
Vol.:(0123456789)

Pattern Analysis and Applications (2024) 27:83 
https://doi.org/10.1007/s10044-024-01298-5

THEORETICAL ADVANCES

A novel two‑stage omni‑supervised face clustering algorithm

Sing Kuang Tan1 · Xiu Wang2 

Received: 8 September 2022 / Accepted: 14 June 2024 / Published online: 9 July 2024 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Face clustering has applications in organizing personal photo album, video understanding and automatic labeling of data for 
semi-supervised learning. Many existing methods cannot cluster millions of faces. They are either too slow, inaccurate, or 
need a lot memory. In our paper, we proposed a two stage unsupervised clustering algorithm which can cluster millions of 
faces in minutes. A rough clustering using greedy Transitive Closure (TC) algorithm to separate the easy to locate clusters, 
then a more precise non-greedy clustering algorithm is used to split the clusters into smaller clusters. We also developed a 
set of omni-supervised transformations that can produce multiple embeddings using a single trained model as if there are 
multiple models trained. These embeddings are combined using simple averaging and normalization. We carried out extensive 
experiments with multiple datasets of different sizes comparing with existing state of the art clustering algorithms to show 
that our clustering algorithm is robust to differences between datasets, efficient and outperforms existing methods. We also 
carried out further analysis on number of singleton clusters and variations of our model using different non-greedy cluster-
ing algorithms. We did trained our semi-supervised model using the cluster labels and shown that our clustering algorithm 
is effective for semi-supervised learning.

Keywords  Clustering · Semi-supervised learning · Face recognition · Omni-supervised learning · Label propagation · Face 
embedding

1  Introduction

Face clustering has applications in organizing personal photo 
album, video understanding and automatic labeling of data 
for semi-supervised learning. Many existing methods can-
not cluster millions of faces. They are either too slow, inac-
curate, or need a lot memory. Our method can run on CPU 
in minutes given the nearest neighbors graph and embed-
ding values. Greedy clustering algorithms such as TC are 
fast but inaccurate. Non-greedy algorithms such as spectral 
clustering are slow, use a lot of memory and need to specify 

accurate number of clusters to produce good result. For large 
dataset, spectral clustering will lead to out of memory when 
runs on desktop computer because spectral clustering has to 
store and process all pairs distance information between all 
embeddings during clustering. Our method combines best 
of both worlds which our optimization based clustering 
consists of both greedy and non-greedy algorithms. Deep 
learning clustering requires learning, produces noisy results 
with a lot of singleton clusters whereas our method does not 
require learning. These deep learning clustering methods 
cannot scale to large number of faces (in millions), slow, 
need large amount of memory and accuracy drops at large 
number of faces.

Clustering is an important step for semi-supervised face 
recognition. Semi-supervised learning is to learn from both 
labeled and unlabeled data. The trend in deep learning face 
recognition models is that the larger the dataset, the better 
the performance. However large dataset requires more man-
hours to label the data. It is difficult to label face classes 
because it has unlimited number of classes. This helps to 
circumvent the problem of large data collection and makes 
training state of the art face recognition model using lesser 
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labeled data possible. Semi-supervised learning is an under-
explored area in face recognition. Unlimited number of 
classes makes fixed classes semi-supervised learning method 
impossible to use. Face recognition is an open set classifi-
cation problem which means we can always add more face 
classes for learning.

Omni-supervised learning is a recently proposed algo-
rithm to label unlabeled data using only a single trained 
model [1]. Originally it is applied for the human pose esti-
mation problem where the input image is transformed mul-
tiple times, fed into the model to produce multiple labels. 
These labels are then combined and used as labels for semi-
supervised learning. We adapt the technique to use on face 
recognition where the face image is transformed before the 
face alignment process and flipped before the computation of 
face embedding. This allows us to compute multiple embed-
dings and these embeddings are combined to form a more 
robust embedding that is more accurate for clustering.

The main contributions of this paper are:

•	 Developed an unsupervised clustering method that is 
very fast and accurate. It is a two stage algorithm, first a 
greedy clustering is performed, followed by a non-greedy 
clustering algorithm to tackle both easy and difficult to 
separate clusters

•	 Achieved state of the art performance on large-scale 
face clustering, surpass supervised deep learning clus-
tering algorithms. Our clustering algorithm has achieved 
F-measure of 76.30% in 22.75 min for a 5 millions faces 
of the MS-Celeb-1 M dataset compared to a competing 
method with F-measure 71.63% in 162.27 min

•	 Shown that our clustered result can be fed into a face 
recognition algorithm to do semi-supervised learning

2 � Related work

Classical clustering methods (such as K-means, DBSCAN 
and spectral clustering) are too slow, consume too much 
memory and have poor accuracy. They are not tuned to work 
on face recognition embedding distribution. Many of them 
require to specify number of clusters. Density clustering 
methods such as DBSCAN have low recall. An unsuper-
vised clustering algorithm (FINCH) [2] using first neighbor 
relation is not able to scale to large number of face classes 
in both accuracy and speed.

State of the art deep learning clustering algorithms [3, 
4] require training, large memory usage and they are slow. 
They cannot work with face embeddings of any vector 
length. So we came out a unsupervised two stage cluster-
ing algorithm that does not require to do learning on any 
dataset and it has few parameters to tune. These deep learn-
ing algorithms not only need the nearest neighbor graph 

between face embeddings to do clustering, they also require 
the embedding values for clustering. Graph convolutional 
network (GCN) method [4] will increase and decrease the 
edge distances of the embeddings so that embeddings from 
the same class are moved closer to each other and embed-
dings of different classes are moved further from each other. 
Then a greedy clustering algorithm is applied to segment the 
embeddings based on simple increasing distance threshold 
and breath first search. For another work that uses affinity 
graph (LTC) [3], it groups up the embeddings into super-
vertices, generates cluster proposals, does non-maximal 
suppression on the proposal clusters and refines the cluster 
labels within each proposal similar to a Mask-RCNN [5] 
algorithm. By grouping into super-vertices, their method are 
more robust against producing small noisy clusters.

