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Abstract
Existing semantic segmentation networks perform well in accuracy by spending much computation. However, for practi-
cal applications, not only high segmentation accuracy but also high inference speed is required. To solve the problem of 
the difficult balance between accuracy and speed, we propose a new real-time semantic segmentation network (FBRNet). 
To extract multi-scale semantic information more quickly, we propose a lightly weighted reinforced atrous spatial pyramid 
pooling module (arASPP) based on the attention mechanism, which can extract richer and more advanced features with less 
computation than the original ASPP. To eliminate the semantic gap between high- and low-level features, we propose a new 
feature fusion module (CSFM), in which a shuffling mechanism is introduced to enhance robustness, and a parallel contextual 
information enhancement module and detail information enhancement module are built to facilitate the information exchange 
between high- and low-level features, achieving the effect of improving the model feature representation. Finally, we also 
introduce high-level features, fusing Laplace convolution and spatial attention mechanisms, and design the edge feature 
reinforcement module (LABRM) to eliminate the noise of low-level features and compensate for the model’s segmentation 
effect target boundary. In the Cityscapes validation set and test set, FBRNet achieves 77.63% and 75.3% mIoU, and 101.9 
FPS on a single tesla-T4 GPU, also achieved 72.4% mIoU and 89.8 FPS on the CamVid dataset and 55.2% mIoU and 100.8 
FPS on the BDD100K dataset, which is a better balance of accuracy and speed compared with existing networks. The code 
is available at https://github.com/little5570/FBRNet.
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1  Introduction

Semantic segmentation is one of the classic tasks of com-
puter vision, with a wide range of application scenarios, 
such as graphics processing, autonomous driving, and 
medical image analysis [1–3], and its task is to segment the 
image produced in a specific scene, that is, to classify each 

pixel in the image according to the pre-defined semantic 
category, to achieve the purpose of segmenting the image 
[4, 5]. Based on the traditional convolutional network, Long 
et al. [6] proposed a fully convolutional network (FCN), 
replacing the final fully connected layer with the convolu-
tion and using FCN for semantic segmentation for the first 
time, which greatly improved the effect of model segmenta-
tion of images, since then, image segmentation has entered 
the deep learning stage from the traditional stage. However, 
these models typically require long inference speeds and are 
not suitable for practical applications that require both good 
accuracy and high speed, such as unmanned driving and 
video surveillance. As a result, researchers have started to 
favor the design real-time semantic segmentation networks 
that can achieve a good balance between accuracy and speed 
simultaneously. To achieve this goal, they have designed 
some approaches as follows.

One is to design a lightweight computing module. 
MobileNet [7] proposed the concept of depth-separable 
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convolution, which divides a standard 3×3 convolution into 
a depthwise convolution and a pointwise convolution with 
only 1/3 of the original standard convolution in terms of the 
number of parameters, reducing the computational complex-
ity of the model and reducing the inference time, but the 
computing power of this convolution is inferior to that of 
the original convolution, especially for small models, the 
performance of the model will be seriously lost due to the 
substantial decrease in the number of parameters.

Another one is to design a new network structure. 
Includes two-branch structure and multi-branch structure. 
The two-branch structure model, such as BiSeNetV1 [8] 
designs two different branches for extracting semantic fea-
tures and detail information, respectively, and finally merges 
the two. However, the increased computational effort of a 
two-branch network undoubtedly slows down model infer-
ence speed compared to a general network. The multi-branch 
structure models include ICNet [9], DFANet [10], etc. To 
extract feature information at different scales of the input 
image, ICNet [9] downsamples the input image to three dif-
ferent sizes by cropping; the calculation and fusion of the 
three branches also increase the calculation amount of the 
network, which adds a lot of pressure to the inference speed.

In summary, the lightweight computation module can 
improve the speed of model inference, but the accuracy is 
not as good as the general module, and the added branch-
ing of the new network structure will slow down the infer-
ence speed. Many of the methods mentioned above cannot 
achieve a good balance between segmentation accuracy and 
speed. To solve such problems, we design a new real-time 
semantic segmentation network, which includes an attention 
refinement atrous spatial pyramid pooling module (arASPP) 
that can extract multi-scale features with less computational 
effort, a feature fusion module based on mutual guidance 
of high- and low-level features, and a lightweight bound-
ary refinement module based on Laplace and spatial atten-
tion mechanism. Our contributions can be summarized as 
follows:

•	 The plug-and-play attention refinement spatial pyra-
mid pooling module arASPP is proposed, and the chan-
nels of each branch are only 1/4 of the original ASPP 
[11], which greatly reduces the amount of computation; 
besides, an attention refinement module is added after 
each branch to exceedingly enhance the expression of 
the information of the network.

•	 A new feature fusion module CSFM based on the mutual 
guidance of high- and low-level features is proposed, 
using feature guidance to further extract semantic and 
detail information before fusion, and effectively fusing 
features of each layer under the premise of less computa-
tion.

•	 The boundary reinforcement module, LABRM, is pro-
posed to enhance the representation of low-level features 
and then creatively utilizes parallel Laplace convolution 
and spatial attention mechanism to extract boundary 
information, resulting in a significantly smoother bound-
ary segmentation effect.

•	 A new real-time semantic segmentation network FBR-
Net is designed by assembling arASPP, CSFM, and 
LABRM, and the balance of high accuracy and high 
speed is achieved on Cityscapes [12], CamVid [13], and 
BDD100K [14] datasets.

The rest of this paper is structured as follows: Section 2 
reviews the relevant work. Section 3 describes the proposed 
method. Section 4 presents the experimental results and 
comparisons. Finally, we conclude in Sect. 5.

2 � Related work

Based on the composition of FBRNet, we will discuss the 
related work of encoder–decoder, multi-scale feature extrac-
tion, feature fusion, and boundary reinforcement in this 
section.

