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Abstract
This paper proposes a lightweight weld defect-recognition algorithm based on a convolutional neural network that is 
appropriate for weld defect recognition in industrial welding. Specifically, the developed scheme relies on the original 
SqueezeNet model. However, we improve the fire module to reduce the model’s parameter cardinality, introduce the ECA 
module to strengthen the learning of feature channels and improve the feature extraction ability of the overall model. The 
experimental results highlight that our algorithm’s average recognition rate on the overall defects of welding depressions, 
welding holes, and welding burrs reaches 97.50%. Note that although our model requires substantially fewer parameters, 
its recognition effect is significantly improved. Our algorithm’s feasibility is verified on the test data and challenged against 
current weld defect identification algorithms, demonstrating its enhanced identification role and application prospect.
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1  Introduction

Welding is often used in industrial processes and is widely 
used in railways, bridges, chemical equipment manufacturing 
[1], and other fields. With the continuous improvement of 
industrial production levels, the requirements for welding 
quality are becoming more and more stringent. However, 
due to the limitation of the working environment, various 
welding defects such as cracks, pores, and cracks are 
inevitably produced [2]. Welding defects can lead to 
significant safety risks, so identifying them is important.

Currently, the mainstream defect identification methods 
include traditional and deep learning methods [3]. The tradi-
tional method classifies defects based on statistical informa-
tion and image features [4], involving defect segmentation, 
feature extraction, feature selection, and defect identification 
[5]. Weld defect segmentation [6] mainly extracts the defect 
areas, such as the improved OTSU method [7]. Feature 
extraction obtains feature sets that describe defects, such as 
edge features, area-based features, and texture features [8], 
and feature selection mainly removes redundant features and 

noise while retaining useful features. Defect identification 
involves identifying the type and nature of defects and is the 
core stage of the entire defect identification system.

Defect identification mostly adopts multi-source infor-
mation fusion decision-making [9], Bayesian [10], support 
vector machines, and fuzzy logic. The traditional defect rec-
ognition method aims to determine the defect’s target point 
within the image by extracting the feature points and geo-
metric relationships while the external environment is rela-
tively fixed. For instance, Zhou et al. [11] used the Hough 
transform to identify welds, and Xu [12] developed a SIFT 
feature point extraction method to identify the weld. How-
ever, traditional defect identification methods suffer from 
poor generalization ability. Thus, it is necessary to increase 
the cost of the welding process to accurately cooperate with 
the visual sensor and enhance the welding process accuracy. 
However, this cooperation has extremely high requirements 
for the working environment, and once its changes slightly, 
it must be remodeled, adjusted, and calibrated.

In recent years, deep learning methods based on convo-
lutional neural networks (CNNs) have become a research 
hotspot in image processing and pattern recognition 
[13–15]. Unlike the traditional recognition method, a CNN 
can extract highdimensional nonlinear graph features with 
good stability and is less susceptible to interference from 
external local conditions. As a feedforward neural network, 
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a CNN avoids complex pre-processing, which is evident in 
traditional recognition algorithms, by employing the original 
image as the model’s input and extracting its features. Due to 
their high recognition efficiency and strong data representa-
tion ability, CNNs have been widely used in various fields 
[16–18]. For example, Khumaidi et al. [19] utilized a CNN 
to classify weld defects in images obtained by a webcam. 
Although the final accuracy reached 95.8%, this method 
required large sample size to achieve high precision. Jiao 
et al. [20] extracted 15 characteristic parameters that can 
be used to characterize the weld surface defect status from 
the weld image and combined them with a BP neural net-
work to identify the internal weld surface defect. However, 
the overall recognition accuracy (91%) was inadequate for 
actual industrial production. Zhou et al. [21] proposed an 
improved U-Net robust weld recognition algorithm based 
on fusion attention mechanism. This method improved the 
feature fusion and loss function, and added a feature classifi-
cation structure to output the corresponding weld type name. 
Experimental results show that this method achieved a weld 
recognition accuracy of 95.6%. However, this method is 
mainly used for weld detection, and its effectiveness in weld-
ing defect recognition remains to be explored. Zhang [22] 
proposed a welding defect identification algorithm based on 
principal component analysis to extract crack defects that 
may occur in the welding area of long-distance pipelines. 
To enhance recognition accuracy, CNN has become deeper, 
and some key technologies have been proposed, such as skip 
connection (SC) [23] and batch normalization (BN) [24], to 
ease training such deep neural networks.

