
Vol.:(0123456789)

Pattern Analysis and Applications (2024) 27:83
https://doi.org/10.1007/s10044-024-01298-5

THEORETICAL ADVANCES

A novel two‑stage omni‑supervised face clustering algorithm

Sing Kuang Tan1 · Xiu Wang2 

Received: 8 September 2022 / Accepted: 14 June 2024 / Published online: 9 July 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Face clustering has applications in organizing personal photo album, video understanding and automatic labeling of data for
semi-supervised learning. Many existing methods cannot cluster millions of faces. They are either too slow, inaccurate, or
need a lot memory. In our paper, we proposed a two stage unsupervised clustering algorithm which can cluster millions of
faces in minutes. A rough clustering using greedy Transitive Closure (TC) algorithm to separate the easy to locate clusters,
then a more precise non-greedy clustering algorithm is used to split the clusters into smaller clusters. We also developed a
set of omni-supervised transformations that can produce multiple embeddings using a single trained model as if there are
multiple models trained. These embeddings are combined using simple averaging and normalization. We carried out extensive
experiments with multiple datasets of different sizes comparing with existing state of the art clustering algorithms to show
that our clustering algorithm is robust to differences between datasets, efficient and outperforms existing methods. We also
carried out further analysis on number of singleton clusters and variations of our model using different non-greedy cluster-
ing algorithms. We did trained our semi-supervised model using the cluster labels and shown that our clustering algorithm
is effective for semi-supervised learning.

Keywords  Clustering · Semi-supervised learning · Face recognition · Omni-supervised learning · Label propagation · Face
embedding

1  Introduction

Face clustering has applications in organizing personal photo
album, video understanding and automatic labeling of data
for semi-supervised learning. Many existing methods can-
not cluster millions of faces. They are either too slow, inac-
curate, or need a lot memory. Our method can run on CPU
in minutes given the nearest neighbors graph and embed-
ding values. Greedy clustering algorithms such as TC are
fast but inaccurate. Non-greedy algorithms such as spectral
clustering are slow, use a lot of memory and need to specify

accurate number of clusters to produce good result. For large
dataset, spectral clustering will lead to out of memory when
runs on desktop computer because spectral clustering has to
store and process all pairs distance information between all
embeddings during clustering. Our method combines best
of both worlds which our optimization based clustering
consists of both greedy and non-greedy algorithms. Deep
learning clustering requires learning, produces noisy results
with a lot of singleton clusters whereas our method does not
require learning. These deep learning clustering methods
cannot scale to large number of faces (in millions), slow,
need large amount of memory and accuracy drops at large
number of faces.

Clustering is an important step for semi-supervised face
recognition. Semi-supervised learning is to learn from both
labeled and unlabeled data. The trend in deep learning face
recognition models is that the larger the dataset, the better
the performance. However large dataset requires more man-
hours to label the data. It is difficult to label face classes
because it has unlimited number of classes. This helps to
circumvent the problem of large data collection and makes
training state of the art face recognition model using lesser

 *	 Xiu Wang
	 xiuwang0214@163.com

	 Sing Kuang Tan
	 singkuangtan@gmail.com

1	 Department of Industrial Systems Engineering
and Management, National University of Singapore, 1
Engineering Drive 2, Singapore 117576, Singapore

2	 School of Computing and Artificial Intelligence, Southwest
Jiaotong University, Xi’an Road, Chengdu 611756, Sichuan,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-024-01298-5&domain=pdf
http://orcid.org/0000-0001-7271-1571

	 Pattern Analysis and Applications (2024) 27:8383  Page 2 of 14

labeled data possible. Semi-supervised learning is an under-
explored area in face recognition. Unlimited number of
classes makes fixed classes semi-supervised learning method
impossible to use. Face recognition is an open set classifi-
cation problem which means we can always add more face
classes for learning.

Omni-supervised learning is a recently proposed algo-
rithm to label unlabeled data using only a single trained
model [1]. Originally it is applied for the human pose esti-
mation problem where the input image is transformed mul-
tiple times, fed into the model to produce multiple labels.
These labels are then combined and used as labels for semi-
supervised learning. We adapt the technique to use on face
recognition where the face image is transformed before the
face alignment process and flipped before the computation of
face embedding. This allows us to compute multiple embed-
dings and these embeddings are combined to form a more
robust embedding that is more accurate for clustering.

The main contributions of this paper are:

•	 Developed an unsupervised clustering method that is
very fast and accurate. It is a two stage algorithm, first a
greedy clustering is performed, followed by a non-greedy
clustering algorithm to tackle both easy and difficult to
separate clusters

•	 Achieved state of the art performance on large-scale
face clustering, surpass supervised deep learning clus-
tering algorithms. Our clustering algorithm has achieved
F-measure of 76.30% in 22.75 min for a 5 millions faces
of the MS-Celeb-1 M dataset compared to a competing
method with F-measure 71.63% in 162.27 min

•	 Shown that our clustered result can be fed into a face
recognition algorithm to do semi-supervised learning

2 � Related work

Classical clustering methods (such as K-means, DBSCAN
and spectral clustering) are too slow, consume too much
memory and have poor accuracy. They are not tuned to work
on face recognition embedding distribution. Many of them
require to specify number of clusters. Density clustering
methods such as DBSCAN have low recall. An unsuper-
vised clustering algorithm (FINCH) [2] using first neighbor
relation is not able to scale to large number of face classes
in both accuracy and speed.

State of the art deep learning clustering algorithms [3,
4] require training, large memory usage and they are slow.
They cannot work with face embeddings of any vector
length. So we came out a unsupervised two stage cluster-
ing algorithm that does not require to do learning on any
dataset and it has few parameters to tune. These deep learn-
ing algorithms not only need the nearest neighbor graph

between face embeddings to do clustering, they also require
the embedding values for clustering. Graph convolutional
network (GCN) method [4] will increase and decrease the
edge distances of the embeddings so that embeddings from
the same class are moved closer to each other and embed-
dings of different classes are moved further from each other.
Then a greedy clustering algorithm is applied to segment the
embeddings based on simple increasing distance threshold
and breath first search. For another work that uses affinity
graph (LTC) [3], it groups up the embeddings into super-
vertices, generates cluster proposals, does non-maximal
suppression on the proposal clusters and refines the cluster
labels within each proposal similar to a Mask-RCNN [5]
algorithm. By grouping into super-vertices, their method are
more robust against producing small noisy clusters.

Semi-supervised algorithms are generally divided into
two categories. One type of semi-supervised learning oper-
ates on classification problem with fixed number of classes
(closed set classification) [6–15]. Some of them train multi-
ple deep networks and combine output labels from multiple
networks to label the unlabeled data [8, 10, 13, 14]. Some
use label propagation to spread labels from labeled samples
to unlabeled samples [6, 12]. One method uses graph filter-
ing similar to clustering [9]. Some use specialized loss func-
tion to propagate labels during deep learning [11, 16]. One
very innovative work uses learning speed to determine the
labels [17]. Since face recognition has unlimited number of
classes, these fixed classes semi-supervised learning meth-
ods are not suitable for face recognition and they are difficult
to modify to work on face recognition problem.

