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Abstract
The effective use of time series data is crucial in business decision-making. Temporal data reveals temporal trends and 
patterns, enabling decision-makers to make informed decisions and prevent potential problems. However, missing values in 
time series data can interfere with the analysis and lead to inaccurate conclusions. Thus, our work proposes a Focalize K-NN 
method that leverages time series properties to perform missing data imputation. This approach shows the benefits of taking 
advantage of correlated features and temporal lags to improve the performance of the traditional K-NN imputer. A similar 
approach could be employed in other methods. We tested this approach with two datasets, various parameter and feature 
combinations, and observed that it is beneficial in scenarios with disjoint missing patterns. Our findings demonstrate the 
effectiveness of Focalize K-NN for imputing missing values in time series data. The more noticeable benefits of our methods 
occur when there is a high percentage of missing data. However, as the amount of missing data increases, so does the error.

Keywords  Missing data imputation · Machine learning · K-nearest neighbors · Time series

1  Introduction

Missing data in time series can obscure patterns and trends, 
potentially affecting the analysis of the data and the conclu-
sions related to trends and predictions. Inaccurate studies 
can have high costs and negative impacts on businesses and 
people’s lives, leading to a lack of confidence in data and 
methods, and hindering decision-makers from utilizing valu-
able data insights to perform a coherent analysis.

Imputation algorithms emerged to solve the problem of 
missing data. An adequate imputation algorithm improves 
the data usability, allowing better data analysis, visualiza-
tion, and exploration, helping to avoid bias in the analysis 
and models. Furthermore, in the context of missing data 
in time series, adequate imputation methods can improve 
the performance of time series-related algorithms, such as 
forecasting tasks, and maintain data continuity.

In smart cities, missing data is mainly caused by faults 
and failures in the infrastructure, with distinct causes such as 
humans, natural phenomena, and software or hardware prob-
lems. In this context, a fault can be described as a mistake, 
something wrong, an omission, a crash, or incorrect timing. 
A failure is described as a behavior that misrepresents or 
contradicts the system claimed specification [3]. This can 
result in blocks of missing data lasting from minutes to 
months, or even worse.

These faults and failures can significantly affect the 
application of analytical, statistical, and machine learning 
methods. They can impact the time series decomposition, 
detecting relevant lags, clustering time series, and forecast-
ing tasks. Furthermore, they can lead to service degrada-
tion, negatively affecting the provided services of smart 
cities [16].

This article aims to reduce the impact of faults and fail-
ures on the data analysis in smart cities and other contexts 
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by proposing a method to perform missing data imputation 
on time series. This work focuses on specific patterns in 
missing data, such as consecutive missing data, which is 
often overlooked in the literature. The main contributions 
are the following:

•	 A study focused on real-world missing data patterns 
observed in time series.

•	 A proposal of two mechanisms to generate two particular 
types of synthetic missing data.

•	 A study of the impact of different feature engineering 
approaches on the time series missing data imputation.

•	 A proposal of a method to perform imputation in time 
series named Focalize K-Nearest Neighbors (FKNN).

•	 An evaluation study of the proposed method using two 
real-world datasets.

Our FKNN method leverages the properties of time series, 
as correlated temporal features and temporal lags to the 
traditional KNN imputation. The study findings show 
that FKNN can handle the missing data and perform 
imputations in overlapping and disjoint missing patterns. 
We tested with two datasets with different characteristics 
and many combinations of missing data. While it only 
presents small benefits in the overlapping missing patterns, 
the mechanism can capture and perform a more accurate 
missing data imputation in disjoint patterns. Nevertheless, 
and as expected, as the percentage of missing data increases, 
we can observe a degradation of the method’s performance. 
That is expected, since increasing the percentage of missing 
data also increases its uncertainty.

The paper is organized as follows. The related work 
on missing data imputation is presented in Sect. 2, while 
the proposed approach is described in Sect.  3. Then, 
the experiments and results are depicted in Sect. 4, and 
conclusions and directions for future work are presented in 
Sect. 5.