In classification networks, common deep learning 
networks are VGG-16 [25], PReLU-nets [26], and ResNet 
[27]. Although these networks attain a high recognition 
accuracy, their parameters and calculations are excessive 
and thus inappropriate for resource-constrained devices. 
Moreover, in actual welding, the hardware resources used in 
the weld defect identification network model are limited, and 
therefore deploying such a network must consider computing 
power, power, and hardware storage space while ensuring a 
fairly high recognition accuracy. Therefore, how to compress 
the deep CNN model’s computational complexity and 
storage space has become a current research hotspot. Indeed, 
Han et  al. [28] used pruning, clustering, and Hoffman 
coding to compress the mode’s storage space. Nevertheless, 
applying such a network in the mobile terminal of the 
industrial site requires the model to be lightweight while 
attaining high recognition accuracy, reducing the calculation 
burden, and maximizing the computing power requirements.

Spurred by the above analysis, this study improves 
SqueezeNet to have fewer parameters, higher recognition 
accuracy and does not require many training samples to 
identify weld defects. The improved SqueezeNet model 
performance is analyzed and compared with other existing 

defect classification algorithms considering precision and 
accuracy. The results further verify the effectiveness of the 
proposed model.

2 � SqueezeNet network model

The SqueezeNet model is a lightweight network model 
proposed by Iandola et al. [29] in 2016, based on AlexNet. 
This paper shrinks the network’s convolution kernel and uses 
the mean pooling layer instead of the fully connected layer 
[30]. These modifications reduce the parameter cardinality 
of the original AlexNet to about 1/50 while ensuring the 
recognition accuracy and the model’s memory occupation 
is only 4.8 MB.

Figure 1 illustrates the SqueezeNet model, which mainly 
comprises a convolutional layer (Conv), a max pooling 
layer (Maxpool/2), a fire module (Fire) and a global average 
pooling (GAP). When the model receives an input image, it 
initially passes through the first convolutional layer, which 
utilizes 96 7 × 7 convolution kernels for preliminary feature 
extraction. This is immediately followed by a max pooling 
layer that reduces the spatial dimensions of the feature map. 
Subsequently, the image progresses through several "Fire" 
modules in sequence. Figure 2 shows the specific structure 
of the fire module highlighted in blue in Fig. 1. The Fire 
module primarily consist of squeeze and expand layers. The 
squeeze layer employs a 1 × 1 convolution kernel to decrease 
the input feature channels, while the expand layer substitutes 
the 3 × 3 convolution kernels with 1 × 1 kernels, effectively 
reducing the model’s parameter count. Additionally, a max 
pooling layer is inserted after certain Fire modules to fur-
ther reduce the spatial size. Following the final Fire module, 
the network includes a large convolutional layer with 1000 
output channels, which addresses the image classification 
task for 1000 categories. At the network’s terminus, a global 
average pooling layer (GAP) highlighted in orange replaces 
the traditional fully connected layer. This layer calculates 
the average value of each feature map and produces a fixed-
size output, which not only decreases the model's parameter 
count but also aids in reducing the risk of overfitting. Finally, 
the softmax layer transforms the output of the global average 
pooling layer into a probability distribution, predicting the 
likelihood that the image belongs to each category.

3 � Proposed method

This paper improves the classic lightweight network 
SqueezeNet to build a lightweight CNN model for weld 
defect recognition. The major improvements are the 
following. The first is to improve the fire module of 
the SqueezeNet model and apply depthwise separable 
convolution to the fire module to reduce the number of 
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parameters further. Second, the residuals are introduced 
in the SqueezeNet to solve the deep network degradation 
problem. Third, the ECA channel attention mechanism 
module is introduced to extract important features and 
improve the model’s recognition efficiency.