Semi-supervised algorithms are generally divided into 
two categories. One type of semi-supervised learning oper-
ates on classification problem with fixed number of classes 
(closed set classification) [6–15]. Some of them train multi-
ple deep networks and combine output labels from multiple 
networks to label the unlabeled data [8, 10, 13, 14]. Some 
use label propagation to spread labels from labeled samples 
to unlabeled samples [6, 12]. One method uses graph filter-
ing similar to clustering [9]. Some use specialized loss func-
tion to propagate labels during deep learning [11, 16]. One 
very innovative work uses learning speed to determine the 
labels [17]. Since face recognition has unlimited number of 
classes, these fixed classes semi-supervised learning meth-
ods are not suitable for face recognition and they are difficult 
to modify to work on face recognition problem.

The second type of semi-supervised learning algorithm 
is designed to work on variable number of classes (open 
set classification). One subcategory of this type requires 
the unlabeled data to be clustered [3, 4] to become labeled 
data in order to do the learning. A simple model is learned 
from the labeled data. Then clustering is performed using 
the trained model on the unlabeled data to do labeling. The 
combined data from both labeled and unlabeled data is used 
to train a final model for face recognition.

Another subcategory of this type does not require cluster-
ing and labeling is done during learning using a semi-super-
vised loss function [18]. This approach learns and labels 
at the same time using a single loss function and does not 
output clustering labels. Our semi-supervised learning using 
our clustering algorithm can use existing face recognition 
deep learning networks and loss functions without the use 
of complex loss function as in theirs.

Some semi-supervised face recognition algorithms take 
into the context of how the photos are taken [19–21]. Our 
method does not need any context information, and can work 
on random faces crawled from the internet.

CDP [22] is a recently proposed semi-supervised learning 
algorithm. The disadvantage is it requires to train multiple 
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committee models in order to achieve higher clustering accu-
racy. However training many models is time consuming. 
Omni-supervised learning [1] has recently been proposed 
to generate multiple labels of a single input image by doing 
multiple transforms of the input image. The different trans-
formations are fed into a single model to produce multiple 
labels. The multiple labels are then combined similar to how 
the labels are combined by multiple committee models. This 
avoids the need to train multiple models. As deep network 
model has redundancy representation of weights where a 
slight transformation of the input should result in the same 
label. If the output label of a transformation is incorrect, it is 
detected as having different label from other transformations 
and the labels of multiple transformations can be combined 
to create a more accurate label. The model is thought to be 
‘self-ensembled’ with different models of the ensemble are 
expressed when different transformations are applied to its 
input.

As for the recent deep learning approaches [23, 24] to 
clustering, clustering is inherently an optimization problem. 
Deep learning clustering is to try to learn the optimization 
function of clustering. Deep learning clustering is non-
interpretable and explainable, so it does not add knowledge 
to the science of clustering. Deep learning has drawbacks. 
It does not scale well to extremely large datasets, so it took 
very long and consumed a lot of memory to do clustering. 
An analogy is the use of linear programming or reinforce-
ment learning to solve the Travelling Salesman Problem. 
Reinforcement learning does not scale well in computational 
performance to the number of cities.

3 � The proposed clustering algorithm

3.1 � Overview

Figure 1 shows the framework for our clustering algorithm 
with the last step doing a semi-supervised face recognition 

learning. Step 1 is to train a shallow model using only the 
labeled data. We will use a shallow network to prevent over-
fitting. Step 2 is to apply multiple transforms to each input 
face image. These transformed face images are fed into the 
shallow network to produce multiple embeddings. These 
embeddings are averaged and normalized to produce the 
final embedding for each face image to be used for clus-
tering at later stages. The transformed embeddings should 
complement each other mispredictions. Step 3 is to label 
the unlabeled data using the TC algorithm [22]. Step 4 is to 
refine the clusters by splitting or merging the clusters. We 
will explain that it is very unlikely that the clusters need to 
merge at this step to produce better result. Therefore in our 
algorithm, only splitting is carried out at this step. Step 5 is 
to propagate the labels to neighboring face embeddings that 
have distances smaller than a threshold. Step 6 is to train 
the final semi-supervised model using both the labeled and 
unlabeled data with the cluster labels.

It is true that two-stage clustering, as well as TC cluster-
ing and K-Means, have been introduced and adopted in the 
literature, our approach combines these methods in a novel 
way to address a specific problem. The combination of both 
clustering has not been experimented in the literature.

3.2 � Omni‑supervised model with multiple 
transformations

Figure 2 shows how four transforms are carried out to 
produce four different embeddings using only one model 
in step 2 of our framework. The four transformations are 
made up of simpler transformations namely left and right 
flips, align and scale face image up two times then align. 
These embeddings produced by running different trans-
formations are fed to the same model, later combined 
using average operation and then normalized. We notice 
that there are errors in the alignment stage. By scaling up 
the face image then run an align operation, this returns a 
slightly different alignment keypoint positions. This helps 

Fig. 1   Our face clustering 
framework
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as the original alignment without scaling may be incor-
rect. This averages out the errors in embeddings due to 
wrong alignment. The left to right flipping also averages 
out the errors in the embedding. We apply another align-
ment transformation [25] instead of using the alignment 
information in the dataset. We use the alignment informa-
tion in the data only if the alignment transform fails to find 
an alignment for a face image. We assume the unlabeled 
data has no alignment information. Other transformations 
such as rotation can also be used, however we did not 
investigate them in this work.

These transformations act like image augmentations in 
deep learning. We have shown that the use of all trans-
formations will lead to the best result. These transforma-
tions tackle the face key points misalignment problem, 
but did not tackle blurry or color distortion due to surveil-
lance camera. Blurry and color distortion problem can be 
addressed in the future work.