2 � Related work

When an observation lacks a stored data value for a variable, 
it is considered as missing. A straightforward approach 
commonly used to deal with missing data is replacing the 
missing values with a specific value. For instance, we can 
use the value 0, the mean, the median, the mode, among 
others. When dealing with missing data in time series, 
forward and backward fill, the moving average, the Kalman 
filter, and interpolation methods are more effective than 
replacing missing values with a specific value. These 
methods are suitable for univariate time series imputation. 
However, these methods can severely fail when we have 
long sequences of missing data. Machine and deep learning 

approaches have gained popularity in recent years, since they 
are suitable for multivariate time series and can capture more 
patterns.

K-Nearest Neighbors (K-NN) is a popular predictive 
machine learning model that can be used for data imputation, 
using similar points in a dataset to guess missing data. While 
K-NN has been widely used, it does have some limitations. 
One issue is the curse of high dimensionality [9], which can 
make the model less accurate. Additionally, K-NN stores the 
complete dataset in memory [19], which can be a problem 
for larger datasets.

To address the limitations of KNN, researchers have 
proposed various improvements over the years. For example, 
Wettschereck et  al. [19] developed a locally adaptive 
nearest-neighbor method for classification. This approach 
adapts the value of k locally within subsets of data with 
specific characteristics, rather than using a global value of 
k computed during cross-validation. The researchers tested 
four different variations of the method and found it very 
effective for particular datasets.

Another application of K-NN is imputing missing values 
in time series data. Oehmcke et al. [15] proposed a weighted 
version of K-NN ensembles with penalized Dynamic 
Time Warping (DTW) as a distance measure to perform 
multivariate time series imputation. They created windows 
for DTW using linear interpolation, and the correlation 
coefficient for global weights. The model gives more weight 
to consecutive missing data, expects highly correlated time 
series, and is more effective at higher missing ratios. Sun 
et al. [17] focused on traffic data and used a temporal gap-
sensitive windowed K-NN method. This approach has 
proven to be robust even with high missing ratios. However, 
one potential issue is that there may be windows with only 
missing data, which can be problematic. Additionally, the 
dataset can be significantly larger than the original dataset. 
This can be computationally expensive, particularly for 
larger datasets.

Overall, K-NN is a valuable tool for data imputation, 
allowing researchers to explore ways to improve its 
accuracy and efficiency continually. As no single method is 
suitable for all datasets and missing data patterns, different 
approaches should be considered [19].

Khayati et al. [10] conducted a study to evaluate different 
imputation methods for time series data. Their research 
compared twelve methods based on algorithms such as 
Principal Component Analysis (PCA), Singular Value 
Decomposition (SVD), Expectation-Maximization (EM), 
and Autoregressive (AR) models. They tested these methods 
on several datasets with varying properties and missing 
data patterns. The authors found that no single method was 
the best for all cases. They suggested that the imputation 
method should depend on the specific dataset and missing 
data patterns.
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The works in [6, 7, 12] propose the use of Artificial 
Neural Network (ANNs) to impute missing values in time 
series. Since these works consider multivariate time series, 
they use ANN designed to deal with time series data, such as 
Recurrent Neural Network (RNNs). However, since RNNs 
can face the vanishing gradients problem, these works do 
not use the traditional RNNs, but improved versions of this 
type of network.

Cao et al. [6] utilized a bidirectional Long Short-Term 
Memory (LSTM) graph network to handle multiple 
correlated missing values and provide generalized results. 
Che et al. [7] proposed a model based on Gated Recurrent 
Unit (GRU) with trainable decays, which is designed to 
capture previous properties. The main objective of this 
model is to make accurate predictions, even when the dataset 
may have missing data. However, the model’s performance 
depends on the correlation between the missing data patterns 
and the prediction phase. If the two tasks are not correlated, 
the model may perform poorly. Li et al. [12] proposed a 
method that combines LSTM, Support Vector Regression 
(SVR), and collaborative filtering for multi-view learning. 
They focus on block missing patterns, considering spatial-
temporal dependencies and different missing patterns despite 
a high missing ratio.