3.1 � Improvements to the fire module

In 2017, Google proposed a lightweight network called 
MobileNet, which has now evolved to v3 [31]. In version 
v1, the concept of Depthwise Separable Convolution was 
proposed, which comprises Depthwise Convolution (DW 
Conv) combined with Pointwise Convolutions (PW Conv). 
The Fig. 3 depicts the main steps of depthwise separable 
convolution, including two main stages: depthwise con-
volution and pointwise convolution. Initially, depthwise 
convolution operates on each channel of the input feature 
map separately, using separate convolution kernels, and 
then the outputs of these convolution kernels are spliced 
together to form the final output. This approach avoids the 
need to convolve on all input channels in standard convolu-
tion, significantly reducing the number of parameters and 
computational effort. Following the depthwise convolution, 
batch normalization is applied to enhance training efficiency 
and stability. The ReLU activation function is subsequently 
used to introduce nonlinearity into the network, enabling the 
model to capture more complex features. Next is pointwise 
convolution, using a 1 × 1 convolution kernel to process the 
output of the depthwise convolution. The primary purpose of 
this stage is to amalgamate the features from various chan-
nels produced during the depthwise convolution. Similar to 
the earlier stage, each pointwise convolution is followed by 
batch normalization and ReLU activation to further stabilize 
network behavior and bolster its nonlinear properties.

The Fire module is the core of SqueezeNet and uses light-
weight strategies to reduce the network’s parameters. The 
Fig. 4a below reveals that the traditional Fire module mainly 
consists of two layers of convolution: a squeeze layer using a 
1 × 1 convolution kernel and an expand layer using a mixture 
of 1 × 1 and 3 × 3 convolution kernels [32]. A ReLU activa-
tion function is added after each convolution layer to give 
the model stronger representation capabilities and introduce 
nonlinearity.

By replacing the convolution kernel in the Fire module, 
the model’s parameters are reduced to a certain extent. 
However, as SqueezeNet becomes deeper due to employing 
many Fire modules, the 3 × 3 convolution will still produce 
many parameters, and thus the Fire module must be 
improved further.

In Fig. 4b, the new Fire module (N-Fire) has two major 
changes compared to the old. First, the BN (Batch Normali-
zation) layer is added before the original ReLU activation 
function, which can stabilize the gradient changes of each 
layer and effectively converge the network during the train-
ing process. The second modification adopts the MobileNet 
concept and replaces the original 3 × 3 standard convolu-
tion of the expanding layer in the Fire module with 3 × 3 
Depthwise Separable Convolution. It can not only ensure the 

Fig. 1   The network architecture of SqueezeNet
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performance of the model, but also significantly reduce the 
number of parameters of the SqueezeNet model.

3.2 � Use of residual structures

The original SqueezeNet model is a simple tandem structure 
similar to the VGG network, aiming to overcome the 
gradient vanishing and gradient explosion problems caused 

by deepening the network. In order to assist the network’s 
recognition accuracy from reaching saturation or even 
suffering from a recognition accuracy decrease, a residual 
structure is introduced in SqueezeNet.

Figure 5 depicts the architecture of a residual block, 
commonly used in deep neural networks to address the van-
ishing gradient problem. The input X first passes through 
a weight layer followed by ReLU activation, forming the 
function F(X). It then proceeds to a second weight layer. 
The output of this sequence is added to the original input X, 
forming F(X) + X, which then passes through another ReLU 
activation. The addition of X directly to the output of the 
network layers allows the gradient to flow directly through 
the network, thereby preserving the gradient magnitude and 
improving training efficiency.

3.3 � Use of ECA modules

The channel attention mechanism plays an important 
role in improving the performance of deep convolutional 
neural networks. The ECA module is a channel attention 
mechanism, which is an ultra-lightweight attention module. 
By learning feature channels, each channel is divided into 
different attention values. Then the network can reasonably 
allocate computing resources and improve the model’s 
accuracy given that number of small parameters increases.