3.3 � Greedy clustering and non‑greedy cluster 
splitting

An additional clustering is performed at step 4 to further 
improve on the clustering result. As the TC is a greedy 
clustering approach, it will result in clusters that geometri-
cally contain two or more clusters. These clusters can be 
further split at step 4 by non-greedy clustering algorithm 
such as K-means, hierarchy clustering, spectral clustering 
etc. For detail, implementation of our clustering algorithm 
can be found in the supplementary sections of our paper.

D is a distance matrix where each element dij represents 
the distance between embedding i and embedding j, like-
wise S is a similarity matrix with sij is a reciprocal of dij,

S(2) = �(S, t) is the threshold of the distances sij in S element-
wise, if smaller than threshold is 0, else 1. s(2)

ij
= 1 if embed-

ding i is link to embedding j. The threshold-ed matrix S(2) is 
the adjacency matix that represents the graph that connects 
the datapoints. TC clustering is to do transitive closure on 
the adjacency matrix. TC of the graph is the same as Floyd 
Warshall Algorithm with path algebra, which the algorithm 
can be represented in matrix form.

is the linking of the embeddings that are 2 edges apart where 
the matrix S(2) is raised to the power of 2. This is the addi-
tion of edges that are connected by a path of 2 edges in the 
adjacency matrix.

is the linking of embeddings that are many (large finite posi-
tive) edges apart, or we can say it is transitive closure of 
the edges using path algebra. The matrix S(2) is raised to 
the power of ∞ . To subdivide the clusters using non-greedy 
clustering, let

1 is a vector of ones and S(4) is a matrix of thresholds which 
is a block diagonal matrix, each block represents 1 clus-
ter. Because each cluster should be fully conntected with 
every other datapoint in the cluster. Basically it means that 
we will repeatedly breaks down a large cluster by increas-
ing the threshold until the size of each cluster is below e.g. 
tmax_size = 600 . Note that different clusters will have different 
thresholds. In equation 4, the matrix S is thresholded by a 
matrix of thresholds T where each individual element of S(4) 
has a different threshold. vi = �i(S

(4)) returns a eigen vector i 
of matrix S(4) multipled by its eigen value. The ones in vi rep-
resents which datapoints (indexed by the ones in the vector) 
are in cluster i. The clustering result is in S(4) = �(S(3), T).

Clustering result of TC and non-greedy clustering are 
represented in an adjacency matrices in S(3) and �(S(3), T) . 
Examples of how the matrices will look like is shown in 
Figs. 3 and 4. In the examples, S(3) clustered into 2 clusters 
with data points in each clusters fully connected with each 

(1)
dij =‖ei − ej‖
sij =1∕dij.

(2)�((S(2))2, 0)

(3)S(3) = �((S(2))∞, 0)

(4)

min
T
{|T − S(3)|}

≥0

such that S(4) = 𝛿(S, T)

S(4) ≤ S(3)

vi = 𝜆i(S
(4))

vi ∈ {0, 1}

S(4)1 < tmax_size.

Fig. 2   The four transforms for Omni-supervised learning
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other by TC. �(S(3), T) further breaks down the cluster into 
3 clusters so that each cluster is below a maximum size by 
non-greedy clustering. minT |T − S(3)|

>=0 is to maximise 
the size of each cluster as much as possible, but the clus-
ters should be subdivision of the TC clusters as shown 
in S(4) ≤ S(3) . |T − S(3)|

>=0 is the same as |max(T − S(3), 0)| 
where we sum up the difference of T and S(3) when T is 
larger than S(3).

The TC clustering algorithm consists of two parts. First 
a 15 nearest neighbors of all face embeddings of unlabeled 
data are computed and these neighbors are used to create 
a graph that connects the nearby embeddings if their simi-
larities are above a threshold. Then the graph is partitioned 
into connected components and each component forms a 
cluster. This is the first step of this clustering algorithm. 
Next the connected components or clusters are repeatedly 
broken down if the cluster sizes are larger than a specified 
size (e.g. 600 embeddings) and the similarity threshold is 
increased by a small amount to break down the clusters 
into smaller connected components or clusters.

Ideally, the face embeddings of the face recognition 
model are trained to have a fixed distance between pairs 
of face embeddings from different face identities and a 
very small distance between pairs of face embeddings 
from same face identity. A greedy algorithm with a fixed 
similarity threshold that links up embeddings above the 
similarity threshold is able to produce the clusters. This 
is true for small number of face embeddings in the test 
set. However for large number of faces in the test set, the 
distances between pairs of face embeddings from different 
identities may be higher than a fixed similarity thresh-
old. This is because many of these new faces in the test 
set are very different from the training set, and the face 
recognition algorithm is confused whether some pairs of 
faces are from the same or different persons using a fixed 
similarity threshold. The greedy algorithm needs to use 

adaptive similarity threshold (which is increased gradu-
ally over time) to further break down the face embedding 
clusters if they are larger than a predefined number of face 
embeddings (e.g. 600).

After the face embeddings are broken down into clusters 
by TC, some of these clusters are still large and contain two 
or more face classes. For these clusters of face embeddings, 
a greedy clustering algorithm using connected components 
is not able to break them and a non-greedy algorithm at step 
4 is needed to break them down. The non-greedy algorithm 
looks at all pairs of distances between the face embeddings 
in these large clusters and still able to figure out the sub-
clusters within these large clusters using between class dis-
tances and within class distances. In practice, if the number 
of face embeddings in a cluster is smaller than a predefined 
number (e.g. 150), we ignore this cluster and it will not 
be further split by our non-greedy algorithm in step 4 into 
smaller clusters as the cluster relationship is unsure for small 
number of embeddings. As the TC algorithm is greedy when 
it does clustering, the algorithm will always separate easy 
to separate clusters and therefore the algorithm will very 
unlikely oversplit the datapoints (there will be very unlikely 
a case where two or more resulted clusters are part of an 
actual face class). We have verified experimentally that the 
TC algorithm has high recall and low precision, therefore it 
is unlikely that it will oversplit the datapoints. The difficult 
clusters will be left for the non-greedy clustering algorithm 
at step 4 to tackle.