2.1 � Encoder–decoder

Although convolution can extract certain semantic features, 
it can also lose some information. To compensate for the 
problem of information loss caused by continuous convolu-
tion, the researchers designed the encoder–decoder struc-
ture. UNet [15] is one of the most typical encoder–decoder 
models, which downsampled the input image during the 
encoding and supplemented the information lost in the 
decoding. UNet [15] densely integrates high- and low-layer 
features, making it suitable for processing medical images. 
However, UNet [15] integrates features at all levels through 
cascading, which leads to a large amount of computation in 
the decoding and will reduce the inference speed.

To solve the problem of complex and challenging division 
of remote sensing image content, SU et al. [16] proposed an 
optimized version of UNet, using combinatorial dilated con-
volution as the encoder to increase the receptive field, which 
can help the model extract more advanced semantic features. 
But in the decoding stage, the network uses a transpose 
convolution with strides of 2 to restore the feature, which 
undoubtedly increases the number of parameters. XNet 
[17] cleverly integrates convolution neural network (CNN) 
and transformer into the encoder–decoder structure, using 
convolution and transformer simultaneously in the encod-
ing part to extract both local and global features, achieving 
excellent results in the field of medical image segmentation.
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Due to the ability of the encoder–decoder to fuse fea-
tures captured at each level during the downsampling, this 
paper adopts an encoder–decoder. In the decoding stage, 
it is crucial to fill in the information lost during downsam-
pling, as this is essential for the classification of pixels in 
subsequent prediction. Therefore, it is necessary to design 
a reasonable decoder. Methods like UNet [15] use a cas-
caded approach, which leads to a large computational bur-
den and hinders feature fusion. The optimized version of 
UNet [16], which uses transpose convolution, undoubtedly 
increases trainable parameters. To avoid information loss 
while ensuring low computational complexity, FBRNet 
uses a guided fusion approach between high- and low-level 
features, employing regular convolutions in the computa-
tion. This not only achieves high segmentation accuracy but 
also improves speed, making it more suitable for real-time 
semantic segmentation.

2.2 � Multi‑scale feature extraction

Semantic segmentation aims to classify every pixel of the 
input image. Therefore, the model not only needs to extract 
large-scale target information but also needs to obtain target 
features of other scales. PPM [18] uses four different scales 
of pooling to obtain multi-scale features, which can play a 
good role in image classification tasks, and pooling does not 
contain trainable parameters, so the addition of PPM will not 
slow down the inference speed [19]. However, in complex 
scenarios, global average pooling is not enough to cover key 
information, which is not conducive to improving accuracy. 
To handle a large number of medical images with limited 
computational resources, He et al. [20] proposed a medi-
cal image segmentation method that combines transformer 
with CNN, which extracts both global and local features of 
the image from multiple perspectives, achieving the goal of 
completing image segmentation in a short period of time.

To obtain the target features under different receptive 
fields, Chen et al. [11] designed ASPP in deeplabV2, which 
uses four parallel branches, and the four branches, respec-
tively, use the scales of [6, 12, 18, 24] for dilated convolution 
to obtain feature, which effectively improves the receptive 
fields of the network and enhance the network’s ability to 
recognize objects at different scales. However, the input of 
these four parallel branches is the highest layer feature of the 
network, with a large number of channels, which will slow 
down the inference speed of the model.

The PPM only uses simple average pooling to extract 
multi-scale features, resulting in fewer trainable parameters 
and limited optimization space for the network. In this paper, 
the arASPP module is introduced, which utilizes dilated con-
volution to extract features, aiming to enhance the feature 
extraction capability of FBRNet through multiple training 
iterations. Similarly, ASPP also employs dilated convolution 

to extract multi-scale features, but its branches have exces-
sively large dilation rates, leading to a higher parameter 
count and slower inference speed, so the convolution of the 
arASPP module with a smaller dilation rate, which does not 
slow down the inference speed of the model, and we also 
add the attention reinforcement module after each parallel 
dilated convolution branch, so that the extracted features are 
further strengthened.

2.3 � Feature fusion

The deep neural network increases the number of channels 
and reduces the size of the feature map by continuous down-
sampling, and obtains the high-level feature map. However, 
the top-level feature map is not enough to cover all the infor-
mation of the input image. It is necessary to fuse the feature 
map of each layer to obtain rich contextual information and 
details [21, 22]. Commonly used feature fusion methods 
include element-wise addition and cascading.

Using element-wise addition, different layer features can 
be fused by simple addition, so that the size of the feature 
map participating in the calculation will not change, and the 
inference speed of the model will not increase. But there is 
a semantic gap between high and low features. Fusing them 
by simple addition will not only lead to mutual interference 
between the two features but also will lose the previously 
extracted information.

Using the cascade method to fuse the features is equiva-
lent to connecting all levels of features from the dimension 
of channels. This allows the feature information to be pro-
cessed from a higher dimension and increases the optimi-
zation space of the model. However, it also has some dis-
advantages, the decoder treats all channels and positions 
evenly and cannot pay more attention to important channels 
or locations, which weakens the context and spatial expres-
sion ability of the model to a certain extent.

In the field of super-resolution image segmentation, 
MFFN [23] obtains a set of high-level features and a set 
of low-level features by designing low-level feature map-
ping and high-level feature mapping, respectively. Then in 
the feature reconstruction module, the high- and low-level 
features of each level are corresponded and fused with each 
other by convolution and sub-pixel fusion. It not only effec-
tively reduces the computational amount of the network, but 
also ensures the effective fusion of features at all levels and 
improves the model performance. The element-wise addition 
fuses features too simply, and cascade will make the network 
treat each channel and position evenly so that the model has 
no focus on the fused features. The CSFM we designed is 
more complex than element-wise addition, and ContextR 
and DetailR are added to the CSFM so that the model can 
focus on the context features and details from different per-
spectives, with a clear focus.
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2.4 � Boundary reinforcement

The low-level features contain rich information on small tar-
gets and key details, but also much noise because the down-
sampling depth of the low-level feature is not enough, and 
the receptive field is limited. Suppose the low-level features 
are directly fused with the high-level features. In that case, 
the noise will interfere with the model classification, lead-
ing to the misclassification and the loss of necessary details 
[24, 25]. Therefore, it has also become one of the difficulties 
in semantic segmentation to perform some enhancement of 
the low-level features to remove the noise and optimize the 
target boundary segmentation effect.