Fig. 2   Structural diagram of fire 
module in SqueezeNet

Fig. 3   Flowchart of depthwise separable convolution
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The ECA module structure diagram is shown in Fig. 6, 
where the ECA module uses a 1 × 1 convolutional layer 
directly after the global average pooling layer, and the 
fully connected layer is removed. The module avoids 
dimensionality reduction and effectively captures cross-
channel interactions. Although the ECA modules involve 
only a few parameters, they achieve good results. The ECA 

module realizes cross-channel information interaction 
through a one-dimensional convolution, and the convolution 
kernel size adapts to changes through a function. Given 
channel dimension C, the kernel size is adaptively 
determined by K:

where � and b are hyperparameters.
Figure 6 depicts the implementation process of the ECA 

module. First, the input feature map passes through the 
global average pooling layer (GAP), and the feature map 
changes from the matrix [H,W,C] to the vector [1,1,C]. 
Then, the adaptive one-dimensional convolution kernel 
size K is calculated according to the number of feature 
map channels. After obtaining the K value, it is used in the 
one-dimensional convolution to obtain the weight of each 
feature map channel. Finally, the normalized weight and the 
original input feature map are multiplied channel by channel 
to generate a weighted feature map. In this paper, the � and 
b are set to 2 and 1 respectively, so the convolution kernel 
K is equal to 3.

3.4 � Improved SqueezeNet

Figure 7a illustrates the final improved SqueezeNet net-
work model, which contains the N-Fire module, residual 
structure and ECA module. The input feature map initially 
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Fig. 4   Structural comparison of fire module and N-Fire module

Fig. 5   Schematic diagram of the residual structure
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Fig. 6   ECA module structure diagram

Fig. 7   Structure of the improved SqueezeNet
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passes through a convolutional layer (Conv1), followed by 
a max pooling layer (Maxpool/2). It then passes through 
two blocks (Resblock1 and Resblock2), each followed by 
a max pooling layer to reduce the size of the feature map. 
The Resblock2 is followed by an ECA module to boost the 
model's ability to recognize important features by adjusting 
the weights of channel features, thereby enhancing overall 
performance. The subsequent process includes an N-fire 
module (N-Fire9), a convolutional layer (Conv10), and a 
global average pooling (GAP), and finally the classification 
result is obtained through a Softmax layer.

As shown in Fig. 7b, Resblock1 consists of three N-Fire 
modules (N-Fire2, N-Fire3 and N-Fire4), each of which is 
connected by a ReLU activation function. The introduction 
of the N-Fire module significantly reduces the model's 
parameter count. The green line in the figure represents the 
residual connection, which directly connects the input and 
output of the N-Fire module. This design helps alleviate 
the gradient vanishing problem in deep networks and 
ensures that the gradient can be effectively propagated in 
the network.

The structure of Resblock2 is shown in Fig. 7c. It is 
similar to Resblock1 and contains four modules: N-Fire5, 
N-Fire6, N-Fire7, and N-Fire8. Each module is followed 
by a ReLU activation function. The residual connection 
also directly connects the input of the N-Fire module to its 
output, improving the ability to learn complex functions 
while maintaining the depth and efficiency of the network.

4 � Datasets and evaluation indicators

4.1 � Experimental datasets

The Institute of Computer Application of Liaoning Nor-
mal University creates the weld defect data set used in the 
following experiments. The dataset is a linear structured 
light weld dataset made by a laser sensor and the triangu-
lar ranging principle [33]. The dataset images are divided 
into four categories: welding depressions, welding holes, 
welding burrs, and no defects. Figure 8 presents a struc-
tured light weld under the four defect types. Among them, 
welding depressions are caused by improper heat control; 
welding holes are caused by trapped gas or incomplete mate-
rial evaporation; welding burrs are sharp, protruding metal 
pieces or spatters formed due to uneven metal melting and 
solidification.

Given that the original dataset is small and the number 
of categories is inconsistent, the balance of categories is 
low, and therefore the dataset must be enriched. To ensure 
the effectiveness of subsequent image classification and 
recognition training, we employ the same data augmentation 
method as described in reference [33]. For the image with 

no specific defect types, symmetry and rotation were used 
to enlarge the image data. For the image with the hole type, 
the image data were enlarged by rotating the origin of the 
image 90° to the right. Following augmentation, the dataset 
comprises a total of 2000 images, evenly distributed with 
500 images in each of the four categories.