The second type of semi-supervised learning algorithm
is designed to work on variable number of classes (open
set classification). One subcategory of this type requires
the unlabeled data to be clustered [3, 4] to become labeled
data in order to do the learning. A simple model is learned
from the labeled data. Then clustering is performed using
the trained model on the unlabeled data to do labeling. The
combined data from both labeled and unlabeled data is used
to train a final model for face recognition.

Another subcategory of this type does not require cluster-
ing and labeling is done during learning using a semi-super-
vised loss function [18]. This approach learns and labels
at the same time using a single loss function and does not
output clustering labels. Our semi-supervised learning using
our clustering algorithm can use existing face recognition
deep learning networks and loss functions without the use
of complex loss function as in theirs.

Some semi-supervised face recognition algorithms take
into the context of how the photos are taken [19–21]. Our
method does not need any context information, and can work
on random faces crawled from the internet.

CDP [22] is a recently proposed semi-supervised learning
algorithm. The disadvantage is it requires to train multiple

Pattern Analysis and Applications (2024) 27:83	 Page 3 of 14  83

committee models in order to achieve higher clustering accu-
racy. However training many models is time consuming.
Omni-supervised learning [1] has recently been proposed
to generate multiple labels of a single input image by doing
multiple transforms of the input image. The different trans-
formations are fed into a single model to produce multiple
labels. The multiple labels are then combined similar to how
the labels are combined by multiple committee models. This
avoids the need to train multiple models. As deep network
model has redundancy representation of weights where a
slight transformation of the input should result in the same
label. If the output label of a transformation is incorrect, it is
detected as having different label from other transformations
and the labels of multiple transformations can be combined
to create a more accurate label. The model is thought to be
‘self-ensembled’ with different models of the ensemble are
expressed when different transformations are applied to its
input.

As for the recent deep learning approaches [23, 24] to
clustering, clustering is inherently an optimization problem.
Deep learning clustering is to try to learn the optimization
function of clustering. Deep learning clustering is non-
interpretable and explainable, so it does not add knowledge
to the science of clustering. Deep learning has drawbacks.
It does not scale well to extremely large datasets, so it took
very long and consumed a lot of memory to do clustering.
An analogy is the use of linear programming or reinforce-
ment learning to solve the Travelling Salesman Problem.
Reinforcement learning does not scale well in computational
performance to the number of cities.

3 � The proposed clustering algorithm

3.1 � Overview

Figure 1 shows the framework for our clustering algorithm
with the last step doing a semi-supervised face recognition

learning. Step 1 is to train a shallow model using only the
labeled data. We will use a shallow network to prevent over-
fitting. Step 2 is to apply multiple transforms to each input
face image. These transformed face images are fed into the
shallow network to produce multiple embeddings. These
embeddings are averaged and normalized to produce the
final embedding for each face image to be used for clus-
tering at later stages. The transformed embeddings should
complement each other mispredictions. Step 3 is to label
the unlabeled data using the TC algorithm [22]. Step 4 is to
refine the clusters by splitting or merging the clusters. We
will explain that it is very unlikely that the clusters need to
merge at this step to produce better result. Therefore in our
algorithm, only splitting is carried out at this step. Step 5 is
to propagate the labels to neighboring face embeddings that
have distances smaller than a threshold. Step 6 is to train
the final semi-supervised model using both the labeled and
unlabeled data with the cluster labels.

It is true that two-stage clustering, as well as TC cluster-
ing and K-Means, have been introduced and adopted in the
literature, our approach combines these methods in a novel
way to address a specific problem. The combination of both
clustering has not been experimented in the literature.

3.2 � Omni‑supervised model with multiple
transformations

Figure 2 shows how four transforms are carried out to
produce four different embeddings using only one model
in step 2 of our framework. The four transformations are
made up of simpler transformations namely left and right
flips, align and scale face image up two times then align.
These embeddings produced by running different trans-
formations are fed to the same model, later combined
using average operation and then normalized. We notice
that there are errors in the alignment stage. By scaling up
the face image then run an align operation, this returns a
slightly different alignment keypoint positions. This helps

Fig. 1   Our face clustering
framework

	 Pattern Analysis and Applications (2024) 27:8383  Page 4 of 14

as the original alignment without scaling may be incor-
rect. This averages out the errors in embeddings due to
wrong alignment. The left to right flipping also averages
out the errors in the embedding. We apply another align-
ment transformation [25] instead of using the alignment
information in the dataset. We use the alignment informa-
tion in the data only if the alignment transform fails to find
an alignment for a face image. We assume the unlabeled
data has no alignment information. Other transformations
such as rotation can also be used, however we did not
investigate them in this work.

These transformations act like image augmentations in
deep learning. We have shown that the use of all trans-
formations will lead to the best result. These transforma-
tions tackle the face key points misalignment problem,
but did not tackle blurry or color distortion due to surveil-
lance camera. Blurry and color distortion problem can be
addressed in the future work.

3.3 � Greedy clustering and non‑greedy cluster
splitting

An additional clustering is performed at step 4 to further
improve on the clustering result. As the TC is a greedy
clustering approach, it will result in clusters that geometri-
cally contain two or more clusters. These clusters can be
further split at step 4 by non-greedy clustering algorithm
such as K-means, hierarchy clustering, spectral clustering
etc. For detail, implementation of our clustering algorithm
can be found in the supplementary sections of our paper.

D is a distance matrix where each element dij represents
the distance between embedding i and embedding j, like-
wise S is a similarity matrix with sij is a reciprocal of dij,

S(2) = �(S, t) is the threshold of the distances sij in S element-
wise, if smaller than threshold is 0, else 1. s(2)

ij
= 1 if embed-

ding i is link to embedding j. The threshold-ed matrix S(2) is
the adjacency matix that represents the graph that connects
the datapoints. TC clustering is to do transitive closure on
the adjacency matrix. TC of the graph is the same as Floyd
Warshall Algorithm with path algebra, which the algorithm
can be represented in matrix form.

is the linking of the embeddings that are 2 edges apart where
the matrix S(2) is raised to the power of 2. This is the addi-
tion of edges that are connected by a path of 2 edges in the
adjacency matrix.

is the linking of embeddings that are many (large finite posi-
tive) edges apart, or we can say it is transitive closure of
the edges using path algebra. The matrix S(2) is raised to
the power of ∞ . To subdivide the clusters using non-greedy
clustering, let

1 is a vector of ones and S(4) is a matrix of thresholds which
is a block diagonal matrix, each block represents 1 clus-
ter. Because each cluster should be fully conntected with
every other datapoint in the cluster. Basically it means that
we will repeatedly breaks down a large cluster by increas-
ing the threshold until the size of each cluster is below e.g.
tmax_size = 600 . Note that different clusters will have different
thresholds. In equation 4, the matrix S is thresholded by a
matrix of thresholds T where each individual element of S(4)
has a different threshold. vi = �i(S

(4)) returns a eigen vector i
of matrix S(4) multipled by its eigen value. The ones in vi rep-
resents which datapoints (indexed by the ones in the vector)
are in cluster i. The clustering result is in S(4) = �(S(3), T).