To prevent the loss of low-level information, the JPANet 
[26] uses parallel dilated convolution and maximum pool-
ing to extract low-level features, and then directly fuse the 
low-level features with the high-level features. However, 
the low-level features are only downsampled by 1/2, which 
contain complex information that is not conducive to the 
guidance of high-level features. To get clear boundary 
information, FPANet [27] uses the invert function to high-
light the segmentation of the target edge information and 
strengthen the detailed representation of the image. How-
ever, the invert function also increases the calculation to a 
certain extent, making the inference slower. Zhu et al. [28] 
designed an edge spatial attention block (ESAB) module 
to address the issue of insufficient consideration of edge 
information in image segmentation. In this module, a Sobel 
operator is introduced for edge detection, and a mechanism 
similar to attention is connected after the Sobel operator to 
improve boundary extraction and enhance the performance 
of the model in tumor image segmentation. DAM [29] has 
designed the network with a dual attention mechanism to 
solve the problem of removing rain marks and raindrops 
from the image simultaneously. Heavy rain features are 
obtained using the first attention mechanism, and then light 
rain features are obtained using inverse values. This com-
bines the two as global features and then adjusts the attention 
by subsequent convolution to obtain a clear rain removal 
image. This shows that the attention mechanism is advan-
tageous in small object feature extraction and is good for 
edge enhancement. To solve the problem of motion image 
blurring, Zhang et al. [30] designed a GramNet, which uses 
the GramNet matrix to refine the subtle movements between 
consecutive frames and subsequently uses HeptaGAN to 
supplement the exposure time and restore the continuity 
to achieve the effect of enriching the details of the motion 
image. This detail-aware network is effective for detail seg-
mentation of images.

The low-level features involved in feature fusion in 
JPANet are too low and contain considerable noise. To avoid 
excessive noise in the low-level features participating in 
boundary reinforcement, we use feature maps downsampled 

to 1/4 the size of the original image as input to our bound-
ary reinforcement module. Similar to the concept of BRM 
in FPANet, we also designed LABRM to highlight the seg-
mentation target boundary information, but instead of using 
cumbersome confidence vectors and invert function, we just 
use Laplace convolution with fixed parameters, which has a 
smaller number of module parameters and is more conducive 
to the improvement of inference speed.

3 � Method

This section first introduces the individual modules in FBR-
Net and then describes the network structure of FBRNet.

3.1 � ArASPP module

The ASPP used in the Deeplab series uses convolution 
with a large dilation rate, resulting in increased computa-
tional complexity. Therefore, we use a smaller convolution 
dilation rate, and since using composite numbers as dila-
tion rates may cause duplicate sample point positions and 
introduce redundant information, as shown in Fig. 1. Our 
dilation rate of arASPP is set to continuous prime numbers 
such as [3, 5, 7]. To obtain the global information at this 
stage, in addition to four convolutions, we add a global 
average pooling as a component of parallel branches. And 
to ensure that the number of parameters of the module 
does not increase excessively, the channels of the feature 
after dilated convolution are only 1/4 of the original fea-
ture map. If only one convolution is used per branch, the 
extracted features will still be too abstract and will not 
allocate attention appropriately, resulting in a lot of wasted 
available information, so we design an attention reinforce-
ment module (ARM), as shown in Fig. 1. To obtain the 
global feature of each channel, we use global averaging 
pooling for the input features, and the global feature vector 
of c×1×1 is obtained, to keep the module pay more atten-
tion on important channels while suppressing redundant 
channels, a convolution of 1×1 is used for this feature vec-
tor, due to the trainability of the convolution parameters, 
after iterative training, the parameters of the convolution 
are gradually optimized, so that attention will be allocated 
appropriately, the obtained c×1×1 attention vector repre-
sents the weights of each channel after strengthening, and 
finally, the weights of each channel c×1×1 after strength-
ening are multiplied by element-wise with the input so 
that the original feature map can be adjusted adaptively 
according to the weight of each channel. After ARM, the 
enhanced parallel output is fused by cascading to obtain 
a feature map with the number of channels (c×5/4). To 
facilitate subsequent fusion with the input features, the 
number of channels is changed from (c×5/4) to c using 
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1×1 convolution, and finally, the element-wise addition 
method is used to fuse the input features and the convo-
luted features to make up for the lost feature information 
after parallel convolution.

In Fig. 1, c×h×w represents the size of the feature map, 
and c, h, and w represent the number of channels, height, 
and width of the feature map, respectively. Avgpool repre-
sents global average pooling, 1×1 conv represents the con-
volution of kernel_size=1, and × represents element-level 
multiplication; 3×3 conv (d=3) represents the dilation=3 
and kernel_size=3 dilated convolution, and cat represents 
cascade. The specific operation process of arASPP can be 
formulated as follows:

In Eq. (1), Xin denotes the input of the arASPP module, opi 
represents the five parallel operations in arASPP. Equation 
(2) represents the operations performed in ARM, Xi repre-
sents the input of ARM, conv represents the 1×1 convolu-
tion, avg represents the global average pooling along the 
channel, "×" represents element-wise multiplication, and Xj 

(1)Xi =opi(Xin))

(2)Xj =conv(avg(Xi)) × Xi

(3)Xout =Xin + conv(cat(Xj))

represents the output of ARM. In Eq. (3), cat denotes the 
cascade and Xout is the output of the entire arASPP module.