The image dataset is divided into a training, validation, 
and test set using an 3:1:1 ratio. The image data of the 
training set is used to train the model, and the image data 
of the validation set is used to predict the model. During 
training, images of the input model are pre-processed using 
Mosaic data enhancement and adaptive image scaling.

4.2 � Evaluation indicators

This article employs a range of evaluation metrics to assess 
the model's performance, including Precision, Accuracy, 
Recall, and F1-score. Additionally, to evaluate the model's 
efficiency, FLOPs and Parameters are also used. The 
classification of real samples involves two types: positive 
and negative samples. TP (True Positive) indicates that 
positive samples are correctly identified as positive, while 
TN (True Negative) denotes that negative samples are 
correctly identified as negative. Conversely, FP (False 
Positive) occurs when negative samples are incorrectly 
classified as positive, and FN (False Negative) refers to 
instances where positive samples are mistakenly identified 
as negative.

Precision is the proportion of correctly identified positive 
samples among all samples that are predicted to be positive. 
The formula for calculating precision is as follows:

Accuracy, which is the percentage of all correctly 
predicted samples in the total sample, is calculated as 
follows:

where TP + TN is the sum of the correctly predicted positive 
and negative classes. Generally, the higher the accuracy, the 
better the model’s classification effect.

Recall, which is the percentage of the positive samples 
that are correctly identified, is calculated as follows:

F1-score is a classification metric where the model’s 
harmonic average of accuracy and recall is calculated as 
follows:

(2)Precision =
TP

TP + FP

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Recall =
TP

TP + FN
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5 � Results and analysis

This chapter uses the weld dataset that is enrichment. The 
training set, a subset of the entire dataset, is used to train the 
model, and the validation is used to make the predictions 
after the training is completed and verify the performance 
of the improved SqueezeNet network model. The obtained 
performance is compared using the metrics presented in 
Sect. 4.2.

5.1 � Experimental environment and parameter 
settings

Training the CNN involves many calculations and 
configuring the corresponding deep learning environment. 

(5)F1 − score = 2 ∗
Precision ∗ Recall

Precision + Recall

Thus, the following experiments are conducted on a cloud 
server, using an Intel Xeon Platinum 8225C CPU with 43G 
memory and an NVIDIA RTX2080Ti GPU with 11G video 
memory. In the CUDA environment, the PyTorch deep 
learning framework PyTorch 1.11.0 is used to build a weld 
defect identification network combined with Python3.8.

The input image size of the network is 224 × 224, the 
sample batch size is 8, the number of iterations is 200, and 
the learning rate is 0.002 to train the processed dataset. 
During training, the adaptive moment estimation (Adam) 
algorithm is used to dynamically adjust the learning rate of 
the parameters so that the parameter change range is not too 
large and the parameter training is more stable.

5.2 � Ablation experiments

The effect of specific improvement methods on our method’s 
defect identification performance is investigated through 
an ablation study that involves five experiments. The first 
experiment utilizes the original SqueezeNet model as the 

Fig. 8   Laser weld diagram of 
line structure
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baseline network [34]. The second experiment employs 
SqueezeNet by adding a residual module, and the third 
trial modifies the fire module to adopt the improved deep 
separability method. The fourth experiment incorporates the 
ECA channel attention mechanism in the model, and the 
fifth experiment combines the residual module, the improved 
fire module, and the ECA channel attention mechanism with 
the original SqueezeNet model. To enhance clarity, these 
five models are SqueezeNet0, SqueezeNet1, SqueezeNet2, 
SqueezeNet3, and SqueezeNet4.