Clustering result of TC and non-greedy clustering are
represented in an adjacency matrices in S(3) and �(S(3), T) .
Examples of how the matrices will look like is shown in
Figs. 3 and 4. In the examples, S(3) clustered into 2 clusters
with data points in each clusters fully connected with each

(1)
dij =‖ei − ej‖
sij =1∕dij.

(2)�((S(2))2, 0)

(3)S(3) = �((S(2))∞, 0)

(4)

min
T
{|T − S(3)|}

≥0

such that S(4) = 𝛿(S, T)

S(4) ≤ S(3)

vi = 𝜆i(S
(4))

vi ∈ {0, 1}

S(4)1 < tmax_size.

Fig. 2   The four transforms for Omni-supervised learning

Pattern Analysis and Applications (2024) 27:83	 Page 5 of 14  83

other by TC. �(S(3), T) further breaks down the cluster into
3 clusters so that each cluster is below a maximum size by
non-greedy clustering. minT |T − S(3)|

>=0 is to maximise
the size of each cluster as much as possible, but the clus-
ters should be subdivision of the TC clusters as shown
in S(4) ≤ S(3) . |T − S(3)|

>=0 is the same as |max(T − S(3), 0)|
where we sum up the difference of T and S(3) when T is
larger than S(3).

The TC clustering algorithm consists of two parts. First
a 15 nearest neighbors of all face embeddings of unlabeled
data are computed and these neighbors are used to create
a graph that connects the nearby embeddings if their simi-
larities are above a threshold. Then the graph is partitioned
into connected components and each component forms a
cluster. This is the first step of this clustering algorithm.
Next the connected components or clusters are repeatedly
broken down if the cluster sizes are larger than a specified
size (e.g. 600 embeddings) and the similarity threshold is
increased by a small amount to break down the clusters
into smaller connected components or clusters.

Ideally, the face embeddings of the face recognition
model are trained to have a fixed distance between pairs
of face embeddings from different face identities and a
very small distance between pairs of face embeddings
from same face identity. A greedy algorithm with a fixed
similarity threshold that links up embeddings above the
similarity threshold is able to produce the clusters. This
is true for small number of face embeddings in the test
set. However for large number of faces in the test set, the
distances between pairs of face embeddings from different
identities may be higher than a fixed similarity thresh-
old. This is because many of these new faces in the test
set are very different from the training set, and the face
recognition algorithm is confused whether some pairs of
faces are from the same or different persons using a fixed
similarity threshold. The greedy algorithm needs to use

adaptive similarity threshold (which is increased gradu-
ally over time) to further break down the face embedding
clusters if they are larger than a predefined number of face
embeddings (e.g. 600).

After the face embeddings are broken down into clusters
by TC, some of these clusters are still large and contain two
or more face classes. For these clusters of face embeddings,
a greedy clustering algorithm using connected components
is not able to break them and a non-greedy algorithm at step
4 is needed to break them down. The non-greedy algorithm
looks at all pairs of distances between the face embeddings
in these large clusters and still able to figure out the sub-
clusters within these large clusters using between class dis-
tances and within class distances. In practice, if the number
of face embeddings in a cluster is smaller than a predefined
number (e.g. 150), we ignore this cluster and it will not
be further split by our non-greedy algorithm in step 4 into
smaller clusters as the cluster relationship is unsure for small
number of embeddings. As the TC algorithm is greedy when
it does clustering, the algorithm will always separate easy
to separate clusters and therefore the algorithm will very
unlikely oversplit the datapoints (there will be very unlikely
a case where two or more resulted clusters are part of an
actual face class). We have verified experimentally that the
TC algorithm has high recall and low precision, therefore it
is unlikely that it will oversplit the datapoints. The difficult
clusters will be left for the non-greedy clustering algorithm
at step 4 to tackle.

Non-greedy clustering algorithm can be implemented
using k-means algorithm. The loss function for the k-means
algorithm is

where xi is the embedding i and uj is the centroid of cluster
j. xi belong to cluster uj . Non-greedy clustering algorithm is
based on centroid clustering.

If we use the non-greedy algorithm directly on the face
embeddings without doing TC greedy clustering, this will
result in poor clustering performance. It is because it is dif-
ficult to determine the number of clusters and cluster size of
each cluster using non-greedy clustering algorithm. Table 1
shows the results of spectral clustering directly on the face

(5)J(Cij) =
�

(i,j)∈{(m,n)‖Cmn=1}

‖xi − uj‖2

Fig. 3   Example of adjacency
matrix with 2 clusters after TC

Fig. 4   Example of adjacency
matrix with 3 clusters after non-
greedy clustering

Table 1   Spectral clustering results with different number of clusters

Bold indicates the best performance/results

Spectral clustering F-measure (%)

With 2000 clusters 84.56
wWth 2577 clusters (actual # of classes) 97.22
With 3000 clusters 93.83

	 Pattern Analysis and Applications (2024) 27:8383  Page 6 of 14

embeddings with 2577 (exact ground truth number of clus-
ters), 2000 and 3000 clusters. We can see that if we wrongly
estimate the number of clusters by a small fraction, the clus-
tering performance (F-measure) will differ a lot. Beside that,
non-greedy clustering algorithm looks at all pair distances of
face embeddings, it will take up a lot of memory and makes
it impossible to cluster millions of faces. For a small set of
about 600 face embeddings, greedy clustering algorithm will
be able to execute very fast using small amount of memory.

Figure 5 shows the cascade clustering process of our
algorithm. A quick greedy clustering algorithm will split
easy to separate large clusters (each may contain a few sub-
clusters) and the non-greedy clustering algorithm will fur-
ther decompose these large clusters into small clusters.

Figure 6 shows the types of clusters that exist in the face
embeddings. For case 1, a simple fixed threshold is able to
separate the clusters. For case 2, although the fixed threshold
cannot separate them, the between class distances are larger
than within class distances. By increasing the similarity thresh-
old, the greedy clustering algorithm is still able to separate
them. For case 3, if there exists a bridge between two clusters,
then the greedy clustering algorithm will not be able to sepa-
rate them. A non-greedy clustering algorithm such as K-means
can be used to separate them. For case 4, although the two
clusters can be split by a threshold and greedy clustering algo-
rithm, some small clusters are produced as a side effect of

the algorithm. These small clusters (e.g. cluster with only one
embedding) can be merged to the nearest clusters using step 5
of our framework. For more information on the distance distri-
bution of each case can be found in the supplementary section.