Other approaches include Generative Adversarial Network 
(GANs), AutoEncoder (AEs), and attention mechanisms. 
Luo et al. [13] proposed a model based on GANs. The model 
performs imputations using the discriminative and squared 
error loss and the closest generated complete time series. 
Kuppannagari et al. [11] proposed a method based on Graph 
Neural Network (GNN) and Denoising Autoencoder (DAE). 
Their approach can deal with spatio-temporal data and adapt 
to different combinations of missing blocks. Jing Bi et al. 
[4] presented a method combining GANs with an AE and 
an AR model. The GANs were utilized to understand the 
probability distribution of multivariate time series, the AE to 
extract features, and the AR model to capture time patterns. 
They compared the proposed model with K-NN and other 
algorithms. The proposed model achieved the best results; 
however, K-NN was the second-best model, presenting a 
similar performance (Mean Squared Error (MSE), Mean 
Absolute Error (MAE), and Area Under the ROC Curve 
(AUC)) to the proposed model.

Christopher Bülte et al. [5] proposed a two-stage mul-
tivariate time series imputation algorithm. The first stage 
involves a training phase, followed by an inference phase. 
Their algorithm uses LSTMs and an Attention mecha-
nism. During the training phase, the LSTM model esti-
mates the distribution of the missing data, using known 
values to predict the next ones. The output of this stage is 
a probability distribution for each missing value. The esti-
mated distribution is then used to train the attention-based 

imputation model. The trained attention mechanism is used 
for the missing data during the inference phase. Only the 
attention mechanism is required to predict missing values. 
The authors evaluated and compared their algorithm using 
the MSE and the MAE, and observed that it achieved good 
results. One of the methods used in the comparison was 
the K-NN. The K-NN imputer was several times the best 
second overall model when considering all the features.

In our previous research [1], we introduced a technique 
called Focalize K-NN that can impute missing data in 
time series by taking advantage of their properties. Our 
research showed that Focalize K-NN performs particularly 
well when there are disjoint patterns present. However, 
the evaluation of the approach was very limited. In this 
article, we aim to strengthen our conclusions by improving 
the approach, the methodology, and by testing our method 
with different time series datasets that have different 
properties and characteristics.

Training the model with the appropriate dataset is 
crucial to achieve desirable results when dealing with deep 
learning algorithms. Deep learning algorithms usually 
require a training phase with substantial data. Contrarily, 
machine learning algorithms do not require such an 
extensive dataset; they are best suited to smaller datasets. 
Given the nature of the K-NN model, there is no need to 
train the model. This algorithm looks to similar neighbors 
to guess the missing values. We can utilize a portion of the 
model to test and determine the optimal parameters before 
validating the model. However, methods such as K-NN 
can be problematic with high-dimensional datasets. In this 
work, a modification of the traditional K-NN method is 
proposed and evaluated for data imputation in time series.

This paper considers K-NN instead of deep learning 
algorithms, since they have fundamental differences in 
their approaches and capabilities and distinct contexts in 
which they are best applied. Deep learning models are 
more complex and have a significantly larger number 
of hyperparameters than machine learning models. This 
complexity allows deep learning models to deal with high-
dimensional data, capture more intricate patterns, and 
learn the best representations from data. Conversely, K-NN 
algorithms are optimal for smaller datasets. Furthermore, 
it can be difficult to train deep learning models when the 
missing data is spread through all the dataset. Moreover, 
they require a large set of data which, with missing data, 
is usually not available. The choice between deep learning 
and traditional machine learning methods should be driven 
by the specific requirements and characteristics of the 
problem being solved.
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3 � Methods

3.1 � Handling time series data

A multivariate time series is a collection of time-dependent 
variables. Usually, when we mention multivariate time 
series, we have multiple time series aligned in time, meaning 
that they start and end in the same timestamp and have the 
same periodicity. Each time series can be seen as a feature of 
the multivariate time series. Therefore, we can represent the 
multivariate time series as a matrix M of dimensions m per 
n, where m is the number of time steps of the multivariate 
time series and the number of rows of the matrix, and n is 
the number of features and the number of columns of the 
matrix. Thus, Mij refers to the value of feature j at time 
i. Furthermore, we expect to observe patterns between the 
different features and within each feature.