This paper employs a series of ablation experiments 
to assess the impact of various structural enhancements 
on model performance. According to the data in Table 1, 
SqueezeNet0 has 738,502 parameters. By incorporating 
a residual module, SqueezeNet1 sees a slight increase to 
744,262 parameters. SqueezeNet2, utilizing an improved 
depth-separable method, significantly reduces the parameter 
count to 449,862. SqueezeNet3, which introduces the ECA 
channel attention mechanism, maintains a parameter count 
comparable to SqueezeNet0, while SqueezeNet4, which inte-
grates multiple improvements, has the lowest at 255,947. 
In terms of computational complexity, SqueezeNet1 and 
SqueezeNet3 are on the higher end, whereas SqueezeNet2 
and SqueezeNet4 demonstrate lower FLOPs, particularly 
SqueezeNet4, where computational complexity is notably 
reduced to 356.06M, showcasing extremely high computa-
tional efficiency. Regarding accuracy, SqueezeNet4 achieves 
the highest performance with 98.00%, while SqueezeNet1 
and SqueezeNet2 also achieve commendable accuracies of 
97.00% and 97.75%, respectively. These findings illustrate 
that through structural improvements and technological 
integration, the SqueezeNet model's performance can be 
effectively enhanced, reducing computational complexity 
and increasing classification accuracy.

5.3 � Model comparison experiments

We challenge our method against other common 
classification models for a more comprehensive comparison. 
Specifically, we compare the final improved SqueezeNet 
network, i.e., SqueezeNet4, against ResNet, Inceptionv4, 
and MobileNetv3. The prediction effect is compared 
after 200 training iterations under the same platform and 
hyperparameters.

As shown in Table  2, SqueezeNet4 outperforms 
SqueezeNet0 across all performance metrics due to 
structural improvements, notably reducing computational 
complexity to 356.06M Flops. In comparison to traditional 
and larger models such as ResNet and Inceptionv4, which 
provide stable performance, they also require substantial 
computing resources. Among them, Inceptionv4 has the 
highest computational demand, reaching 6153.58M Flops. 
Compared with MobileNetv3, SqueezeNet4 maintains high 
accuracy and is further optimized considering parameter 
quantity. Indeed, SqueezeNet4 has 0.26M parameters, 
proving it is lightweight.

Based on the above comparative data, the improved 
SqueezeNet significantly reduces the number of parameters 
and f loating-point operations while ensuring high 
recognition accuracy and precision. Overall, the improved 
SqueezeNet is very convenient for lightweight deployment.

5.4 � Visual analysis of species identification results

After training the improved SqueezeNet, it is tested on the 
weld defect dataset. The confusion matrix in Fig. 9 shows 
the relationship between the true labels and predicted labels 
for the four welding defect categories (MC, OX, QC, and 
WD). The rows of the matrix represent the true labels, and 
the columns represent the predicted labels of the model. The 
values on the diagonal (47, 49, 50, 50) represent the number 
of correct predictions for each category. For example, 47 
samples in the MC category are correctly predicted, 49 in 
the OX category, and 50 samples in the QC and WD cat-
egories are completely correctly predicted. The off-diagonal 
elements in the matrix represent the number of prediction 
errors. For example, 3 samples in the MC category are incor-
rectly predicted as WD, and 1 sample in the OX category 
is incorrectly predicted as MC. The results infer that the 

Table 1   Comparison of the improved model effects

Method Params Flops/M Accuracy/%

SqueezeNet0 738,502 732.92 94.78
SqueezeNet1 744,262 745.06 97.00
SqueezeNet2 449,862 510.63 97.75
SqueezeNet3 738,507 733.20 95.50
SqueezeNet4 255,947 356.06 98.00

Table 2   Comparison of 
different models

Model Precision/% Accuracy/% Recall F1-score Params/M Flops/M

SqueezeNet0 95.00 94.78 95.50 95.24 0.74 732.92
SqueezeNet4 98.06 98.00 98.00 97.99 0.26 356.06
ResNet 96.51 96.48 96.50 96.50 25.31 4131.69
Inceptionv4 97.50 97.95 98.32 97.91 41.14 6153.58
MobileNetv3 96.01 97.65 97.00 96.50 4.20 232.96
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maximum prediction classification is on the diagonal, indi-
cating that most defect features are successfully predicted, 
verifying the effectiveness of the improved model for weld 
defect identification.