Non-greedy clustering algorithm can be implemented 
using k-means algorithm. The loss function for the k-means 
algorithm is

where xi is the embedding i and uj is the centroid of cluster 
j. xi belong to cluster uj . Non-greedy clustering algorithm is 
based on centroid clustering.

If we use the non-greedy algorithm directly on the face 
embeddings without doing TC greedy clustering, this will 
result in poor clustering performance. It is because it is dif-
ficult to determine the number of clusters and cluster size of 
each cluster using non-greedy clustering algorithm. Table 1 
shows the results of spectral clustering directly on the face 

(5)J(Cij) =
�

(i,j)∈{(m,n)‖Cmn=1}

‖xi − uj‖2

Fig. 3   Example of adjacency 
matrix with 2 clusters after TC

Fig. 4   Example of adjacency 
matrix with 3 clusters after non-
greedy clustering

Table 1   Spectral clustering results with different number of clusters

Bold indicates the best performance/results

Spectral clustering F-measure (%)

With 2000 clusters 84.56
wWth 2577 clusters (actual # of classes) 97.22
With 3000 clusters 93.83
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embeddings with 2577 (exact ground truth number of clus-
ters), 2000 and 3000 clusters. We can see that if we wrongly 
estimate the number of clusters by a small fraction, the clus-
tering performance (F-measure) will differ a lot. Beside that, 
non-greedy clustering algorithm looks at all pair distances of 
face embeddings, it will take up a lot of memory and makes 
it impossible to cluster millions of faces. For a small set of 
about 600 face embeddings, greedy clustering algorithm will 
be able to execute very fast using small amount of memory.

Figure 5 shows the cascade clustering process of our 
algorithm. A quick greedy clustering algorithm will split 
easy to separate large clusters (each may contain a few sub-
clusters) and the non-greedy clustering algorithm will fur-
ther decompose these large clusters into small clusters.

Figure 6 shows the types of clusters that exist in the face 
embeddings. For case 1, a simple fixed threshold is able to 
separate the clusters. For case 2, although the fixed threshold 
cannot separate them, the between class distances are larger 
than within class distances. By increasing the similarity thresh-
old, the greedy clustering algorithm is still able to separate 
them. For case 3, if there exists a bridge between two clusters, 
then the greedy clustering algorithm will not be able to sepa-
rate them. A non-greedy clustering algorithm such as K-means 
can be used to separate them. For case 4, although the two 
clusters can be split by a threshold and greedy clustering algo-
rithm, some small clusters are produced as a side effect of 

the algorithm. These small clusters (e.g. cluster with only one 
embedding) can be merged to the nearest clusters using step 5 
of our framework. For more information on the distance distri-
bution of each case can be found in the supplementary section.

3.4 � Label propagation of remaining unlabeled face 
embeddings

Label propagation is performed at step 5 of our algorithm. 
The TC algorithm will label some face embeddings as noise 
(unlabeled). These face embeddings each forms a singleton 
cluster with one embedding in size. We can also change the 
labels of small clusters (e.g. size≤ 3 ) same as singleton clusters 
as these labels are noisy. They are separated as clusters by the 
TC clustering algorithm. These singleton clusters are far away 
from every other face embeddings and so they are labeled as 
noise. These noisy face embeddings can be ignored during 
training of the final face recognition model after the unlabeled 
data is labeled as they make up a small proportion of the total 
number of unlabeled face embeddings. But for clustering 
purposes, we can assign them to the nearest clusters if their 
distances are smaller than a threshold. This will improve the 
overall F-measure of the clustering result when compared to 
the ground truth labels of the unlabeled faces. These singleton 
clusters may be formed during the greedy clustering process 
and they most likely belong to the nearest clusters.

For a small cluster k smaller a certain size,

where tij is an element of a matrix, tij > 0 if embedding i is 
in cluster k and embedding j is not in cluster k and tij has the 
cluster size of where embedding j is located with additional 
top3 constraint, else it is 0. �top 3() returns a 1 if j is top 3 
nearest embedding to embedding i (in terms of distance), 
else it is 0. �(C(i), k) and 1 − �(C(j), k)) make sure that the 

(6)
tij = �(C(i), k) × (1 − �(C(j), k)) × �top 3(i, j) × c

(size)

j

ck = C(argmaxj
⋃

C(i)=k

sij)

Fig. 5   Our two stage clustering algorithm

Fig. 6   Four types of clusters
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matrix is zero when either embedding i does not belong to 
cluster k or embedding j belongs to cluster k. c(size)

j
 is the size 

of cluster that contains embedding j. The function C() 
returns the cluster id of embedding i or j. ck is the cluster id 
where the cluster k is finally assigned to. Basically it means 
that considering all the embeddings in small cluster k, find 
the largest cluster that the cluster k is connected to based on 
top 3 distances of each embeddings and merge cluster k with 
the largest cluster.

The labels are propagated synchronously to the unlabeled 
embeddings by finding the most frequently occurring labels 
of the 3 nearest neighbors of these unlabeled embeddings. 
Note that the unlabeled embeddings that are far away from 
their nearest embeddings (e.g. further than a 0.4 threshold) are 
ignored and new labels will not be assigned to them.