We consider two datasets, one from ENTSO-e1 and 
another one from OpenWeather.2 These datasets have 
different characteristics. From ENTSO-e, we obtained 
electricity-related data from 24 countries during 240 weeks 
(almost five years) since the beginning of 2019. We received 
the actual total load per bidding zone per market time unit. 
We applied scaling techniques to ensure uniformity among 
data from different countries. OpenWeather provided a 
weather dataset containing one year of hourly measurements 
in 2022 from twenty cities. The dataset includes variables 
such as temperature, pressure, humidity, wind speed, wind 
direction, wind gusts, and cloudiness. Therefore, for the 
dataset from ENTSO-e, we had 24 vectors. For the dataset 
from OpenWeather, we had 140 vectors (20 cities and 7 
sensors per city). Once more, we applied scaling techniques 
to ensure uniformity among data from the distinct sensor 
types.3

Regarding the scaling technique used, we decided to 
apply a min-max scaler to normalize data between 0 and 1, 
since K-NN is an algorithm based on distances, such as the 
Euclidean distance. Thus, we can ensure that all features are 
on the same scale and validate that this is not influencing the 
model output.

Feature engineering becomes crucial when dealing with 
time series data in data science. One common method to 
tackle cyclic and seasonal patterns is selecting the most 
relevant lags [2]. Some common phenomena that we can 
observe when working with electricity and weather data are 
diurnal variations (day versus night) and seasonal variations 

(summer versus winter). However, we can also observe other 
phenomena, even though they might occur less frequently, 
such as droughts and heat waves. Therefore, the past is 
related to the present and the future. We decided to use lags 
of the previous 24 h (1 day), 48 h (2 days), and 168 h (7 
days). Since we are studying missing values imputation, it is 
feasible to use data such as 24, 48, and 168 h afterward. This 
methodology allows to better capture the missing values 
pattern.

3.2 � Generation of synthetic missing data

Each fault or failure within the system can result in 
sequences of missing data of varying durations. Depending 
on the cause of the fault or failure, we may experience 
missing data in a single time series (such as a damaged 
sensor), multiple time series (such as when communication 
with a data-collecting unit is lost), or all time series (such 
as during a network outage or blackout). This work uses the 
term "synthetic missing data" to refer to the dataset created 
simulating missing data.

The impact of the faults or failures in the system can be 
different, even under similar conditions, according to the 
dataset’s characteristics, including the relationship between 
the different features. For instance, in the dataset from 
ENTSO-e, if we lose load information from countries with 
similar patterns, achieving good imputation performance 
can be more challenging. In the case of the dataset from 
OpenWeather, we have more redundancy since we have 
more relationships between the features. For example, 
suppose we lose temperature data from cities with similar 
patterns. In that case, if we have that city’s humidity and 
wind information, the imputation may be straightforward 
to implement. Nevertheless, we can also have missing data 
in the most correlated cities and the sensors from the city.

Since we expect a particular pattern type regarding our 
missing data, we created mechanisms to generate similar 
patterns. Figure 1 contains the two patterns designed to 
evaluate the experience. We have the overlap pattern on the 
left and the disjoint pattern on the right.

In the overlap pattern, q sensors fail simultaneously 
during a period p. In a more severe case, we will have a 
blackout if all sensors fail simultaneously. In the disjoint 
pattern, the sensors fail at different times. In the case of 
the dataset from ENTSO-e, we can simultaneously remove 
data from countries with similar patterns. In the dataset from 
OpenWeather, we can lose data from similar cities and data 
from the different sensors from the same station.