3.2 � CSFM module

As mentioned above, there is a semantic gap between high- 
and low-level features. If only simple addition or cascading 
are used to fuse features, the certain error information will 
be introduced, resulting in mutual interference between fea-
tures, and the model segmentation effect is not ideal. To 
solve such problems, we propose a context- and detail-based 
feature fusion module CSFM, as shown in Fig. 2. To make 
the size of the high-level feature consistent with the low-
level feature, we first use upsampling for the high-level fea-
ture to expand its size; However, the number of channels of 
the high-level feature is twice that of the low-level feature, 
so we use 3×3 convolution to halve the number of channels 
of the high-level feature (the general model uses 1×1 con-
volution to change the channels of high-level feature, but to 
ensure that the receptive field of the high-level feature map 
is large enough, we use 3×3 convolution to further extract 
the information contained in the high-level features). To 
increase the space for optimization of low-level features, and 
cooperate with high-level features after upsampling, we also 
use 3×3 convolution for low-level features, so that through 

Fig. 1   Araspp module
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multiple training optimizations, the convolution can filter out 
the noise in the low-level features and obtain the necessary 
information. To ensure that the channels after fusion are not 
much and the parameters are reduced for subsequent calcu-
lations, we use the fusion of element-wise addition for the 
high and low features. To prevent overfitting and strengthen 
the communication between channels, we performed a chan-
nel shuffle on the fused features after element-wise addi-
tion. After channel shuffle, to obtain further contextual and 
detailed information from different perspectives, the feature 
map passes through the ContextR and the DetailR in parallel 
(as information may be lost due to gradient disappearance if 
a cascade approach is used).

As shown in Fig. 2, ContextR is used to strengthen the 
context representation of the features after fusion; first, we 
use 3×3 convolution with a dilation rate of 5 for the feature 
map, which has a larger receptive field than the general con-
volution and can extract more contextual information, and 
then use global average pooling for the convoluted feature 
map to obtain a c×1×1 feature vector, which represents the 
weight occupied by each channel in all channels, which is 
beneficial to the redistribution of model attention. This fea-
ture vector is then multiplied element-wise with the con-
volved feature map to highlight key channels and suppress 
unimportant channels, and finally, the attention-enhanced 
feature map is multiplied element-wise with the input feature 
map to prevent the loss of original feature information.

DetailR has the same structure as ContextR, but the dif-
ference lies in the pooling method and the dilation rate used 
in the convolution. ContextR uses global average pooling, 
while DetailR uses global maximum pooling. Global aver-
age pooling is obtained as the mean value of each feature 
map, which is beneficial to the extraction of contextual infor-
mation, while global maximum pooling is obtained as the 
maximum value of each feature map, which is beneficial to 
extract discriminative information from the feature map and 
facilitates the model’s segmentation of the target boundary. 
The dilation rate of the first 3×3 convolution of ContextR is 
5, larger dilated convolution means larger receptive fields, 
which is more conducive to obtaining global features, and 
the dilation rate of the first 3×3 convolution of DetailR is 
3, which means smaller receptive fields, which can capture 
more local features and facilitate the extraction of detailed 
information.

After obtaining the global contextual information and 
boundary details, we add the features before entering the 
two modules, making these three features fused in the form 
of elemental-wise addition, which can fully exploit each 
other’s strengths and compensate for each other. The high- 
and low-level feature maps entered into CSFM also play to 
the best advantage, preventing the two from interfering with 
each other.

In Fig. 2, low represents the low-level feature map, 
high represents the high-level feature map, up represents 

Fig. 2   CSFM module
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upsampling, 3×3 conv represents the ordinary convolu-
tion of kernel_size=3, " +" represents element-wise addi-
tion, shuffle represents channel shuffle, "×" represents 
element-wise multiplication, avgpool represents global 
average pooling along the channel, and maxpool repre-
sents global maximum pooling along the channel. The 
specific operation process of CSFM can be formulated 
as follows:

Equation (4) represents the calculation process of Xim, low 
denotes input low-level features, high denotes input high-
level features, up denotes upsampling, and conv3 denotes 
a convolution of size 3×3. In Eq (5), ContextR and DetailR 
denote the two submodules, respectively, and Xfu repre-
sents the output of CSFM. Equations (6) – (8) denote the 
operations performed in ContextR, convd denotes dilated 
convolution, avg denotes global average pooling, and sig 
denotes sigmoid linear activation; as DetailR runs similarly 
to ContextR, no other equations are used to denote DetailR.

(4)Xim =shuffle(conv3(low) + conv3(up(high)))

(5)Xfu =ContextR(Xim) + DetailR(Xim) + Xim

(6)Xc2 =convd(Xc1)

(7)Xc3 =Xc2 × sig(avg(Xc2))

(8)Xc4 =Xc3 × Xc2

3.3 � LABRM module

When the extracted semantic information is rich enough, it 
is beneficial to segment large goals. However, if the bound-
ary detail information is missing, it is not friendly to the 
classification of target boundary pixels, resulting in blurred 
boundaries and low segmentation performance. The primary 
feature map has a small respective field, and most of the 
extracted features are small target object features, which 
also contain unavoidable noise. If the primary features are 
directly fused with the high-level features, the noise will 
be introduced, resulting in classification errors. Based on 
this, we propose LABRM based on Laplace and an atten-
tion mechanism for strengthening primary features. A sin-
gle reinforcement of primary features alone is insufficient, 
as shown in Fig. 3, where we guide the primary features 
through the high-level features to ensure smoothness and 
continuity of the segmentation boundary. Since the high-
level features are not the same size as the low-level features, 
the high-level features need to be recovered to the size of 
the low-level feature map by upsampling before guiding the 
low-level feature map learning. After fusing the high- and 
low-level feature maps by cascading, a feature map Xcat of 
size c2×h×w is obtained, and an auxiliary loss is used on 
Xcat for optimization. After the auxiliary loss calculation, 
the number of channels is changed using 1×1 convolution 
to the number of categories in the final segmentation of the 
model, for example, Cityscapes contains 19 categories, the 
returned feature map Xc is 19×h×w in size, and then the 
max operation is performed on Xc along the channels to 
get the maximum value to obtain a feature map Xmax of 

Fig. 3   LABRM module
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1×h×w. The pixel value at each position of Xmax indicates 
the category to which the pixel belongs.

In Fig. 3, c1 represents the number of input feature map 
channels, c2 represents the number of output feature map 
channels, and num represents the number of classes finally 
predicted.