4 � Experiment results

In this section, we carried out experiments to validate the 
effectiveness of our clustering algorithm. We tested our algo-
rithm on the IJB-B 1845 [26] data and MS-Celeb-1 M [27] 
data which are commonly used by the face clustering commu-
nity for validation. We used the Folkes and Mallows F-meas-
ure [28–30] to evaluate the pairwise performance of clustering,

(7)Avg Recall =
∑

i,j

Ni,j∕
∑

i

Ni

(8)Avg Precision =
∑

i,j

Ni,j∕
∑

j

Nj

(9)Avg F-Measure =
2 × Avg Recall × Avg Precision

Avg Recall + Avg Precision

where Nj is the number of possible pairs of embeddings in 
cluster j and Ni is the number of possible pairs of embed-
dings in class i. For class i and cluster j, Nij is the number of 
possible pairs of embeddings of class i in cluster j. Class i 
is the ground truth label of an embedding and cluster j is a 
cluster label from the clustering algorithm.

4.1 � Omni‑supervised clustering results

In this subsection, we use 0.5 million data partition of MS-
Celeb-1 M dataset from github site [30] to investigate on 
the use of different transformations of our omni-supervised 
face clustering.

Table 2 shows that using two weak transformations to 
generate two embeddings, then combine the embeddings 
leads to better result than using each original embedding 
itself. The two weak transformations are 3 × 3 median filter 
and scale down by 4 pixels. They are called weak transfor-
mations because they produce embedding values that pro-
duce slightly higher performance on test data compared to 
using the original image without tranformation. These two 
transformations are weaker than using the transformations of 
original image and original image flipped left to right. How-
ever the combined of the two transformations embeddings 
(by averaging) leads to better clustering result than using 
only each transformation. This is in analogy to the idea of 
weak classifiers where a combination of the classifiers leads 
to a stronger classifier.

Table 3 shows that by applying two or four best tran-
formations for omni-supervised clustering, we are able to 
achieve  1% and  5% improvements respectively. This is 
considered large improvement using only one trained model 
instead of multiple trained models as in CDP algorithm. The 
results shown in this subsection used embeddings generated 

Table 2   Combine two weak transformations becomes a strong transformation

Bold indicates the best performance/results

Performance (F-meas-
ure)

Transformation 3 × 3 median 
filter (%)

Transformation: Scale down by 4 pixels on 
width and height (%)

2 Transformations: Scale down by 4 pixels 
on width and height 3 × 3 median filter (%)

Step 3 [22] 76.62 76.25 78.84
Step 4 80.94 81.63 83.06
Step 5 86.95 86.49 87.82

Table 3   Combine four input 
transformations to generate 
robust embeddings for 
clustering

Bold indicates the best performance/results

Performance 
(F-measure)

No transformation 
(%)

Apply 2 transformations (flip face 
image left and right) (%)

Apply 4 transformations 
(as in previous section) 
(%)

Step 3 [22] 75.45 77.20 81.61
Step 4 78.70 81.91 87.17
Step 5 86.17 87.82 91.80
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using our trained model on labeled data. We did not use 
existing embeddings from the github site as they do not pro-
vide their deep network model for us to experiment with 
different input transformations. Our omni-supervised trans-
formations can act like multiple committee models, without 
the need to train multiple models.

4.2 � Compare with CDP multiple committee models

We experimented with CDP algorithm using their committee 
models instead of using our omni-supervised transforma-
tions to generate and combine the embeddings. Then the 
cluster results from CDP are further refined using our step 4 
cluster splitting and step 5 label propagation algorithms. We 
used the embeddings from the CDP github site [29]. From 
Table 4, we can see that on 200k MS-Celeb-1 M dataset, 
using our clustering method with 1 committee model (top 
right entry in the table) has close to the same performance 
as using CDP with 4 committee models (bottom left entry 
in the table). Using 4 committee models requires much more 
training time and therefore it is not worth it to train 4 models 
to cluster this small dataset. Using 4 committee models with 
our clustering algorithm (bottom right entry in the table) has 
reached almost the same F-measure as spectral clustering 
(97.22%, see Table 1) with actual number of ground truth 
clusters specified as input.

4.3 � Compare with state of the art clustering 
algorithms

Table 5 shows the step 3, 4 and 5 results of our framework on 
the 1.7M and 5 M data. The 1.7 and 5 millions faces datasets 
are partitions of a large MS-Celeb-1 M dataset provided in 
github site [30]. The embeddings are also downloaded from 
this github site. Our algorithm has significant performance 
improvement over the CDP algorithm. Step 5 has made some 
improvement to step 4 of our framework. The timings shown 
in this table exclude the time taken to find the 15 k-nearest 
neighbors graphs for the TC algorithm in step 3. It takes 
15.97 and 59.83 min to compute the 15 k-nearest neighbors 
graph for 1.7 and 5 millions data respectively. The k-nearest 
neighbors graph computation is a bottleneck in the cluster-
ing algorithms, which is also needed for the deep learning 
clustering algorithms. In fact, the deep learning clustering 

algorithms LTC and GCN require 80 and 200 nearest neigh-
bors respectively.

In Tables 5 and 6, we use only one face recognition model 
without omni-supervised tranformations and without mul-
tiple models as in the multiple committee models case in 
previous subsection. We used the embeddings provided at 
the LTC paper github site [30] and the GCN paper github 
site [31]. We used spectral clustering for step 4 of our frame-
work. Spectral clustering is applied only to clusters larger 
than a predefined number (e.g. 150 embeddings). We select 
number of clusters in spectral clustering using the number of 
eigenvalues greater than a threshold, with a maximum of 5 
clusters. The spectral clustering is repeated again if the bro-
ken down clusters are still larger than the predefined number.