Figure 2 shows the impact of missing data according to 
the time interval, number of sensors, and station in each 
dataset. Note that when we have, for instance, one sensor 
affected in 10 different stations, we force that sensor to be 
the same in all stations (e.g. temperature sensor). The same 

1  https://​www.​entsoe.​eu/.
2  https://​openw​eathe​rmap.​org/.
3  We do not have permission to share the datasets; nevertheless, both 
ENTSO-e and OpenWeather provide APIs to access the data and API 
keys upon request.

https://www.entsoe.eu/
https://openweathermap.org/
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happens if we have, for instance, seven sensors affected in 
one station. Dealing with missing data in highly correlated 
sensors poses additional challenges. We design 36 (6 time 
intervals × 3 countries combinations × 2 missing patterns) 
different configurations to test the impact of missing data in 
the ENTSO-e dataset, and 160 configurations (8 time inter-
vals × 2 sensor combinations × 5 station combinations × 2 
missing patterns) for the OpenWeather dataset. With this, 
we try to approximate our study to real-world imputation 
problems in multivariate time series.

3.3 � Algorithms implementation and evaluation

Various methods can be used to impute missing values in 
data, such as replacing the missing value or interpolating 
to estimate a probable value. Under the scope of this work, 
21 baseline approaches are selected from both methods for 
analysis. The selected methods are described in Table 1. We 
chose some of the most used techniques to deal with missing 
data, such as replacing the missing data with a value (zero, 
the mean, and the median value). We also tried interpolation 
techniques based on polynomials, forward fill, and backward 

fill, among others. From these 21 methods, we selected the 
best three and compared them with K-NN imputation and 
our proposed method.

From the presented methods in Table 1, some of them may 
still leave missing values after imputation. Considering the 
forward fill, the method will use the previous value to impute 
the missing values. However, suppose we have missing values 
at the beginning of our time series. In that case, the method 
has no previous value to use in the imputation, remaining the 
missing values in the time series. Something similar can happen 
with the backward fill at the end of the series. This issue is 
solved using a forward/ backward strategy until all missing data 
has been imputed.

During our experiments, we compare the performance of 
two types of K-NN imputation—uniform K-NN, where uniform 
weights are assigned to all the nearest neighbors, and weighted 
K-NN, where different weights are assigned. The weight is 
calculated as a function inverse of the distance. After evaluating 
the performance of both types of methods, we decided to 
present the results for the best-performing K-NN imputation 
technique. Furthermore, we use different values for the number 
of neighbors in the analysis: 2, 3, 5, 7, 9, 11, 13, 15, and 19.

Fig. 1   Missing block patterns: 
overlap and disjoint

Fig. 2   Percentage of missing 
data
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Based on the K-NN algorithm, we developed Algorithm 1 
for the Focalized KNN. Our algorithm receives one or sev-
eral time series in a matrix M with m rows (time steps) and n 
columns (time series). f starts as an empty dictionary and will 
receive as keys the columns with missing data, and each col-
umn with missing data will store a list with the most correlated 
features and the most relevant time lags. If the matrix contains 

missing data, we will fill in the missing data one column at a 
time. Note that, this implementation of K-NN does not change 
the values that were not missing; it only tries to guess the miss-
ing ones. Therefore, by replacing the i-th column of the original 
matrix with the column with the imputed values, we are not 
changing the real values.

Algorithm 1 FKNN for Time Series Missing Data Imputation
1: procedure TimeSeriesImputation(M)
2: f ← empty dictionary
3: for i ← 1 to n do
4: if M[:, i] has missing values then
5: Add most correlated features of M[:, i] to f [i]
6: Add temporal lags of M[:, i] to f [i]
7: end if
8: end for
9: while M has missing data do
10: i ← index of column with minimum missing values (number of missing
11: values bigger than 0)
12: c ← column with index i
13: X ← matrix with column c, relevant features, and lags
14: Ximputed ← apply KNN to matrix X
15: M[:, i] ← Ximputed[:, i]
16: end while
17: return M
18: end procedure