Since Xmax is obtained by taking the maximum value 
of Xc along the channel, the higher the probability that the 
point with the larger value in Xmax belongs to a certain 
semantic class, conversely, the lower the probability that the 
point with the smaller value in Xmax belongs to a certain 
class, that is, the point with the smaller value belongs to the 
target edge has a higher probability. To improve the spa-
tial expression of the target edges, LABRM uses Laplace 
convolution on Xmax, which is a classical edge detection 
operator, as shown in Fig. 4. Compared with the original 
image, the edges of the feature map obtained using Laplace 
convolution are obvious. The feature map Xlap after Laplace 
convolution contains all the feature map edge information 
so that Xcat and Xlap are added element-wise to obtain the 
edge-enhanced feature map Xcl.

Transformer [31] has been designed for natural lan-
guage processing to reduce the amount of model compu-
tation, omit recursion and convolution, and design a net-
work for natural language processing based on a complete 
attention mechanism. Since then, the attention mechanism 
has been widely used in the field of deep learning due to 
its smaller computation and efficient performance. Spatial 
attention mechanism, as a kind of attention mechanism, 

adaptively adjusts the weight of each position by pool-
ing. To guide the low-level features to strengthen the edge 
representation, we use attention mechanism as another 
parallel branch after Xcat in addition to Laplace convolu-
tion. The high-level feature map Xcat has an extensive 
feature map size. To pay more attention to important posi-
tions while suppressing redundant information, We use the 
spatial attention module (SAM) for Xcat. The structure 
of SAM is shown in Fig. 5, which performs global maxi-
mum pooling and global average pooling on the feature 
map along the spatial channel to obtain global informa-
tion on the feature map, then the pooled feature map is 
convoluted and linearly activated to obtain a 1×h×w fea-
ture map, which represents the weights of each position 
of the input feature map, then the 1×h×w feature map 
and the input feature map are multiplied by element-wise 
to obtain the feature map Xs, that is, the weight effect 
is carried out on each position of the input feature map 
to strengthen important positions and suppress redundant 
positions. The enhanced feature map Xs is subjected to 
element-wise addition with Xmax, which corresponds to 
fusing the pixels at each location of Xs with the probabil-
ity value of the category to which that location most likely 
belongs to obtain Xsl.

Finally, Xsl is fused with Xcl as the output of the whole 
LABRM module. LABRM gets both the advantages of the 
edge-enhanced feature map Xcl and contains the spatial 
information of the enhanced spatial location representa-
tion of the feature map Xsl, taking full advantage of the 

Fig. 4   visualization of boundary reinforcement module

Fig. 5   spatial attention module
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low-level features. The specific operations of LABRM 
can be formulated as follows:

In Eqs. (9)  –  (13), cat denotes cascade operation, aux 
denotes auxiliary loss calculation, conv denotes 1×1 convo-
lution, max denotes maximum pooling along the channel, 
lap denotes Laplace convolution, sam denotes spatial atten-
tion mechanism, and "+" denotes element-wise addition.

(9)Xcat =aux(cat(low, high))

(10)Xmax =max(conv(Xcat))

(11)Xcl =lap(Xmax) + Xcat

(12)Xsl =sam(Xcat) + Xmax

(13)Xout =Xcl + Xsl

3.4 � FBRNet

The network structure in this paper is shown in Fig. 6. 
Resnet18, a lightweight backbone network pre-trained 
in the ImageNet dataset, is used as the FBRNet encoder 
structure, aux denotes the auxiliary loss, and FBRNet per-
forms loss calculation on the layer3 and layer4 outputs of 
the encoder, the location settings for auxiliary losses to the 
backbone network can be found in Sect. 4.3.5. To further 
extract multi-target features, FBRNet adds arASPP after the 
output of layer 4. ArASPP does not change the size of the 
feature map and then fuses the enhanced top-level features 
with the output of layer 3, both of which are jointly used as 
input to the CSFM module. The output feature map of the 
first CSFM is then fused with the output of layer 2 in the 
same way to obtain the advanced fused features. To guide 
the enhanced edge representation of the low-level features, 
the fused features are used as input to the two LABRM lay-
ers together with the maxpool layer output and layer1 output, 
respectively. Auxiliary loss calculation is also available in 
the LABRM module, and the specific loss factor settings 
are described in detail in section 4.3.6. The output feature 

Fig. 6   architecture of network
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map size of both LABRM modules is 64×h/4×w/4. To fuse 
the two enhanced primary feature maps after LABRM, the 
advanced fusion features are upsampled and convolved to 
make the advanced feature map consistent with the primary 
feature size. Finally, the upsampled advanced features and 
the two enhanced primary features are added at the elemen-
tal level, and the final output is obtained by upsampling and 
convolution.

4 � Experiments

In this section, we will first discuss the dataset on which the 
experiment was performed, then introduce the experimen-
tal details, and finally discuss the ablation experiment and 
comparison experiment.

4.1 � Datasets

The Cityscapes dataset is a dataset of image segmentation 
in a driverless environment. It contains street scenes from 
50 cities worldwide with different environments. Only 19 
categories for this training. The dataset is divided into train-
ing set, validation and sets by the number of 2975, 500, and 
1000, and each image has a resolution of 1024×2048.

The CamVid dataset is the first semantic segmentation 
dataset to be used in autonomous driving, which includes 
701 images and 32 classes of annotated objects. Only 11 
classes are of interest for this training. The set is divided 
into training, validation and test sets by the number of 367, 
101 and 233; each image has a resolution size of 960×720.

The BDD100K dataset covers real driving scenarios with 
diverse environments. The data were annotated with 8000 
images for semantic segmentation, of which 7000 images 
were used for training and 1000 images for validation. Each 
image has a resolution size of 720×1280 and uses 19 classes 
labeled for semantic segmentation.

4.2 � Implement details

In this section, we will first introduce the metrics used to 
evaluate the experimental results and then introduce the 
parameter settings of the experiment.

4.2.1 � Metrics

•	 Use the average intersection ratio mIoU as an accuracy 
measure.

•	 The number of frames processed per second(FPS) is used 
as a speed measure.

•	 Use Params for the number of parameters in each net-
work.

•	 Use GFLOPs for the number of computations in each 
network.