From Table 6, we can see that our clustering algorithm 
has outperformed LTC [3] and GCN [4] clustering algo-
rithms even on the large dataset of 1.7 and 5 millions faces. 
Both of these algorithms use deep learning network. Our 
algorithm is much faster. This enables the user more time to 
vary with the parameters of our clustering algorithm to fur-
ther improve the performance. Note that all clustering algo-
rithms are run on CPU and the timings of the deep learn-
ing clustering algorithms are inference times only without 
training times. The GCN, LTC and our clustering timings 
in the table do not include nearest neighbors computation 
as k-nearest neighbors are computed separately. As for the 
FINCH method, it requires only one nearest neighbor and 
it is computed together with the clustering process. We can 
also see that GCN algorithm works well on the small 66k 
IJB-B 1845 data but it performs poorly on the 1.7M data. 
This algorithm does not scale well to large dataset. FINCH 
algorithm [2] is a hierarchy clustering technique which 

Table 4   Clustering results on 
200k dataset

Bold indicates the best performance/results

Performance (F-measure) Step 3 [22] (%) Step 4 (%) Step 5 (%)

1 Base model and 1 committee models, use voting 88.17 94.66 95.19
1 Base model and 2 committee models, use voting 91.70 95.62 96.35
1 Base model and 4 committee models, use voting 92.86 95.226 96.67
1 Base model and 4 committee models, use mediator 95.59 96.10 97.05

Table 5   Clustering results on 1.7 and 5 millions faces of the MS-
Celeb-1 M dataset

Bold indicates the best performance/results

Step 1.7M data 5 M data

F-measure 
(%)

Time 
taken 
(min)

F-measure 
(%)

Time taken 
(min)

Step 3 [22] 67.34 0.92 63.85 4.67
Step 4 78.98 2.86 75.38 12.64
Step 5 81.31 0.26 76.30 5.44
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returns a set of different numbers of clusters. By choosing 
the best number of clusters and compute the F-measure, our 
clustering algorithm still outperforms FINCH. LTC algo-
rithm performs poorly on IJB-B 1845 data as the algorithm 
is not trained to cluster effectively on that data.

Table 7 compares the best clustering algorithm VEGCN 
[32] with our algorithm with and without omni-supervision. 
It has clearly shown that our algorithm outperforms VEGCN 
even without omni-supervision. The VEGCN algorithm 
reported here is slightly less than the original paper as we 
do not know the exact hyperparameters and we reduced the 
length of each embeddings from 512 dimensions to 256 
dimensions so that the embeddings can be input into the 
deep learning network of VEGCN. The embeddings are 
reduced from 512 to 256 dimensions simply by adding the 
first 256 dimensions with the next 256 dimensions and nor-
malizing the resultant embeddings to unit length.

Table 8 shows the percentage of singleton clusters labeled 
by the different clustering algorithms. Although FINCH has 

0 singleton cluster, it has poor clustering performance and 
it is not able to identify noisy face images in the data. We 
can see that our clustering algorithm is more robust, pro-
duces lesser singleton clusters and much higher clustering 
F-measure compared to the deep learning clustering algo-
rithms. Higher clustering performance is needed for semi-
supervised learning.

Figure 7 shows an example of ground truth cluster distri-
bution of four classes of face embeddings. The purple dot-
ted circles are the large clusters returned by step 3 (greedy 
clustering) of our clustering algorithm. These large clusters 
can be further broken down into small clusters by step 4 
(non-greedy clustering). The green dotted circle is a single-
ton cluster created by first stage of our clustering algorithm 
which can be re-merged to the nearest cluster at step 5.

4.4 � Different variations of our clustering algorithm

Table 9 shows the results of our clustering algorithm at 
step 5 if we assume clusters of sizes smaller than or equal 
to 3 instead of 1 as noisy clusters. We can see that this 

Table 6   Our clustering results comparing to the state of the art algorithms

Bold indicates the best performance/results
a Taken from github site [30] “mins” means minutes

Clustering algorithms IJB-B 1845 data 1.7M MS-Celeb-1 M data 5 M MS-Celeb-1 M data

F-measure Time taken F-measure Time taken F-measure Time taken

FINCH [2] 26.81% 1.17 mins 50.489% 9.7 mins 35.78% 34.96 mins
GCN [4] 67.72% 2.09 mins 15.72% 52.48 mins 3.25% 150.01 mins
LTC [3] (0.7,0.75) 0.4296% 1.37 mins 75.72% 50.67 mins 71.63% 162.27 mins
LTC [3] (0.6, 0.65, 0.7, 0.75)a – – 77.63% – 72.77% –
Ours 82.13% 0.07 mins 81.31% 4.04 mins 76.30% 22.75 mins

Table 7   Compare our clustering algorithm (with and without omni-
supervision) and the best algorithm VEGCN [32]

Bold indicates the best performance/results

Clustering algorithms F-measure (%)

VEGCN [32] 75
Ours without Omni-supervision 84.55
Ours with Omni-supervision 86.29

Table 8   Percentage of singleton clusters by different clustering algo-
rithms on the 1.7M MS-Celeb-1 M data

Bold indicates the best performance/results

Clustering algorithms % Of singleton 
clusters

# Of 
singleton 
clusters

FINCH [2] 0 0
GCN [4] 87.35 1,520,191
LTC [3] (0.7,0.75) 15.71 273,466
Ours 1.82 31,692

Fig. 7   Example of embeddings distribution of four face identities in 
first two principal components space
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assumption helps to improve the recall and therefore also 
improves the F-measure of the clustering results.

We used the embeddings provided at the LTC paper 
github site [30]. Table 10 investigates the use of different 
non-greedy clustering algorithms in step 4 in terms of execu-
tion speed and F-measure performance. We used squared 
error,

to select the number of clusters for K-means, hierarchy 
clustering and Birch algorithms. N is the number of face 
embeddings, xi is face embedding i and C(xi) is the centroid 
of cluster of face embedding xi . In this experiment, a face 
embedding cluster is repeatedly broken down by 2 if it con-
tains 2 or more clusters. A cluster is broken down by 2 if

(10)SE =
1

N

N�

1

‖xi − C(xi)‖2

(11)SE2 < SE1∕1.1

where SE1 and SE2 are the square errors when using one and 
two clusters respectively. This method is similar to elbow 
method to select number of clusters, where we continue to 
increase the number of clusters if there is large decrease 
in error. DBSCAN algorithm needs to specify eps (neigh-
bourhood distance) and F-measure is sensitive to this eps 
parameter. Spectral clustering selects number of clusters by 
looking at the eigenvalues. It looks at how many of these 
eigenvalues are larger than a threshold. For detail informa-
tion of which python package is used to implement each 
type of non-greedy clustering algorithm can be found in the 
supplementary section of our paper.