Table 1   Baseline methods [14, 18]

Type of method Details Description

Replace missing 
data with a value

Zero value Uses the zero to replace the missing data
Mean Uses the mean value to replace missing data
Median Uses the median value to replace missing data
Nearest Interpolates half-integers round down

Interpolation Forward Fill Interpolates performing forward fill of values
Backward Fill Interpolates performing backward fill of values
Linear Interpolates ignoring the time series index, assuming data is equally spaced
Time Interpolates using temporal resolutions
Spline One dimensional smoothing cubic spline
Barycentric Polynomial interpolation for a set of points that can adapt the number of values being interpolated
pchip Interpolates using a one dimension monotonic cubic interpolation
cubicspline Interpolates using a piecewise cubic polynomial, that is twice continuously differentiable
Zero Spline interpolation of order 0
Slinear Spline interpolation of order 1
Quadratic Spline interpolation of order 2
Cubic Spline interpolation of order 3
Piecewise Polynomial Interpolates using piecewise polynomials
Akima Interpolates using piecewise cubic polynomials, using a continuously differentiable sub-spline
Polynomial, Order 3 Polinomial interpolation of order 3
Polynomial, Order 5 Polinomial interpolation of order 5
Polynomial, Order 7 Polinomial interpolation of order 7
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Since K-NN relies on distances, if our dataset includes 
numerous or irrelevant features, the performance of the 
K-NN will suffer. Given the nature of our problem, we 
are dealing with time series data where some features are 
highly correlated with others. Therefore, we can select 
features given the properties of the time series. We perform 
imputation on the matrix by applying K-NN imputation 
focalized on each column with missing data. We apply 
this method to each column separately. First, we identify 
the column with the fewest missing values. Then, we chose 
the best features and relevant lags for that column to use as 
inputs for the K-NN imputation. We repeat this process for 
each column until all missing values were filled in.

Feature selection methods are evaluated to identify the 
most important features in the data domain. However, one 
requirement of the selected method is to identify the impor-
tant features even in the presence of a high recurrence of 
missing data. We select the Spearman’s correlation coef-
ficient since it is a non-parametric, monotonic method that 
allows to measure the relationship between two features. 
We consider selecting a constant value for the number of 
features, such as choosing the top ten most correlated fea-
tures, or using a threshold to select features with a correla-
tion value greater than the threshold. Figure 3 showcases an 
example with four cities, three sensors, and a threshold of 
0.5. For this case, we consider features with values greater 
than 0.5 or lower than − 0.5 to be highly correlated. We 
exclude the diagonal of the matrix since it refers to self-
comparison. For a performance improvement and a better 
feature selection, lag selection (Sect. 3.1) is also applied.

We perform a similar analysis for the temporal lags. Fig-
ure 4 depicts the relationship between the temporal lags and 

one of the load data from one of the countries. As we can 
observe, there is a high correlation between each lag and 
the original time series, especially considering the seven-
days lag.

In this work, the workflow in Fig. 5 is followed. Initially, 
we use a dataset with a multivariate time series with no 
missing data. Then, we generate synthetic missing data to 
obtain a new multivariate time series containing missing 
data. After that, we apply imputation methods to the time 
series with missing data, and obtain a reconstructed time 
series. Finally, we evaluate the methods by comparing the 
original time series with the reconstructed one. The N × 
indicates that the process can be repeated multiple times.

For the evaluation purpose, we select two metrics: MSE 
and R2-Score [2, 8]. Considering that the problem being 
evaluated in this work matches the requisites of a regression 
problem, R-squared and MSE are the suitable measures to 
evaluate the accordance of the model with the data. These 
metrics assess the error of the values predicted and the vari-
ability of the data explained by the model. We therefore use 
R2-Score to choose the best model. MSE can have values 
from 0 to plus infinity, and it penalizes big errors when com-
pared to similar metrics such as MAE. A good model has 
a low MSE. R2-Score provides valuable information about 
how well the model can fit the data. Its values range from 
less than infinite to 1, and a good model has an R2-Score 
close to 1.