3.4 � Label propagation of remaining unlabeled face
embeddings

Label propagation is performed at step 5 of our algorithm.
The TC algorithm will label some face embeddings as noise
(unlabeled). These face embeddings each forms a singleton
cluster with one embedding in size. We can also change the
labels of small clusters (e.g. size≤ 3 ) same as singleton clusters
as these labels are noisy. They are separated as clusters by the
TC clustering algorithm. These singleton clusters are far away
from every other face embeddings and so they are labeled as
noise. These noisy face embeddings can be ignored during
training of the final face recognition model after the unlabeled
data is labeled as they make up a small proportion of the total
number of unlabeled face embeddings. But for clustering
purposes, we can assign them to the nearest clusters if their
distances are smaller than a threshold. This will improve the
overall F-measure of the clustering result when compared to
the ground truth labels of the unlabeled faces. These singleton
clusters may be formed during the greedy clustering process
and they most likely belong to the nearest clusters.

For a small cluster k smaller a certain size,

where tij is an element of a matrix, tij > 0 if embedding i is
in cluster k and embedding j is not in cluster k and tij has the
cluster size of where embedding j is located with additional
top3 constraint, else it is 0. �top 3() returns a 1 if j is top 3
nearest embedding to embedding i (in terms of distance),
else it is 0. �(C(i), k) and 1 − �(C(j), k)) make sure that the

(6)
tij = �(C(i), k) × (1 − �(C(j), k)) × �top 3(i, j) × c

(size)

j

ck = C(argmaxj
⋃

C(i)=k

sij)

Fig. 5   Our two stage clustering algorithm

Fig. 6   Four types of clusters

Pattern Analysis and Applications (2024) 27:83	 Page 7 of 14  83

matrix is zero when either embedding i does not belong to
cluster k or embedding j belongs to cluster k. c(size)

j
 is the size

of cluster that contains embedding j. The function C()
returns the cluster id of embedding i or j. ck is the cluster id
where the cluster k is finally assigned to. Basically it means
that considering all the embeddings in small cluster k, find
the largest cluster that the cluster k is connected to based on
top 3 distances of each embeddings and merge cluster k with
the largest cluster.

The labels are propagated synchronously to the unlabeled
embeddings by finding the most frequently occurring labels
of the 3 nearest neighbors of these unlabeled embeddings.
Note that the unlabeled embeddings that are far away from
their nearest embeddings (e.g. further than a 0.4 threshold) are
ignored and new labels will not be assigned to them.

4 � Experiment results

In this section, we carried out experiments to validate the
effectiveness of our clustering algorithm. We tested our algo-
rithm on the IJB-B 1845 [26] data and MS-Celeb-1 M [27]
data which are commonly used by the face clustering commu-
nity for validation. We used the Folkes and Mallows F-meas-
ure [28–30] to evaluate the pairwise performance of clustering,

(7)Avg Recall =
∑

i,j

Ni,j∕
∑

i

Ni

(8)Avg Precision =
∑

i,j

Ni,j∕
∑

j

Nj

(9)Avg F-Measure =
2 × Avg Recall × Avg Precision

Avg Recall + Avg Precision

where Nj is the number of possible pairs of embeddings in
cluster j and Ni is the number of possible pairs of embed-
dings in class i. For class i and cluster j, Nij is the number of
possible pairs of embeddings of class i in cluster j. Class i
is the ground truth label of an embedding and cluster j is a
cluster label from the clustering algorithm.

4.1 � Omni‑supervised clustering results

In this subsection, we use 0.5 million data partition of MS-
Celeb-1 M dataset from github site [30] to investigate on
the use of different transformations of our omni-supervised
face clustering.

Table 2 shows that using two weak transformations to
generate two embeddings, then combine the embeddings
leads to better result than using each original embedding
itself. The two weak transformations are 3 × 3 median filter
and scale down by 4 pixels. They are called weak transfor-
mations because they produce embedding values that pro-
duce slightly higher performance on test data compared to
using the original image without tranformation. These two
transformations are weaker than using the transformations of
original image and original image flipped left to right. How-
ever the combined of the two transformations embeddings
(by averaging) leads to better clustering result than using
only each transformation. This is in analogy to the idea of
weak classifiers where a combination of the classifiers leads
to a stronger classifier.

Table 3 shows that by applying two or four best tran-
formations for omni-supervised clustering, we are able to
achieve 1% and 5% improvements respectively. This is
considered large improvement using only one trained model
instead of multiple trained models as in CDP algorithm. The
results shown in this subsection used embeddings generated

Table 2   Combine two weak transformations becomes a strong transformation

Bold indicates the best performance/results

Performance (F-meas-
ure)

Transformation 3 × 3 median
filter (%)

Transformation: Scale down by 4 pixels on
width and height (%)

2 Transformations: Scale down by 4 pixels
on width and height 3 × 3 median filter (%)

Step 3 [22] 76.62 76.25 78.84
Step 4 80.94 81.63 83.06
Step 5 86.95 86.49 87.82

Table 3   Combine four input
transformations to generate
robust embeddings for
clustering

Bold indicates the best performance/results

Performance
(F-measure)

No transformation
(%)

Apply 2 transformations (flip face
image left and right) (%)

Apply 4 transformations
(as in previous section)
(%)

Step 3 [22] 75.45 77.20 81.61
Step 4 78.70 81.91 87.17
Step 5 86.17 87.82 91.80

	 Pattern Analysis and Applications (2024) 27:8383  Page 8 of 14

using our trained model on labeled data. We did not use
existing embeddings from the github site as they do not pro-
vide their deep network model for us to experiment with
different input transformations. Our omni-supervised trans-
formations can act like multiple committee models, without
the need to train multiple models.

4.2 � Compare with CDP multiple committee models

We experimented with CDP algorithm using their committee
models instead of using our omni-supervised transforma-
tions to generate and combine the embeddings. Then the
cluster results from CDP are further refined using our step 4
cluster splitting and step 5 label propagation algorithms. We
used the embeddings from the CDP github site [29]. From
Table 4, we can see that on 200k MS-Celeb-1 M dataset,
using our clustering method with 1 committee model (top
right entry in the table) has close to the same performance
as using CDP with 4 committee models (bottom left entry
in the table). Using 4 committee models requires much more
training time and therefore it is not worth it to train 4 models
to cluster this small dataset. Using 4 committee models with
our clustering algorithm (bottom right entry in the table) has
reached almost the same F-measure as spectral clustering
(97.22%, see Table 1) with actual number of ground truth
clusters specified as input.