4.2.2 � Settings

The preprocessing of the input image during training 
includes random cropping, horizontal rotation, and randomly 
changing the brightness, hue, and contrast of the image. The 
batch size is set to 4, and the stochastic gradient descent 
method (SGD) with momentum is used for model training, 
and Eq. (14) is the learning rate decline formula. We use 
the weighted cross-entropy loss function for primary loss 
and auxiliary loss calculation; the specific loss calculation 
is shown in Eq. (15). FBRNet is implemented using the deep 
learning framework PyTorch−1.3. A Tesla-T4 GPU and 16 
CPU cores are used for model training and testing.

lrbase represents the initial learning rate, set to 0.01, iter rep-
resents the current number of iterations, maxiter represents 
the maximum number of iterations, set to 80000, momentum 
power is set to the default value of 0.9, and the attenuation 
factor is 0.00005. In Eq (15), losspre represents the loss of 
the entire network, aux0 represents the aux0 auxiliary loss in 
Fig. 6, aux1, aux2, and aux3 also represent the correspond-
ing position auxiliary loss in Fig. 6, � represents the coef-
ficients of aux2 and aux3, set to 3, and the numerical setting 
of � will be discussed in section 4.3.6.

4.3 � Ablation experiments

In this section, we will discuss the ablation experimental 
effects of arASPP, CSFM and LABRM modules in turn. The 
ablation experiments of each module will display experi-
mental data and visualization effects.

4.3.1 � ArASPP

To verify the effectiveness of the arASPP module in FBR-
Net, we conducted experiments on the arASPP module. 
The experimental results are shown in Table 1. When the 
arASPP module without ARM was added, although the 
inference speed was reduced by 48 frames, the segmentation 
accuracy of the network was improved by 9.2% due to the 
module’s strong multi-scale feature capture capability. To 
further strengthen the features after the dilated convolution 
in arASPP, we add the attention reinforcement module ARM 

(14)lr =lrbase × (1 −
iter

maxiter
)power

(15)loss =losspre + aux0 + aux1 + � × aux2 + � × aux3
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after each branch, so that the features in each branch can 
adaptively adjust the weight according to the attention vector 
obtained after global pooling, as can be seen in Table 1, after 
adding ARM, the accuracy of the overall network reaches 
71.47%. We also added the ASPP module to the backbone 
for experiments, and the segmentation accuracy was 70.87%, 
and the inference speed was 110.0 frames. Due to the large 
dilation rate of the dilated convolution in ASPP and the large 
number of feature map channels participating in convolution, 
their inference speed is not as good as arASPP. And because 
our arASPP design has more parallel branches than ASPP, 
and the addition of a well-designed attention reinforcement 
module ARM can enhance the feature representation, the 
segmentation accuracy of arASPP is also higher than that 
of ASPP. All bolded data in the tables in this paper indicate 
the best experimental results.

4.3.2 � CSFM

As shown in Table 2, the mIoU obtained by res18+arASPP 
is 71.47%. Since the CSFM module in FBRNet is com-
posed of two modules, ContextR and DetailR, to verify 
the effectiveness of these two submodules, we performed 
ablation experiments on both modules. Compared with the 
network that did not use DetailR, the number of param-
eters increased by 2.7M, the calculation amount increased 
by 39.3G, and the segmentation speed was also reduced 
by 5 frames, but its re-extraction of low-level detail infor-
mation helped the network improve the segmentation 
accuracy by 0.62%. The network using ContextR also has 
a certain improvement in the number of parameters and 
calculations because it uses the dilated convolution with 
dilation 5, the segmentation speed decreases more, but it 
also strengthens the further extraction of global informa-
tion by the network, and the accuracy of network segmen-
tation is increased to 72.54%. The CSFM is assembled 
by DetailR and ContextR, and CSFM absorbs the advan-
tages of DetailR and contextR, and the mIoU is increased 

to 72.92%, and the model inference speed is still 102.9 
frames.

4.3.3 � LABRM

To verify the effectiveness of the LABRM module in FBR-
Net, the LABRM module, and its submodules were ablated 
experimentally. As shown in Table 3, the network seg-
mentation accuracy composed of res18+arASPP reaches 
71.47%, and only the LAP branch (refers to using only the 
Laplace branch in this module) in the LABRM module is 
used to fuse the lowest two-layer features, and the model 
segmentation accuracy is increased to 73.12% due to its 
powerful edge feature extraction ability, but the use of 
Laplace convolution also reduces the network inference 
speed to 105.9 frames. Only the SAM fusion of the lowest 
two layers of features (refers to using only the SAM branch 
in this module), the obtained network segmentation accu-
racy is 73.44%, and there are fewer convolution operations 
in the spatial attention mechanism, so the FPS of the net-
work is faster than that of the res18+arASPP+LAP combi-
nation. The LABRM module is obtained by fusing Laplace 
convolution and SAM, which has both the edge extraction 
ability of the Laplace operator and the position reweight 
redistribution ability of the spatial attention mechanism, 
and the segmentation accuracy reaches 73.78%, and the 
segmentation speed is still 104.4 frames.

Table 1   Compare of arASPP 
module

Method Weight (M) Params (G) GFLOPs (G) mIoU FPS

res18 46.10 11.70 81.82 61.31 178.2
res18+ASPP 80.68 20.78 101.73 70.87 110.0
res18+arASPP 55.22 14.11 86.81 71.47 116.1

Table 2   Ablation experiments 
of CSFM

Method Params (M) GFLOPs (G) mIoU FPS

res18+arASPP 14.11 86.81 71.47 116.1
res18+arASPP+DetailR 16.88 125.30 72.09 111.8
res18+arASPP+ContextR 16.90 128.02 72.54 104.2
res18+arASPP+CSFM 17.71 137.90 72.92 102.9

Table 3   Ablation experiments of LABRM

Method Params (M) GFLOPs (G) mIoU FPS

res18+arASPP 14.11 86.81 71.47 116.1
res18+arASPP+LAP 14.13 89.32 73.12 105.9
res18+arASPP+SAM 14.16 93.32 73.44 107.7
res18+arASPP+LABRM 14.19 101.32 73.78 104.4
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4.3.4 � FBRNet

To verify the performance impact of various decoding meth-
ods on the network, we did several sets of experiments, 
the experimental data shown in Table 4 are summarized. 
Res18+arASPP achieved 71.47% mIoU for the coded net-
work while decoding using element-wise addition and cas-
cading yielded mIoU even inferior to baseline, which shows 
that neither decoding method is suitable for the network. In 
contrast, the decoding structure in FBRNet can still improve 
mIoU by 6.2% based on res18+arASPP.