Fig. 3   Correlation matrix using data from 4 cities and 3 sensors from 
OpenWeather dataset

Fig. 4   Correlation matrix using data from 1 country and 4 temporal 
lags from ENTSO-e dataset
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4 � Results and discussion

This section presents the results obtained by comparing 
the statistical baseline methods, K-NN, and the proposed 
FKNN. We evaluate the methods in two multivariate time 
series datasets with different characteristics, as described 
in Sect. 3. We conduct tests with different parameters to 
improve the suitability of the models. We test the uniform 
and the weighted version of the K-NN imputation and 
the FKNN imputation. We explore different scenarios 
considering the number of neighbors, such as 2, 3, 5, 7, 9, 
11, 13, 15, and 19.

Furthermore, we also try different approaches for the lag 
combinations to evaluate how they affect FKNN’s perfor-
mance. For the ENTSO-e dataset, we test lags of one hour, 
one day, two days, seven days, and 28 days, as well as no 
lags. For the OpenWeather dataset, we only test lags of one 
hour, one day, two days, and seven days, as well as no lags. 
We adopt the lag selection to the properties of each dataset. 
For instance, while for the ENTSO-e dataset, we have almost 
five years of data, for the OpenWeather, we only have one 
year of data. We also experiment with different thresholds 
for selecting the most relevant features, including values of 
0.5, 0.75, and 0.9. Additionally, we test the selection of the 
ten most correlated features based on these thresholds and 
the best 10, 20, 30, or 40 features.

4.1 � Analyzing FKNN performance across different 
values of k

Choosing the best k (number of neighbors) in K-NN is a 
challenging task. One common strategy is to compute the 
square root of the number of samples. However, for our 

datasets, this would result in a very high value of k: 200 for 
the ENTSO-e dataset and 94 for the OpenWeather dataset. 
Larger values of k can lead to high bias and lower variance 
and require more computation capabilities. On the other 
side, lower values present high variance and low bias. To 
determine the optimal value of k, we test the model’s per-
formance with different k values. We chose odd numbers for 
k, starting with two instead of one, because we expect more 
than one neighbor. The results can be visualized in Figs. 6 
and 7. As we can observe, the curves start to flatten around 
nine neighbors; therefore, we decide to use k with the value 
of 9 for both datasets and patterns.

4.2 � Assessing the influence of missing data 
on model performance

This subsection assesses the impact of different missing data 
patterns on two distinct datasets. We start by analyzing the 
overlap missing pattern. From our experiments, the three 
best statistical baseline methods are, in most cases, replacing 
the missing values with the mean and median values, and 
performing linear interpolation. Figures 8a and 9a contain 
the R2-Score of the best statistical models, the best K-NN 
model, and the best FKNN for the ENTSO-e and Open-
Weather datasets, respectively.

Strategies like replacing missing data with the mean value 
are better for statistical analysis when long blocks of data 
are missing instead of using interpolation techniques. Note 
that all statistical methods only consider the univariate time 
series for replacing the missing values. For both datasets, 
using a k equal to 9 and uniform weights presents a good 
approach for both K-NN and FKNN. The best FKNN model 
uses nine neighbors, uniform weights, and a threshold of 

Fig. 5   Workflow to evaluate and 
select the best model

Fig. 6   Dataset ENTSO-e: per-
formance of FKNN versus k 
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0.5. Regarding the best lags, it depends on the dataset. For 
the dataset from ENTSO-e, we use the previous day and 
week. For the dataset from OpenWeather, we use the last 
day, two days, and one week. Figures 8b and 9b compare the 
obtained MSE values. After analyzing Figs. 8 and 9, we can 
conclude that the improvement of our method compared to 
the standard version of K-NN is low. Furthermore, when we 
start having percentages of missing data of 50% or higher, 

the best strategy might be to replace the missing data with 
the mean or median value.