4.3 � Compare with state of the art clustering
algorithms

Table 5 shows the step 3, 4 and 5 results of our framework on
the 1.7M and 5 M data. The 1.7 and 5 millions faces datasets
are partitions of a large MS-Celeb-1 M dataset provided in
github site [30]. The embeddings are also downloaded from
this github site. Our algorithm has significant performance
improvement over the CDP algorithm. Step 5 has made some
improvement to step 4 of our framework. The timings shown
in this table exclude the time taken to find the 15 k-nearest
neighbors graphs for the TC algorithm in step 3. It takes
15.97 and 59.83 min to compute the 15 k-nearest neighbors
graph for 1.7 and 5 millions data respectively. The k-nearest
neighbors graph computation is a bottleneck in the cluster-
ing algorithms, which is also needed for the deep learning
clustering algorithms. In fact, the deep learning clustering

algorithms LTC and GCN require 80 and 200 nearest neigh-
bors respectively.

In Tables 5 and 6, we use only one face recognition model
without omni-supervised tranformations and without mul-
tiple models as in the multiple committee models case in
previous subsection. We used the embeddings provided at
the LTC paper github site [30] and the GCN paper github
site [31]. We used spectral clustering for step 4 of our frame-
work. Spectral clustering is applied only to clusters larger
than a predefined number (e.g. 150 embeddings). We select
number of clusters in spectral clustering using the number of
eigenvalues greater than a threshold, with a maximum of 5
clusters. The spectral clustering is repeated again if the bro-
ken down clusters are still larger than the predefined number.

From Table 6, we can see that our clustering algorithm
has outperformed LTC [3] and GCN [4] clustering algo-
rithms even on the large dataset of 1.7 and 5 millions faces.
Both of these algorithms use deep learning network. Our
algorithm is much faster. This enables the user more time to
vary with the parameters of our clustering algorithm to fur-
ther improve the performance. Note that all clustering algo-
rithms are run on CPU and the timings of the deep learn-
ing clustering algorithms are inference times only without
training times. The GCN, LTC and our clustering timings
in the table do not include nearest neighbors computation
as k-nearest neighbors are computed separately. As for the
FINCH method, it requires only one nearest neighbor and
it is computed together with the clustering process. We can
also see that GCN algorithm works well on the small 66k
IJB-B 1845 data but it performs poorly on the 1.7M data.
This algorithm does not scale well to large dataset. FINCH
algorithm [2] is a hierarchy clustering technique which

Table 4   Clustering results on
200k dataset

Bold indicates the best performance/results

Performance (F-measure) Step 3 [22] (%) Step 4 (%) Step 5 (%)

1 Base model and 1 committee models, use voting 88.17 94.66 95.19
1 Base model and 2 committee models, use voting 91.70 95.62 96.35
1 Base model and 4 committee models, use voting 92.86 95.226 96.67
1 Base model and 4 committee models, use mediator 95.59 96.10 97.05

Table 5   Clustering results on 1.7 and 5 millions faces of the MS-
Celeb-1 M dataset

Bold indicates the best performance/results

Step 1.7M data 5 M data

F-measure
(%)

Time
taken
(min)

F-measure
(%)

Time taken
(min)

Step 3 [22] 67.34 0.92 63.85 4.67
Step 4 78.98 2.86 75.38 12.64
Step 5 81.31 0.26 76.30 5.44

Pattern Analysis and Applications (2024) 27:83	 Page 9 of 14  83

returns a set of different numbers of clusters. By choosing
the best number of clusters and compute the F-measure, our
clustering algorithm still outperforms FINCH. LTC algo-
rithm performs poorly on IJB-B 1845 data as the algorithm
is not trained to cluster effectively on that data.

Table 7 compares the best clustering algorithm VEGCN
[32] with our algorithm with and without omni-supervision.
It has clearly shown that our algorithm outperforms VEGCN
even without omni-supervision. The VEGCN algorithm
reported here is slightly less than the original paper as we
do not know the exact hyperparameters and we reduced the
length of each embeddings from 512 dimensions to 256
dimensions so that the embeddings can be input into the
deep learning network of VEGCN. The embeddings are
reduced from 512 to 256 dimensions simply by adding the
first 256 dimensions with the next 256 dimensions and nor-
malizing the resultant embeddings to unit length.

Table 8 shows the percentage of singleton clusters labeled
by the different clustering algorithms. Although FINCH has

0 singleton cluster, it has poor clustering performance and
it is not able to identify noisy face images in the data. We
can see that our clustering algorithm is more robust, pro-
duces lesser singleton clusters and much higher clustering
F-measure compared to the deep learning clustering algo-
rithms. Higher clustering performance is needed for semi-
supervised learning.

Figure 7 shows an example of ground truth cluster distri-
bution of four classes of face embeddings. The purple dot-
ted circles are the large clusters returned by step 3 (greedy
clustering) of our clustering algorithm. These large clusters
can be further broken down into small clusters by step 4
(non-greedy clustering). The green dotted circle is a single-
ton cluster created by first stage of our clustering algorithm
which can be re-merged to the nearest cluster at step 5.

4.4 � Different variations of our clustering algorithm

Table 9 shows the results of our clustering algorithm at
step 5 if we assume clusters of sizes smaller than or equal
to 3 instead of 1 as noisy clusters. We can see that this

Table 6   Our clustering results comparing to the state of the art algorithms

Bold indicates the best performance/results
a Taken from github site [30] “mins” means minutes

Clustering algorithms IJB-B 1845 data 1.7M MS-Celeb-1 M data 5 M MS-Celeb-1 M data

F-measure Time taken F-measure Time taken F-measure Time taken

FINCH [2] 26.81% 1.17 mins 50.489% 9.7 mins 35.78% 34.96 mins
GCN [4] 67.72% 2.09 mins 15.72% 52.48 mins 3.25% 150.01 mins
LTC [3] (0.7,0.75) 0.4296% 1.37 mins 75.72% 50.67 mins 71.63% 162.27 mins
LTC [3] (0.6, 0.65, 0.7, 0.75)a – – 77.63% – 72.77% –
Ours 82.13% 0.07 mins 81.31% 4.04 mins 76.30% 22.75 mins

Table 7   Compare our clustering algorithm (with and without omni-
supervision) and the best algorithm VEGCN [32]

Bold indicates the best performance/results

Clustering algorithms F-measure (%)

VEGCN [32] 75
Ours without Omni-supervision 84.55
Ours with Omni-supervision 86.29

Table 8   Percentage of singleton clusters by different clustering algo-
rithms on the 1.7M MS-Celeb-1 M data

Bold indicates the best performance/results

Clustering algorithms % Of singleton
clusters

Of
singleton
clusters

FINCH [2] 0 0
GCN [4] 87.35 1,520,191
LTC [3] (0.7,0.75) 15.71 273,466
Ours 1.82 31,692

Fig. 7   Example of embeddings distribution of four face identities in
first two principal components space

	 Pattern Analysis and Applications (2024) 27:8383  Page 10 of 14

assumption helps to improve the recall and therefore also
improves the F-measure of the clustering results.

