKA-GCN [40] 2023 4 ensemble 92.1 96.8
EfficientGCN [41] 2023 4 ensemble 91.7 95.7
LKA-GCN [42] 2023 4 ensemble 90.7 96.1
MGCF-Net [43] 2024 4 ensemble 92.7 96.8
MSS-GCN [44] 2024 4 ensemble 92.7 96.9
MADT-GCN [36] 2024 4 ensemble 90.4 96.5
Ours (Joint-AGCN) Joint 89.2 95.3
Ours (Bone-AGCN) Bone 89.0 95.0
Ours(2 s) 2 ensemble 90.7 96.4
Ours(4 s) 4 ensemble 91.4 96.5
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The method of [40] aimed to fully explore the connections 
between non-adjacent joints. Specifically, they proposed a 
dilated convolution attention module to introduce high-level 
semantics (joint type and frame index) of joints to enhance 
the spatial feature representation ability. While for temporal 
feature boosting, it designed a pyramid partition attention 
module applied to two cascaded TCNs (Temporal Convolu-
tion Networks). In terms of the method [43], it proposed a 
multi-grained clip focus network (MGCF-Net). Namely, a 
skeleton sequence was divided into multiple clips, each clip 
was encoded with spatial temporal convolution layers. Fur-
ther, the action information of intra-clip and inter-clip were 
explored based on multi-headed self-attention mechanism. 
As for the scheme of [44], a multi-scale structural graph 

convolutional network (MSS-GCN) was designed, which 
could learn a structural graph topology to enhance feature 
representation and capture semantic correlation between ver-
tices. Besides, a graph weight annealing (GWA) method was 
proposed to adjust weights between root and neighboring 
vertices, aiming to mitigate the problem of over-smoothed 
feature extraction in GCN-based methods. Afterwards these 
spatial features were undergone a spatio-temporal blocks for 
action predicting.

In short, comparatively, the above three methods work 
similarly as our modules of DAGCN and RMTCN do in 
enhancing the spatial temporal feature extraction, but dif-
ferently, we have additional STMP module, which can fur-
ther boost their discriminability. So, in the more challenging 
dataset of NTU-RGB+D120, our method performs better 
than [40, 43, 44], which is more persuasive than tests in 
NTU-RGB+D60, and proves our method is more robust and 
powerful in recognizing ambiguous actions.

4.4.2 � Performance comparisons on NTU‑RGB + D120

Experimental comparisons are made on X-Sub and X-Set 
subsets of NTU RGB+D120 respectively, as shown in 
Table 5. Because NTU RGB+D120 dataset is new, the most 
recent algorithms are four-streamed experiments, compared 
with the results of the existing publicly available two-flow 
experiments [7, 10, 28, 34, 36], the accuracy of our model 
with two streams is significantly better than all of them.

In terms of four-ensembled mode testing, only the method 
[49] is 0.1% higher in accuracy than ours in both X-Sub and 
X-Set testing, while the rest sixteen methods in Table 5 are 
all inferior to our proposed algorithm. The merits of method 

Table 5   Comparisons on NTU-RGBD 120 with the state-of-the-arts

NTU-RGB+D120

Methods Year Mode X-sub Acc (%) X-set Acc (%)

2S-AGCN [7] 2019 2 ensemble 82.9 84.9
SGN [34] 2020 2 ensemble 79.2 81.5
MS-G3D [28] 2020 2 ensemble 86.9 88.4
ST-TR [10] 2021 2 ensemble 82.7 84.7
MADT-GCN 

[36]
2024 2 ensemble 85.4 87.4

4S-Shift-GCN 
[37]

2020 4 ensemble 85.9 87.6

DC-
GCN+ADG 
[8]

2020 4 ensemble 86.5 88.1

DSTA [27] 2020 4 ensemble 86.6 89.0
PA-ResGCN-

B19 [38]
2020 4 ensemble 87.3 88.3

Dynamic GCN 
[39]

2020 4 ensemble 87.3 88.6

MST-GCN [45] 2021 4 ensemble 87.5 88.8
CTR-GCN [46] 2021 4 ensemble 88.9 90.6
TA-CNN [47] 2022 4 ensemble 85.4 86.8
FG-STFormer 

[48]
2022 4 ensemble 89.0 90.6

Info-GCN [49] 2022 4 ensemble 89.4 90.7
EfficientGCN 

[41]
2023 4 ensemble 88.3 89.1

LKA-GCN [42] 2023 4 ensemble 86.3 87.8
MDKA-GCN 

[40]
2023 4 ensemble 87.9 89.4

GSTLN [50] 2023 4 ensemble 88.1 89.3
MGCF-Net [43] 2024 4 ensemble 88.7 90.4
MSS-GCN [44] 2024 4 ensemble 88.9 90.6
MADT-GCN 