In Figs. 9a and 9b, we can observe a zig-zag pattern. 
Each presented experiment is independent, having the 
missing data affecting different columns and rows. The 
relationship between the percentage of missing values and 
MSE or R2²-Score does not present a linear behavior. This 
can be explained by its dependence on the patterns printed 

Fig. 7   Dataset OpenWeather: 
performance of FKNN versus k 

Fig. 8   Imputation methods with 
dataset ENTSO-e: overlap miss-
ing pattern

Fig. 9   Imputation methods with 
dataset OpenWeather: overlap 
missing pattern



	 Pattern Analysis and Applications (2024) 27:3939  Page 10 of 12

on the data and the ability of the model to predict the miss-
ing values given those patterns.

Regarding the disjoint pattern, once more, the best 
models are the linear interpolation, replacement of miss-
ing data with the median and the mean, and the K-NN 
with nine neighbors and uniform weights. The best ver-
sion of FKNN also uses nine neighbors and uniform 
weights. Besides, for the best version, we use a threshold 
of 0.5. For the lags, we use the last day and last week 
for the ENTSO-e dataset, and the previous hour and the 
previous day for the OpenWeather dataset. The proposed 
FKNN algorithm performs well for the disjoint pattern, 
as shown in Figs. 10 and 11, especially when there is a 
more significant percentage of missing data. In this case, 
we can observe considerable gains when applying the pro-
posed method, FKNN.

The zig-zag pattern observed in Fig.  11 for the 
imputation in the OpenWether dataset in the disjoint 
missing pattern is less significative when compared 
with the overlap missing pattern in Fig. 9. The nature 

of the generation of synthetic missing data impacts the 
performance of the algorithms profoundly.

4.3 � Comparing FKNN performance

Based on our experiments, we have observed that the 
uniform version of K-NN tends to give better results 
than the weighted version of K-NN. Moreover, we found 
that, using the next temporal periods as features does not 
result in improved performance as compared to using only 
past lags. We also experiment with using only the best 
positive correlation versus the best absolute correlations, 
and we notice that when we consider the best absolute 
correlations, the performance of our model slightly 
improve.

Furthermore, we compare the average of the R2-Score 
for all missing data values. We repeate the experiment by 
generating more missing data patterns for both datasets. The 
patterns we use for testing are overlap v1 and disjoint v1, 
while for evaluation, we use overlap v2 and disjoint v2. Note 

Fig. 10   Imputation methods 
with dataset ENTSO-e: disjoint 
missing pattern

Fig. 11   Imputation methods 
with dataset OpenWeather: 
disjoint missing pattern
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that we have more values with a low percentage of missing 
data, less than 10%. Nevertheless, Fig. 12 shows that our 
model achieves the best performance overall.

On a final note, we expect to achieve the best results in a 
dataset with stronger temporal patterns, such as seasonality 
and cyclic patterns. However, these time-series datasets are 
not straightforward to find freely available.

5 � Conclusion and future work

Missing data in time series can severely impact the analysis 
of data and its applications. A common issue is the block 
missing data pattern, which causes a loss of sequential 
information. Within block missing data patterns, we can 
observe two patterns: an overlapping pattern and a disjoint 
missing pattern.

This article proposed a method based on the traditional 
K-NN method to impute missing data in multivariate time 
series. The proposed method, called FKNN, is more effective 
for disjoint missing patterns than overlapping ones. FKNN 
enables the use of accurate data even in the presence of data 
loss. In these experiments, the model performance seems to 
increase with the number of neighbors in the KNN model. 
However, this increase in the number of neighbors also 
impacts the bias since the model presents more difficulty in 
generalizing due to the lack of variance in data. So, to better 
describe the data without decreasing the model performance, 
the decision of the model performance should consider the 
balance between bias and variance.

In the future, we plan to develop additional techniques for 
imputing missing data in time series, including those based 
on deep learning. We also aim to explore more patterns of 
missing data.
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