To deeply analyze the impact of the modules on the net-
work, we conducted ablation experiments. As shown in 
Table 5, the segmentation accuracy of the network with only 
resnet18 is 61.31%, and with the addition of the arASPP 
module, the segmentation accuracy of the model is improved 
to 71.47% due to the powerful multi-scale feature extraction 

capability of arASPP, which can also be seen in Column 4 
of Fig. 7, where the model’s segmentation of the objects is 
more complete and continuous. Base on resnet18+arASPP, 
we add CSFM and LABRM in turn. From Table 5, we can 
see that the segmentation accuracy of the model increases 
by 1.5% after adding CSFM module due to the stronger fea-
ture fusion ability of CSFM, and the segmentation effect for 
each object is more smooth as can be seen in Column 5 of 
Fig. 7. Since the LABRM module is more sensitive to edge 
features, the combination of resnet18+arASPP+LABRM 
improves the segmentation accuracy by 2.3% compared with 
resnet18+arASPP, and it can also be visualized from column 
6 of Fig. 7 that, for the small objects and the street lights with 
stronger geometric properties, resnet18+arASPP+LABRM 
has a better segmentation effect. Combining resnet18 with 
arASPP, CSFM, and LABRM together, the network exper-
imental effect obtained is even as high as 77.63%. It can 
also be seen from Table 5 that the segmentation accuracy of 
the last row of the network is higher than that of the previ-
ous rows, which is because that the network combines the 

Table 4   Compare experiments of decoder

Method Params (M) GFLOPs (G) mIoU FPS

res18+arASPP 14.11 86.81 71.47 116.1
res18+arASPP+addition 14.19 93.99 69.95 110.4
res18+arASPP+cat 14.18 95.59 70.11 110.2
FBRNet(ours) 17.62 147.71 77.63 101.9

Table 5   Results of ablation 
experiments

resnet18 arASPP CSFM LABRM Params (M) GFLOPs (G) mIoU FPS
√

11.70 81.82 61.31 178.2
√ √

14.11 86.61 71.47 116.1
√ √ √

17.71 137.90 72.92 102.9
√ √ √

14.19 101.32 73.78 104.4
√ √ √ √

17.62 147.71 77.63 101.9

Fig. 7   visualization of ablation experiments

Table 6   Compare experiments 
of decoder

layer4 layer3 layer2 mIoU
√

72.02
√ √

72.92
√ √ √

72.41
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advantages of multi-scale features, feature fusion and edge 
enhancement, and it can also be seen from the last column of 
Fig. 7 that the network has the most complete segmentation 
effect when compared with the previous columns.

4.3.5 � Baseline auxiliary loss experiments

During the training process, we tried to set the auxiliary loss 
at different positions of the encoder to obtain the optimal 
coefficient of auxiliary loss, as shown in Table 6. The seg-
mentation accuracy obtained by setting the auxiliary loss at 
layer 4 was 72.02%. The segmentation accuracy was 72.92% 
when the auxiliary loss at both layer 4 and layer 3; compared 
to setting the auxiliary loss at layer 4 only, the segmentation 
accuracy is 0.9% higher; we also tried to set the auxiliary 
loss was at layer 4, layer 3, and layer 2 at the same time, but 
the accuracy is 0.5% lower. Therefore, FBRNet only sets 
the auxiliary loss at layer 4 and layer 3 to obtain the optimal 
performance of the model.

4.3.6 � LABRM auxiliary loss factor experiments

FBRNet sets the auxiliary loss at LABRM to obtain the opti-
mal experimental results, and we investigated the effect of 
different auxiliary loss factors α on the experimental results, 
as shown in Table 7. The optimal segmentation accuracy is 
achieved when α is set to 3 in both LABRM modules.

4.4 � Comparison experiments

To verify the effectiveness of the algorithm in this paper, we 
will conduct comparative experiments on cityscapes, Cam-
Vid and BDD100K datasets in turn, and discuss the results 
of the experiments.

4.4.1 � Cityscapes datasets

Table 8 shows the segmentation performance of the best 
models on the Cityscapes dataset in recent years. Com-
pared to the classic network BiSeNetV1 [8], which uses 
the same backbone, FBRNet does not add unnecessary 
branches, resulting in faster segmentation speed. Addi-
tionally, BiSeNetV1 [8] only merges information from 
two branches to obtain the final features. In contrast, the 

decoder of FBRNet fuses features at each layer, result-
ing in a more comprehensive feature representation. As 
a result, FBRNet achieves better segmentation accuracy 
than BiSeNetV1 [8] on both the validation set and the 
test set. Despite CSRNet [32] using a multi-stage hierar-
chical approach to extract features at different levels, its 
feature fusion method is not comprehensive enough. In 
comparison, FBRNet outperforms CSRNet [32] on both 
the validation set and the test set. Compared to classic 
networks such as ICNet [9], ERFNet [33], and FasterSeg 
[34], FBRNet performs better in terms of both segmen-
tation accuracy and speed. This makes FBRNet a more 
efficient and effective choice for various segmentation 
tasks. To compare the performance of each network, 
Fig. 8 shows the visualization of each network on the 
cityscapes dataset. From the first row of images in Fig. 8, 
it can be observed that FBRNet performs better in the 
segmentation of streetlights compared to the previous net-
works, and the segmented objects are more complete. In 
the second row of images in Fig. 8, only FBRNet success-
fully segments the streetlight within the rectangular box, 
indicating that FBRNet has better segmentation results 
compared to the other networks. Since some networks do 
not have open codes, the corresponding network proper-
ties cannot be obtained, so we fill "–" in the correspond-
ing cell, FPS represents the image segmentation speed in 
the original paper of the network, and FPS+ represents 
the segmentation speed tested using the same GPU as 
FBRNet.