[36]
2024 4 ensemble 86.5 88.2

Ours(2 s) 2 ensemble 87.2 89.1
Ours(4 s) 4 ensemble 89.3 90.6

Table 6   Comparisons on NW-UCLA with the state-of-the-arts

NW-UCLA

Methods Year Mode Acc (%)

2S-AGC-LSTM [19] 2019 2 ensemble 93.3
TS-LSTM [51] 2021 2 ensemble 89.2
4S-Shift-GCN [37] 2020 4 ensemble 94.6
DC-GCN+ADG [8] 2020 4 ensemble 95.3
CTR-GCN [46] 2021 4 ensemble 96.5
Info-GCN [49] 2022 4 ensemble 96.6
TA-CNN [47] 2022 4 ensemble 96.1
FR Head [54] 2023 4 ensemble 96.8
GSTLN [50] 2023 4 ensemble 94.8
MSS-GCN [44] 2024 4 ensemble 96.6
MATR-GCN [52] 2024 4 ensemble 96.3
CSR-Net [53] 2024 4 ensemble 96.5
Ours(2 s) 2 ensemble 94.1
Ours(4 s) 4 ensemble 96.4
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[49] was derived based on its complex network. Firstly, it 
introduced a learning objective based on information-bottle-
neck theory, which could encode implicit and general latent 
representation from a sequence of the skeleton, this bridged 
the input-level physical information and action semantics. 
Secondly, a self-attention based graph convolution mod-
ule was designed in encoding stage, aiming to extract the 
intrinsic graph structure among skeleton joints. Lastly, this 
method proposed to utilize the relative positions informa-
tion between joints, and forming a multi-modal skeleton 
representation, which could further provide complementary 
spatial information of a joint and drastically improved its 
recognition performance.

4.4.3 � Performance comparisons on NW‑UCLA

The experimental comparisons are performed on the NW-
UCLA dataset, as shown in Table 6. Ours(2 s) is obviously 
better than two-flow methods [19, 51]. In terms of four-
streamed mode, our method is obviously better than [8, 37, 
47, 50], and slightly superior to [52]. On the other hand, 
methods [46, 49, 44, 53] are slightly better than ours with 
0.1%-0.2% higher in accuracy. Noteworthily, the method 
[54] is with 0.4% better in accuracy than ours, the reasons 
are analyzed as follows.

In the method [54], a Feature Refinement module (FR 
Head) was designed to improve the recognition performance 
of ambiguous actions. Specifically, contrastive learning 
was adopted to constrain the distance between confident 
action samples and ambiguous action samples. Besides, the 
raw feature map was decoupled into spatial and temporal 
components for efficient feature enhancement. Finally, this 
module was imposed on different stages of GCNs to build 
a multi-level refinement for an efficient and robust skeleton 
representations.

In short, the performance gap between the superior meth-
ods and ours is not large, which is implicit that our model 
still has potential and room for improvement. we could 
explore optimizing model architecture, parameter tuning, 
and feature extraction to improve our performance on the 
NW-UCLA dataset.

4.5 � Visual analysis of adjacency matrix of DAGCN

The core of skeleton data behavior recognition based on 
GCN is to reasonably construct adjacency matrices, aiming 
to fully extract the spatial information of multi-level skel-
eton joints. Taking walking behavior in the NTU RGB+D60 
data set as an example, in Fig. 5, we show the visualization 
results of three groups of typical adjacency matrices gener-
ated by our DAGCN algorithm under the multi-head self-
attention mechanism.

Since each skeleton sample in the NTU RGB+D60 data-
set consists of 25 body joints, so the adjacency matrix is of 
25 × 25. Among them, Fig. 5b is the adjacency matrix based 
on the physical structure of the human body joints, which 
highlights the strong correlation between two physically 
connected joints; while on the diagonal, the auto-correlation 
of each joint is weak.

In contrast, from another point of view, we show a quite 
different adjacency matrix in Fig. 5a, in which, the self-cor-
relation of a joints is high, while the cross-correlation among 
its disconnected joints is weak. Only sparsely appeared in 
Fig. 5a, there are several strong cross-association, such as, 
between the 11th joint and the 24th joint, the 22th and the 
7th, the 0th and the 16th.

The more sparsely strong cross-association between dis-
connected joints is shown in Fig. 5c, indicating that at the 
current attention level, the average cross-correlation level 

(a)                    (b)                 (c)

Fig. 5   Visualization of Adjacency Matrices constructed with DAGCN
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is very weak, only a few disconnected joints are of certain 
strong associations.

In short, DAGCN can obtain different adjacency matrices 
by learning multiple self-attention levels, which can give 
a comprehensive representation of behavior dynamics and 
posture shifting from one to another.