We used the embeddings provided at the LTC paper
github site [30]. Table 10 investigates the use of different
non-greedy clustering algorithms in step 4 in terms of execu-
tion speed and F-measure performance. We used squared
error,

to select the number of clusters for K-means, hierarchy
clustering and Birch algorithms. N is the number of face
embeddings, xi is face embedding i and C(xi) is the centroid
of cluster of face embedding xi . In this experiment, a face
embedding cluster is repeatedly broken down by 2 if it con-
tains 2 or more clusters. A cluster is broken down by 2 if

(10)SE =
1

N

N�

1

‖xi − C(xi)‖2

(11)SE2 < SE1∕1.1

where SE1 and SE2 are the square errors when using one and
two clusters respectively. This method is similar to elbow
method to select number of clusters, where we continue to
increase the number of clusters if there is large decrease
in error. DBSCAN algorithm needs to specify eps (neigh-
bourhood distance) and F-measure is sensitive to this eps
parameter. Spectral clustering selects number of clusters by
looking at the eigenvalues. It looks at how many of these
eigenvalues are larger than a threshold. For detail informa-
tion of which python package is used to implement each
type of non-greedy clustering algorithm can be found in the
supplementary section of our paper.

Using K-means with 1 random initialization is much faster
than 10 random initializations with slight loss of F-measure.
K-means is the fastest of all algorithms. DBSCAN is sensi-
tive to the choice of eps parameter. Result will differ a lot for
slight change in the parameter. Hierarchical clustering works
best if we use the ‘Ward’ merging criteria. ‘Ward’ is also
the best overall algorithm. ‘Single’ criteria leads to greedy
merging and has tendency to form long chain cluster, there-
fore leads to poor performance. ‘Complete’, ‘Average’ and
‘Weighted’ are slightly inferior to ‘Ward’, although they are
similar to ‘Ward’. ‘Centroid’ and ‘Median’ perform poorly
as they disregard the sizes of the clusters when they try to
merge clusters. Spectral clustering is too time consuming.
Although ‘Ward’ has the best performance and is slightly
better than spectral clustering, we think that spectral cluster-
ing is theoretically better which can partition non-circular
and irregular shaped clusters. Therefore for Table 6, we
choose to use spectral clustering.

We can also select the number of clusters in ‘Ward’ hier-
archy clustering by using the dendrogram (see row ‘Hierar-
chy clustering (ward with selection of number of clusters)’
in Table 10). We search between 1 to 14 clusters and cut the
dendrogram where the distance between the nearest split
and merge operations is larger than 1.1 using largest number
of clusters. The clusters are repeatly broken down for a few
iterations. Using this approach, we have achieved F-measure
of 79.27% in 0.73 min. It is about 0.4% more accurate than
using ward with repeated splitting into 1 or 2 clusters at
each iteration, but has about the same speed compared to
repeated splitting.

Table 11 shows the optimal clustering results at step
4. This is done by using the cluster results at step 3, then

Table 9   Clustering performance of our algorithm with assumption of
noisy clusters of different sizes

Bold indicates the best performance/results

Noisy cluster size F-measure for 1.7M MS-
Celeb-1 M data (%)

F-measure for
5 M data (%)

1 82.48 78.54
2 83.63 79.17
3 83.76 79.11

Table 10   Clustering results of our algorithm using different non-
greedy clustering algorithms at step 4 on the 1.7M MS-Celeb-1 M
data

Bold indicates the best performance/results

Clustering algorithms F-measure (%) Time
taken
(min)

K-means (init=10) 78.64 1.37
K-means (init=1) 78.42 0.6
Hierarchy clustering (ward) 78.88 0.76
Hierarchy clustering (single) 68.90 0.43
Hierarchy clustering (complete) 78.41 0.76
Hierarchy clustering (average) 77.80 0.75
Hierarchy clustering (weighted) 77.75 0.77
Hierarchy clustering (centroid) 68.30 0.42
Hierarchy clustering (median) 68.26 0.42
DBSCAN (eps=0.75, min_samples=2) 72.20 2.02
Birch (branching_factor=50) 75.41 0.93
Spectral clustering 78.98 2.86
Hierarchy clustering (ward with selec-

tion of number of clusters)
79.27 0.73

Table 11   Optimal clustering results at step 4 on the 1.7M MS-
Celeb-1 M data

Bold indicates the best performance/results

Optimal clustering algorithms F-measure (%)

Consider clusters of size> 150 80.58
Consider all clusters 82.44

Pattern Analysis and Applications (2024) 27:83	 Page 11 of 14  83

split them according to the ground truth at each cluster
to obtain the optimal results. If we do not do additional
clustering on the clusters at step 4 that are smaller than or
equal to a predefined number (150 samples), the optimal
F-measure is 80.58%. Our result is 1.3% lower than this
optimal result. If we do additional clustering on all clus-
ters at step 4, the optimal F-measure is 82.44%. Our result
is 3.2% lower than this optimal result. As for small clus-
ters at step 3, it is difficult to obtain accurate clustering of
them at step 4 so these small clusters are ignored at step 4.

The value of 150 is chosen because the number of
images in an identity Celeb-1 M is about 100 images,
which is slightly less than 150. 600 is chosen for transitive
closure because it is a multiple of 100. So that after tran-
sitive closure clustering, there is still room for K-means
for further fine-tuning breakdown into smaller clusters of
the clusters.

4.5 � Semi‑supervised face recognition results

We trained an initial 14 layers shallow model which is a
modified version of ResNeXt [33] and used it to label the
unlabeled data. Then a final model using the ResNeXt 50
layers model is used to train on all the labeled and unla-
beled data. Note that the face identities in the labeled and
unlabeled data can overlap. We can use separate classifier
heads to each part of the data to overcome the problem
of data overlap. In our case, we assume that the identities
in the labeled and unlabeled data do not overlap so only
one classifier head using ArcFace loss function is used.
The results are shown in Table 12. Supervised model on
labeled data is to train a model on the labeled data only.
Supervised model on all data is to train on both labeled
and unlabeled data assuming we have the labels of unla-
beled data. We can see that our semi-supervised model
achieves good performance (almost the same identifica-
tion performance on the MegaFace dataset) compared to
fully supervised model using ground truth labels for the
unlabeled data for training. We use the labeled data and
unlabeled data provided in the github site [30].

Our semi-supervised model with removal of clusters of
size≤ 4 , has achieved nearly the same identification rate
as our supervised model on whole data validated using the
MegaFace dataset. Without removal of small clusters of
size≤ 4 , our semi-supervised model result is clearly less
than our model with removal of small clusters. Our semi-
supervised model has greatly outperformed supervised
model on labeled data only by more than 10%.