Using K-means with 1 random initialization is much faster 
than 10 random initializations with slight loss of F-measure. 
K-means is the fastest of all algorithms. DBSCAN is sensi-
tive to the choice of eps parameter. Result will differ a lot for 
slight change in the parameter. Hierarchical clustering works 
best if we use the ‘Ward’ merging criteria. ‘Ward’ is also 
the best overall algorithm. ‘Single’ criteria leads to greedy 
merging and has tendency to form long chain cluster, there-
fore leads to poor performance. ‘Complete’, ‘Average’ and 
‘Weighted’ are slightly inferior to ‘Ward’, although they are 
similar to ‘Ward’. ‘Centroid’ and ‘Median’ perform poorly 
as they disregard the sizes of the clusters when they try to 
merge clusters. Spectral clustering is too time consuming. 
Although ‘Ward’ has the best performance and is slightly 
better than spectral clustering, we think that spectral cluster-
ing is theoretically better which can partition non-circular 
and irregular shaped clusters. Therefore for Table 6, we 
choose to use spectral clustering.

We can also select the number of clusters in ‘Ward’ hier-
archy clustering by using the dendrogram (see row ‘Hierar-
chy clustering (ward with selection of number of clusters)’ 
in Table 10). We search between 1 to 14 clusters and cut the 
dendrogram where the distance between the nearest split 
and merge operations is larger than 1.1 using largest number 
of clusters. The clusters are repeatly broken down for a few 
iterations. Using this approach, we have achieved F-measure 
of 79.27% in 0.73 min. It is about  0.4% more accurate than 
using ward with repeated splitting into 1 or 2 clusters at 
each iteration, but has about the same speed compared to 
repeated splitting.

Table 11 shows the optimal clustering results at step 
4. This is done by using the cluster results at step 3, then 

Table 9   Clustering performance of our algorithm with assumption of 
noisy clusters of different sizes

Bold indicates the best performance/results

Noisy cluster size F-measure for 1.7M MS-
Celeb-1 M data (%)

F-measure for 
5 M data (%)

1 82.48 78.54
2 83.63 79.17
3 83.76 79.11

Table 10   Clustering results of our algorithm using different non-
greedy clustering algorithms at step 4 on the 1.7M MS-Celeb-1  M 
data

Bold indicates the best performance/results

Clustering algorithms F-measure (%) Time 
taken 
(min)

K-means (init=10) 78.64 1.37
K-means (init=1) 78.42 0.6
Hierarchy clustering (ward) 78.88 0.76
Hierarchy clustering (single) 68.90 0.43
Hierarchy clustering (complete) 78.41 0.76
Hierarchy clustering (average) 77.80 0.75
Hierarchy clustering (weighted) 77.75 0.77
Hierarchy clustering (centroid) 68.30 0.42
Hierarchy clustering (median) 68.26 0.42
DBSCAN (eps=0.75, min_samples=2) 72.20 2.02
Birch (branching_factor=50) 75.41 0.93
Spectral clustering 78.98 2.86
Hierarchy clustering (ward with selec-

tion of number of clusters)
79.27 0.73

Table 11   Optimal clustering results at step 4 on the 1.7M MS-
Celeb-1 M data

Bold indicates the best performance/results

Optimal clustering algorithms F-measure (%)

Consider clusters of size> 150 80.58
Consider all clusters 82.44
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split them according to the ground truth at each cluster 
to obtain the optimal results. If we do not do additional 
clustering on the clusters at step 4 that are smaller than or 
equal to a predefined number (150 samples), the optimal 
F-measure is 80.58%. Our result is  1.3% lower than this 
optimal result. If we do additional clustering on all clus-
ters at step 4, the optimal F-measure is 82.44%. Our result 
is  3.2% lower than this optimal result. As for small clus-
ters at step 3, it is difficult to obtain accurate clustering of 
them at step 4 so these small clusters are ignored at step 4.

The value of 150 is chosen because the number of 
images in an identity Celeb-1 M is about 100 images, 
which is slightly less than 150. 600 is chosen for transitive 
closure because it is a multiple of 100. So that after tran-
sitive closure clustering, there is still room for K-means 
for further fine-tuning breakdown into smaller clusters of 
the clusters.

4.5 � Semi‑supervised face recognition results

We trained an initial 14 layers shallow model which is a 
modified version of ResNeXt [33] and used it to label the 
unlabeled data. Then a final model using the ResNeXt 50 
layers model is used to train on all the labeled and unla-
beled data. Note that the face identities in the labeled and 
unlabeled data can overlap. We can use separate classifier 
heads to each part of the data to overcome the problem 
of data overlap. In our case, we assume that the identities 
in the labeled and unlabeled data do not overlap so only 
one classifier head using ArcFace loss function is used. 
The results are shown in Table 12. Supervised model on 
labeled data is to train a model on the labeled data only. 
Supervised model on all data is to train on both labeled 
and unlabeled data assuming we have the labels of unla-
beled data. We can see that our semi-supervised model 
achieves good performance (almost the same identifica-
tion performance on the MegaFace dataset) compared to 
fully supervised model using ground truth labels for the 
unlabeled data for training. We use the labeled data and 
unlabeled data provided in the github site [30].

Our semi-supervised model with removal of clusters of 
size≤ 4 , has achieved nearly the same identification rate 
as our supervised model on whole data validated using the 
MegaFace dataset. Without removal of small clusters of 
size≤ 4 , our semi-supervised model result is clearly less 
than our model with removal of small clusters. Our semi-
supervised model has greatly outperformed supervised 
model on labeled data only by more than 10%.