According to the confusion matrix, the accuracy and 
recall of the improved SqueezeNet model in various welds 
can be calculated for specific quantitative analysis (Table 3).

Table 3 reveals that the overall prediction results of the 
improved model on the weld defect test set are better. The 
accuracy and recall rate is relatively high, among which the 
recognition accuracy of welding burrs (MC) is the lowest 
(94%), and the recognition accuracy of welding holes (QC), 
and no defects(WD) is relatively high (100%).

5.5 � K‑fold cross validation

Cross-validation is a statistical analysis technique employed 
to assess the generalization capability of a model, specifi-
cally its proficiency in predicting unseen data. This method 
facilitates a more comprehensive evaluation of the model's 
performance across various subsets, thus enhancing its reli-
ability and accuracy.

K-fold cross-validation is a widely utilized method for 
validating models, particularly for assessing the generaliza-
tion capability of statistical models. In this approach, the 
dataset is divided into K equal-sized subsets. The process 
involves several key steps: firstly, the entire dataset is ran-
domly split into K non-overlapping subsets, each approxi-
mately of the same size. Subsequently, one of these subsets 
is selected as the test set, while the remaining K-1 subsets 
serve as the training set. The model is then trained on the 
training set and evaluated on the test set. This procedure is 
repeated K times, each time with a different subset acting 
as the test set and the others as the training set. Ultimately, 
the model's performance is determined by the average of 
the results from the K separate tests. This method ensures a 
comprehensive and fair evaluation of the model by allowing 
each data point an equal chance to be tested.

In this article, the K value for the K-fold cross-validation 
method is set to 5. Accuracy and macro-F1 scores are 
utilized to evaluate the outcomes of the cross-validation 
process.

Table 4 presents the results of a K-fold cross-validation 
test conducted using the SqueezeNet4 model, with K values 
ranging from 1 to 5. As K increases, both the accuracy 
and F1-score metrics show a trend of improvement, 
suggesting enhanced model performance with larger K 
values. Specifically, when K is set to 1, the model achieves 
an accuracy of 94.75% and an F1-score of 95.00%. These 
metrics improve progressively with each increase in K; 
by the time K reaches 5, accuracy has risen significantly 
to 97.75%, and the F1-score to 97.00%. This improvement 
can be attributed to the model having more comprehensive 
training and validation across the different subsets of data, 
thereby reducing variance and bias in the evaluation process.

5.6 � Specific application

The lightweight welding defect identification algorithm 
based on a convolutional neural network, proposed in this 
article, will be implemented in our welding robot to inspect 
weld quality both during and after the welding process. The 
welding robot, depicted in Fig. 10, includes components 
such as a mechanical arm, welding gun, camera, weld sen-
sor, and a four-wheel differential chassis. An Advantech 276 

Fig. 9   Confusion matrix

Table 3   Weld defect classification test results

Category Number Precision/% Recall/%

MC 50 94.00 97.92
OX 50 98.00 100.00
QC 50 100.00 100.00
WD 50 100.00 94.34

Table 4   K-fold cross validation test results

Model K Accuracy/% F1-score/%

SqueezeNet4 1 94.75 95.00
2 95.50 95.00
3 95.50 95.00
4 96.50 96.00
5 97.75 97.00
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industrial computer serves as the host to control the robot's 
welding operations. Since the welding control program, vari-
ous dependency packages, and video monitoring resources 
are all stored on this industrial computer, the memory avail-
able to support the welding defect identification model is 
limited. Despite these limitations, the proposed welding 
defect model can meet the real-time requirements for moni-
toring weld quality throughout the welding process.

6 � Conclusion

This paper proposes a weld defect recognition algorithm 
based on a CNN for the problem of weld defect recognition 
in the welding process. Based on the SqueezeNet network, 
the algorithm improves the fire module and adds the 
residual structure and ECA attention channel mechanism 
to the network, demonstrating that the improved model can 
effectively identify four types of weld defects.

Data availability  The datasets generated during and/or analysed during 
the current study are available in Datasets-weld at https://​github.​com/​
daure​liano/​Datas​ets-​weld.
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