5 � Conclusion

In this paper, we have shown that combining two weak
tranformations leads to strong clustering result, in simi-
lar analogy to combining weak classifiers leads to strong
classifier. Our omni-supervised clustering has led to 5%
improvement in our clustering algorithm compared to
the case with no transformation. For clustering of 200k
dataset, we have shown that using one committee model
has about the same performance of using four committee
models if step 4 and 5 step of our clustering are performed
after step 3 TC. We have tried substituting step 4 of our
clustering algorithm with many other classical cluster-
ing algorithms and have shown that K-means, hierarchy
clustering (ward) and spectral clustering have performed
similarly well. We have shown that if our step 4 clustering
is perfect, it is only 4% away from our hierarchy clus-
tering (ward) result. We have trained a semi-supervised
model using both labeled and unlabeled data (labeled by
clustering). It has almost the same performance with the
model trained on all ground truth data without stripping
the labels from unlabeled data.

Although our method is an optimization technique,
our method is interpretable and explainable than the deep
learning approach, which can be run in much shorter time
using less memory. In the future work, we will add in
convex optimization clustering to perfect the art of semi-
supervised learning.

Appendix 1: Implementation details of our
clustering algorithm

We use the TC clustering algorithm as the backbone algo-
rithm in our clustering algorithm. Our clustering algorithm
first does a greedy clustering (TC clustering), next a non-
greedy algorithm and lastly propagation of cluster labels
from labeled embeddings to unlabeled embeddings (devel-
oped by us). Our whole algorithm is written entirely in
python and we released the codes in our github site (state
the site). We used the data from the papers [3] and [4].
All clustering experiments are ran on a desktop machine

Table 12   Semi-supervised face recognition results

Bold indicates the best performance/results

Models Identification rate on
MegaFace dataset (%)

Supervised model on labeled data only 62.74
Supervised model on all data 76.47
Our semi-supervised model 74.94
Our semi-supervised model with removal of

small clusters with size≤ 4

76.22

	 Pattern Analysis and Applications (2024) 27:8383  Page 12 of 14

with Intel Core i7-7700 CPU @3.60GHz. We use only
one core (without any parallel processing) in our experi-
ments. Our clustering algorithm is simple and can run on
most CPU using only single core.We use only one core
(without any parallel processing) in our experiments. Our
clustering algorithm is simple and can run on most CPU
using only single core. We have uploaded our codes to
github. It can be accessed through the link https://github.
com/singkuangtan/face-clustering.

For Table 6, we use embeddings trained using softmax loss
function and as for semi-supervised learning (Table 12), we
use embeddings trained using ArcFace loss function.

Appendix 2: Python functions and packages

Table 13 shows the python functions and packages we use for
the experiments.

Appendix 3: Relationship of the distances
in four cases

We begin by describing a set of properties,

where C0 is the set of embedding indices for cluster 0 and
likewise C1 is the set of embedding indices for cluster 1.

(12)

dmin(C0,C1) = mini∈C0 j∈C1,n(i,j)=1
‖ei − ej‖

dmax(C0) = maxi∈C0,j∈C0,n(i,j)=1
‖ei − ej‖

dmax(C1) = maxi∈C1,j∈C1,n(i,j)=1
‖ei − ej‖

davg(C0,C1) =
1

�C0��C1�
�

i∈C0 j∈C1

‖ei − ej‖

davg(C0) =
1

�C0�
�

i∈C0

‖ei −
�

j∈C0

ej‖

davg(C1) =
1

�C1�
�

i∈C1

‖ei −
�

j∈C1

ej‖

n(i, j) = 1 if embedding i and j are neighbors else it is a 0. ei
or ej is an embedding with index i or j.

For Case 0, a greedy clustering algorithm with a large
threshold can separate the two clusters. Mathematically, it is

where max is a maximum function of the two input values
and >> means much greater than (by a few times).

For case 1, a greedy clustering algorithm can separate the
two clusters, but the gap between the clusters is smaller and
therefore a smaller threshold is used. Mathematically, it is

For case 2, there is a bridge that connects nearest neighbor
embeddings from the two clusters. Therefore no threshold
using a greedy algorithm is able to separate them. However,
the mean interclass distance is still larger than the mean
intraclass distance. This property enables the clusters to
be separated by non-greedy clustering algorithm such as
Kmeans. Mathematically, it is

For case 3, although the singleton cluster 0 is separated from
main cluster 1 using a threshold and greedy clustering algo-
rithm, the ground truth class of cluster 0 is the same as clus-
ter 1 due to random outlier noise. So the singleton cluster
0 should be combined with cluster 1. Mathematically, it is

where >> means it is much greater (a few times greater).

(13)dmin(C0,C1) >> max(dmax(C0), dmax(C1))

(14)dmin(C0,C1) > max(dmax(C0), dmax(C1)).

(15)

dmin(C0,C1) < max(dmax(C0), dmax(C1))

davg(C0,C1) > davg(C0)

davg(C0,C1) > davg(C1).

(16)

dmin(C0,C1) > dmax(C1)

|C0| = 1

|C1| >> 1

Table 13   List of python
functions and packages

Clustering algorithm Python function Python Package

Kmeans KMeans sklearn.cluster
Hierarchy clustering (ward) linkage scipy.cluster.hierarchy
Hierarchy clustering (single) linkage scipy.cluster.hierarchy
Hierarchy clustering (complete) linkage scipy.cluster.hierarchy
Hierarchy clustering (average) linkage scipy.cluster.hierarchy
Hierarchy clustering (weighted) linkage scipy.cluster.hierarchy
Hierarchy clustering (centroid) linkage scipy.cluster.hierarchy
Hierarchy clustering (median) linkage scipy.cluster.hierarchy
DBSCAN DBSCAN sklearn.cluster
Birch Birch sklearn.cluster
Spectral clustering SpectralClustering sklearn.cluster

Pattern Analysis and Applications (2024) 27:83	 Page 13 of 14  83

Funding  The authors did not receive support from any organization
for the submitted work

Data availability  The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request

Declarations 

Conflict of interest  The authors declare they have no financial interests

References

	 1.	 Radosavovic I, Dollár P, Girshick R, Gkioxari G, He K (2018) Data
distillation: towards omni-supervised learning. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp
4119–4128

	 2.	 Sarfraz S, Sharma V, Stiefelhagen R (2019) Efficient parameter-
free clustering using first neighbor relations. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
8934–8943

	 3.	 Yang L, Zhan X, Chen D, Yan J, Loy CC, Lin D (2019) learning to
cluster faces on an affinity graph. in: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 2298–2306

	 4.	 Wang Z, Zheng L, Li Y, Wang S (2019) Linkage based face cluster-
ing via graph convolution network. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 1117–1125