5 � Conclusion

In this paper, we have shown that combining two weak 
tranformations leads to strong clustering result, in simi-
lar analogy to combining weak classifiers leads to strong 
classifier. Our omni-supervised clustering has led to  5% 
improvement in our clustering algorithm compared to 
the case with no transformation. For clustering of 200k 
dataset, we have shown that using one committee model 
has about the same performance of using four committee 
models if step 4 and 5 step of our clustering are performed 
after step 3 TC. We have tried substituting step 4 of our 
clustering algorithm with many other classical cluster-
ing algorithms and have shown that K-means, hierarchy 
clustering (ward) and spectral clustering have performed 
similarly well. We have shown that if our step 4 clustering 
is perfect, it is only  4% away from our hierarchy clus-
tering (ward) result. We have trained a semi-supervised 
model using both labeled and unlabeled data (labeled by 
clustering). It has almost the same performance with the 
model trained on all ground truth data without stripping 
the labels from unlabeled data.

Although our method is an optimization technique, 
our method is interpretable and explainable than the deep 
learning approach, which can be run in much shorter time 
using less memory. In the future work, we will add in 
convex optimization clustering to perfect the art of semi-
supervised learning.

Appendix 1: Implementation details of our 
clustering algorithm

We use the TC clustering algorithm as the backbone algo-
rithm in our clustering algorithm. Our clustering algorithm 
first does a greedy clustering (TC clustering), next a non-
greedy algorithm and lastly propagation of cluster labels 
from labeled embeddings to unlabeled embeddings (devel-
oped by us). Our whole algorithm is written entirely in 
python and we released the codes in our github site (state 
the site). We used the data from the papers [3] and [4]. 
All clustering experiments are ran on a desktop machine 

Table 12   Semi-supervised face recognition results

Bold indicates the best performance/results

Models Identification rate on 
MegaFace dataset (%)

Supervised model on labeled data only 62.74
Supervised model on all data 76.47
Our semi-supervised model 74.94
Our semi-supervised model with removal of 

small clusters with size≤ 4

76.22
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with Intel Core i7-7700 CPU @3.60GHz. We use only 
one core (without any parallel processing) in our experi-
ments. Our clustering algorithm is simple and can run on 
most CPU using only single core.We use only one core 
(without any parallel processing) in our experiments. Our 
clustering algorithm is simple and can run on most CPU 
using only single core. We have uploaded our codes to 
github. It can be accessed through the link https://github.
com/singkuangtan/face-clustering.

For Table 6, we use embeddings trained using softmax loss 
function and as for semi-supervised learning (Table 12), we 
use embeddings trained using ArcFace loss function.

Appendix 2: Python functions and packages

Table 13 shows the python functions and packages we use for 
the experiments.

Appendix 3: Relationship of the distances 
in four cases

We begin by describing a set of properties,

where C0 is the set of embedding indices for cluster 0 and 
likewise C1 is the set of embedding indices for cluster 1. 

(12)

dmin(C0,C1) = mini∈C0 j∈C1,n(i,j)=1
‖ei − ej‖

dmax(C0) = maxi∈C0,j∈C0,n(i,j)=1
‖ei − ej‖

dmax(C1) = maxi∈C1,j∈C1,n(i,j)=1
‖ei − ej‖

davg(C0,C1) =
1

�C0��C1�
�

i∈C0 j∈C1

‖ei − ej‖

davg(C0) =
1

�C0�
�

i∈C0

‖ei −
�

j∈C0

ej‖

davg(C1) =
1

�C1�
�

i∈C1

‖ei −
�

j∈C1

ej‖

n(i, j) = 1 if embedding i and j are neighbors else it is a 0. ei 
or ej is an embedding with index i or j.

For Case 0, a greedy clustering algorithm with a large 
threshold can separate the two clusters. Mathematically, it is

where max is a maximum function of the two input values 
and >> means much greater than (by a few times).

For case 1, a greedy clustering algorithm can separate the 
two clusters, but the gap between the clusters is smaller and 
therefore a smaller threshold is used. Mathematically, it is

For case 2, there is a bridge that connects nearest neighbor 
embeddings from the two clusters. Therefore no threshold 
using a greedy algorithm is able to separate them. However, 
the mean interclass distance is still larger than the mean 
intraclass distance. This property enables the clusters to 
be separated by non-greedy clustering algorithm such as 
Kmeans. Mathematically, it is

For case 3, although the singleton cluster 0 is separated from 
main cluster 1 using a threshold and greedy clustering algo-
rithm, the ground truth class of cluster 0 is the same as clus-
ter 1 due to random outlier noise. So the singleton cluster 
0 should be combined with cluster 1. Mathematically, it is

where >> means it is much greater (a few times greater).

(13)dmin(C0,C1) >> max(dmax(C0), dmax(C1))

(14)dmin(C0,C1) > max(dmax(C0), dmax(C1)).

(15)

dmin(C0,C1) < max(dmax(C0), dmax(C1))

davg(C0,C1) > davg(C0)

davg(C0,C1) > davg(C1).

(16)

dmin(C0,C1) > dmax(C1)

|C0| = 1

|C1| >> 1

Table 13   List of python 
functions and packages

Clustering algorithm Python function Python Package

Kmeans KMeans sklearn.cluster
Hierarchy clustering (ward) linkage scipy.cluster.hierarchy
Hierarchy clustering (single) linkage scipy.cluster.hierarchy
Hierarchy clustering (complete) linkage scipy.cluster.hierarchy
Hierarchy clustering (average) linkage scipy.cluster.hierarchy
Hierarchy clustering (weighted) linkage scipy.cluster.hierarchy
Hierarchy clustering (centroid) linkage scipy.cluster.hierarchy
Hierarchy clustering (median) linkage scipy.cluster.hierarchy
DBSCAN DBSCAN sklearn.cluster
Birch Birch sklearn.cluster
Spectral clustering SpectralClustering sklearn.cluster
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