4.6 � Visualization of key joints exchanging 
in different postures

As shown in Fig. 6, the weights of the adjacency matrix 
are normalized in order to visualize the changes of differ-
ent key joints under different postures while in walking 
action, that is, (a) and (b) are two gestures of “walking”, 
their important joints are marked with different sized solid 
circles, the bigger, the more important. The joins in the red 
box in Fig. 6b can clearly display the differences from those 
correspondingly in Fig. 6a. For an example, when a person 
steps forward with the left foot (left ankle joint), usually 
his right hand (right twist joint) also will wave forward to 
ensure the balance of the body, as shown in Fig. 6b, these 
two joints cooperate each other, they have strong associa-
tion, also they are key joints. Anyway, the visualization of 
key joints shifting indicates the power of diverse adjacency 
matrices to explore different level of information hidden in 
dynamic actions.

5 � Conclusion and future work

In this section, there are two parts, firstly, we make an thor-
ough comparisons with baseline method AGCN [7] and its 
counterpart method [26] to further sum up our conclusion. 
Secondly we talk about the our limitations and future work.

5.1 � Similarities and differences among our method 
with similar baseline algorithms

For the baseline methods of AGCN [7] and its counter-
part MS-AAGCN [26], We have talked about their theory, 
advantages and disadvantages in Sect. 2 of related work, and 
made recognition accuracy comparisons with our method in 
Sect. 4 of experimental results and their analysis. Here, we 
sublimate their main similarities and differences.

They all propose a kind of method to design adaptive 
adjacent matrices, wish to solve the problems in existing 
GCN-based methods, that is, the topology of the graph is 
set manually, and it is fixed over all layers and input sam-
ples. This surely is not optimal for the hierarchical GCN 
and diverse samples in action recognition tasks.
AGCN [7] and MS-AAGCN [26] are counterparts 
proposed by the same authors, their adaptive adjacent 
matrices consist of three sub-matrices, named A, B, C. 
Among them, sub-matrix A is defined with the physi-
cal structure of the human body; sub-matrix B is com-
pletely data-driven learned according to the training 

(a)                           (b)  

Fig. 6   Visualization of key joints shifting in the walking action
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data, which can learn graphs fully targeted to the rec-
ognition task; sub-matrix C is a data-dependent graph 
which learn a unique graph for each sample. For AGCN 
[7], their final adaptive adjacent matrix is the sum of 
the three sub-matrices; but for MS-AAGCN [26], they 
proposed a gating mechanism to fuse B + �C , where � 
is unique for each layer and is learned in the training 
process.
Similarly, our adaptive adjacent matrices contain a 
matrix A0, which is similar to the above sub-matrix A 
determined with the physical structure of the human 
body. But different from them, we use multi-head self-
attention mechanism to generate more than three adap-
tive adjacent matrices, actually 64 matrices are applied, 
which can roundly discover more potential correlations 
among skeleton joints.
On the contrary, we do not have sub-matrix B, which 
is a global graph completely learned according to the 
training data. In the view of our points, sub-matrix B 
is general and may benefit for all types of actions. But 
in our method, we have matrix A0, which can work as a 
general and basic global graph to guide a better spatial 
feature extraction.
Beside, we have RMTCN and STMP modules, while 
MS-AAGCN [26] contains a spatial–temporal channel 
attention module (STC-attention module), which helps 
their model pay more attention to important joints, 
frames and features. We think their STC-attention mod-
ule will be very helpful to raise our accuracy if replac-
ing our RMTCN module. On the other hand, our STMP 
module may bring about improvements if configured 
into MS-AAGCN.

5.2 � Limitations and future work

This algorithm has the following shortcomings. Firstly, 
the overall network structure determines that the extrac-
tion of behavioral features of the skeleton data is carried 
out asynchronously, that is, the spatial features are extracted 
by DAGCN module firstly, and then the inter-frame time 
sequence features are extracted by RMTCN. This results in 
computational inefficiency.

Further, compared with the spatial characteristics, inter-
frame temporal feature is more important to differ action 
categories, however, this asynchronous cascaded structure 
will inhibit the overall temporal feature capturing. Besides, 
our accuracy needs to be improved. it is partially due to 
the spatial feature description, determined by the number of 
self-attention heads setting in DAGCN module empirically; 
also, inspired by spatial–temporal channel attention module 
(STC-attention module) proposed in MS-AAGCN [26], our 
RMTCN can be optimized to more focus on discriminative 

characteristics for a better action representation. So, our 
future work is to improve DAGCN, especially RMTCN, for 
enhancing the none local feature extraction and also gradu-
ally optimize its calculation cost.
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