	 5.	 He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In:
Proceedings of the IEEE international conference on computer
vision, pp 2961–2969

	 6.	 Iscen A, Tolias G, Avrithis Y, Chum O (2019) Label propagation for
deep semi-supervised learning. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 5070–5079

	 7.	 Wang S, Meng J, Yuan J, Tan Y-P (2019) Joint representative selec-
tion and feature learning: a semi-supervised approach. In: Proceed-
ings of the IEEE conference on computer vision and pattern recogni-
tion, pp 6005–6013

	 8.	 Wu S, Li J, Liu C, Yu Z, Wong H-S (2019) Mutual learning of com-
plementary networks via residual correction for improving semi-
supervised classification. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 6500–6509

	 9.	 Li Q, Wu X-M, Liu H, Zhang X, Guan Z(2019) Label efficient
semi-supervised learning via graph filtering. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
9582–9591

	10.	 Wu S, Deng G, Li J, Li R, Yu Z, Wong H-S (2019) Enhancing
triplegan for semi-supervised conditional instance synthesis and
classification. In: proceedings of the IEEE conference on computer
vision and pattern recognition, pp 10091–10100

	11.	 Yu B, Wu J, Ma J, Zhu Z (2019) Tangent-normal adversarial regu-
larization for semi-supervised learning. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
10676–10684

	12.	 Jiang B, Zhang Z, Lin D, Tang J, Luo B (2019) Semi-supervised
learning with graph learning-convolutional networks. In: Proceed-
ings of the IEEE conference on computer vision and pattern recogni-
tion, pp 11313–11320

	13.	 Qiao S, Shen W, Zhang Z, Wang B, Yuille A (2018) Deep co-train-
ing for semi-supervised image recognition. In: Proceedings of the
European conference on computer vision (ECCV), pp 135–152

	14.	 Robert T, Thome N, Cord M (2018) Hybridnet: classification and
reconstruction cooperation for semi-supervised learning. In: Pro-
ceedings of the European conference on computer vision (ECCV),
pp 153–169

	15.	 Chen Y, Zhu X, Gong S (2018) Semi-supervised deep learning with
memory. In: Proceedings of the European conference on computer
vision (ECCV), pp 268–283

	16.	 Shi W, Gong Y, Ding C, MaXiaoyu Tao Z, Zheng N (2018) Trans-
ductive semi-supervised deep learning using min-max features.
In: Proceedings of the European conference on computer vision
(ECCV), pp 299–315

	17.	 Cicek S, Fawzi A, Soatto S (2018) Saas: speed as a supervisor for
semi-supervised learning. In: Proceedings of the European confer-
ence on computer vision (ECCV), pp 149–163

	18.	 Liu Y, Song G, Shao J, Jin X, Wang X (2018) Transductive centroid
projection for semi-supervised large-scale recognition. In: Proceed-
ings of the European conference on computer vision (ECCV), pp
70–86

	19.	 Coelho de Castro D, Nowozin S (2018) From face recognition to
models of identity: a bayesian approach to learning about unknown
identities from unsupervised data. In: Proceedings of the European
conference on computer vision (ECCV), pp 745–761

	20.	 Kumar V, Namboodiri A, Jawahar C (2018) Semi-supervised anno-
tation of faces in image collection. Signal Image Video Process
12(1):141–149

	21.	 Sharma V, Tapaswi M, Sarfraz MS, Stiefelhagen R (2019) Self-
supervised learning of face representations for video face clustering.
arXiv preprint arXiv:​1903.​01000

	22.	 Zhan X, Liu Z, Yan J, Lin D, Change Loy C (2018) Consensus-
driven propagation in massive unlabeled data for face recognition.
In: Proceedings of the European conference on computer vision
(ECCV), pp 568–583

	23.	 Shen S, Li W, Zhu Z, Huang G, Du D, Lu J, Zhou J(2021) Structure
aware face clustering on a large-scale graph with 107 nodes. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, IEEE, pp 9085–9094

	24.	 Nguyen XB, Bui DT, Duong CN, Bui TD, Luu K (2021) Clus-
former: a transformer based clustering approach to unsupervised
large-scale face and visual landmark recognition. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recogni-
tion, IEEE, pp 10847–10856

	25.	 Zhang K, Zhang Z, Li Z, Qiao Y (2016) Joint face detection and
alignment using multitask cascaded convolutional networks. IEEE
Sign Process Lett 23(10):1499–1503

	26.	 Whitelam C, Taborsky E, Blanton A, Maze B, Adams J, Miller T,
Kalka N, Jain AK, Duncan JA, Allen K, et al. (2017) Iarpa janus
benchmark-b face dataset. In: Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pp. 90–98

	27.	 Guo Y, Zhang L, Hu Y, He X, Gao J(2016) Ms-celeb-1m: a dataset
and benchmark for large-scale face recognition. In: European confer-
ence on computer vision, Springer, pp 87–102

	28.	 Amigó E, Gonzalo J, Artiles J, Verdejo F (2009) A comparison of
extrinsic clustering evaluation metrics based on formal constraints.
Inf Retriev 12(4):461–486

	29.	 Zhan X (2019) Implementation of “Consensus-Driven Propagation
in Massive Unlabeled Data for Face Recognition” (CDP). GitHub

	30.	 Yang L (2019) Learning to cluster faces on an affinity graph (CVPR
2019). GitHub

	31.	 Wang Z (2019) Linkage-based face clustering via graph convolution
network. GitHub

	32.	 Yang L, Chen D, Zhan X, Zhao R, Loy CC, Lin D (2020) Learn-
ing to cluster faces via confidence and connectivity estimation. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp 13369–13378

	33.	 Liu Y, Zhang G, Wang H, Zhao W, Zhang M, Qin H (2019) An
efficient super-resolution network based on aggregated residual
transformations. Electronics 8(3):339

http://arxiv.org/abs/1903.01000

	 Pattern Analysis and Applications (2024) 27:8383  Page 14 of 14

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Sing Kuang Tan 

Xiu Wang 

	A novel two-stage omni-supervised face clustering algorithm
	Abstract
	1 Introduction
	2 Related work
	3 The proposed clustering algorithm
	3.1 Overview
	3.2 Omni-supervised model with multiple transformations
	3.3 Greedy clustering and non-greedy cluster splitting
	3.4 Label propagation of remaining unlabeled face embeddings

	4 Experiment results
	4.1 Omni-supervised clustering results
	4.2 Compare with CDP multiple committee models
	4.3 Compare with state of the art clustering algorithms
	4.4 Different variations of our clustering algorithm
	4.5 Semi-supervised face recognition results

	5 Conclusion
	Appendix 1: Implementation details of our clustering algorithm
	Appendix 2: Python functions and packages
	Appendix 3: Relationship of the distances in four cases
	References