4.4.2 � CamVid datasets

It can be seen in Table 9 that FBRNet has the fastest infer-
ence speed under the same GPU conditions, while other 
networks that cannot test FPS due to non-open sources are 
not as accurate as FBRNet. Compared with BiSeNetV1 [8] 
using the same backbone network, FBRNet’s segmentation 
accuracy is improved by 3.7%, and the segmentation speed is 
also improved by 13 FPS. Compared with RGPNet [52] and 
DCNet [44], FBRNet has improved segmentation accuracy 
by 5.5% and 6.2%, respectively. Although BiSeNetV2 [41] 
has reached the same mIoU as FBRNet in the CamVid data-
set, and the inference speed is also important for real-time 
semantic segmentation, the inference speed of BiSeNetV2 
[41] is only 46.6FPS, which is approximately 1/2 of FBR-
Net; it can be seen that FBRNet has also achieved good per-
formance in the CamVid dataset. LARNet [48] adopts a sim-
ilar approach to ICNet [9] in extracting features at different 
scales. However, this network only utilizes a cascaded fusion 
method to merge these features, which can lead to inter-
ference between features and loss of essential information. 
In comparison, FBRNet’s feature fusion method is more 
reasonable. As a result, it achieves a 5.3% improvement in 

Table 7   Experiments of 
LABRM auxloss

brm_aux2 brm_aux3 mIoU

0.5 0.5 71.40
1 1 72.92
2 2 73.44
3 3 73.78
4 4 73.68
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segmentation accuracy on the CamVid dataset. Compared to 
all the open-source models in Table 9, FBRNet achieves the 
best results in terms of speed and accuracy. Figure 9 shows 

the visualization of each network on the CamVid dataset. 
From the second row of images in Fig. 9, it can be observed 
that only BiSeNetV1 [8] and FBRNet successfully segment 

Table 8   Compare experiments of Cityscapes datasets

Method Year Input size Baseline Params (M) GFLOPs (G) mIoU GPU FPS FPS+

val test

ICNet [9] 2018 1024×2048 PSP50 28.3 26.5 71.7 69.5 TitanX 30.3 15.2
ERFNet [33] 2018 1024×2048 No 2.1 30.06 70.0 69.7 TitanX 83 79.9
BiSeNetV1 [8] 2018 1024×2048 Xception 2.41 53.1 69.0 68.4 TitanX 105.8 60.9
BiSeNetV1 [8] 2018 1024×2048 res18 61.1 30.14 74.8 74.7 TitanX 65.5 83.0
DFANet-A [10] 2019 1024×2048 Xception 7.8 1.7 71.9 71.3 TitanX 100 25.2
FasterSeg [34] 2019 1024×2048 No 3.4 28.2 73.1 71.5 1080Ti 163.9 94.2
LEDNet [35] 2019 512×1024 No 0.94 11.44 – 70.6 1080Ti 71.0 40.9
DABNet [36] 2019 1024×2048 No 0.76 42.43 – 70.1 1080Ti 104 78.8
LiteSeg [37] 2019 360×640 MobileNet 4.38 4.9 – 67.8 1080Ti 161 78.0
FDDWNet [38] 2020 512×1024 No 0.8 14.17 – 71.5 2080Ti 60.0 41.0
DSNet [39] 2020 512×1024 DenseNet 11.9 – – 69.1 1080Ti 68.0 –
AGLNet [40] 2020 512×1024 No 1.12 13.88 69.39 70.1 1080Ti 52.0 –
BiSeNetV2 [41] 2021 512×1024 No 201.6 21.15 73.4 69.1 1080Ti 156.0 –
JPANet [26] 2021 512×1024 GhostNet 3.49 10.9 – 71.6 1080Ti 109 –
LEANet [42] 2021 512×1024 No 0.74 – – 72.9 1080Ti 98.6 83.4
Lite-HRNet [43] 2021 512×1024 HRNet18 1.1 1.95 73.8 72.8 V100 – –
DCNet [44] 2021 512×1024 res18 – – – 71.2 2080Ti 142 –
DSANet [45] 2021 512×1024 No 11.9 37.4 79.8 71.4 1080Ti 34.0 –
RELAXNet [46] 2021 512×1024 No 1.9 22.84 – 74.8 2080Ti 64.0 –
LSNet [47] 2022 1024×1024 res18 – – 73.9 73.9 RTX3080 130 –
CSRNet-L [32] 2023 768×768 res18 – – 76.1 74.0 1080Ti 56.0 –
CSRNet-M [32] 2023 768×768 res18 – – 76.6 75.3 1080Ti 52.5 –
LARNet [48] 2023 512×1024 No 0.95 – – 71.1 2080Ti 105 –
RCNet [49] 2023 1024×2048 No 1.96 20.92 72.49 – V100 59.2 –
LBNet [50] 2023 512×1024 No 0.76 9.83 – 69.6 1080Ti 70.0 –
ELANet [51] 2023 512×1024 No 0.67 9.7 – 74.7 1080Ti 47.0 45.2
FBRNet(ours) 1024×2048 res18 17.62 147.7 77.6 75.3 Tesla-4 101.9 101.9

Fig. 8   visualization of compare experiments in cityscapes datasets
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the vehicles completely. Compared to BiSeNet [8], FBR-
Net provides more accurate segmentation of the streetlights 
within the rectangular box. In the third row of images, it is 
also evident that FBRNet has the best segmentation results 
for the streetlights within the rectangular box.

4.4.3 � BDD100K datasets

As seen in Table 10, FBRNet has the highest segmenta-
tion accuracy, reaching 55.2% mIoU. Although DRN-D-38 
achieves the same segmentation accuracy as FBRNet, it also 
comes at a huge cost, with an inference speed of only 4.5 

Table 9   Compare experiments of CamVid datasets

Method Year Input size Baseline Params (M) GFLOPs (G) mIoU GPU FPS FPS+

ICNet [9] 2018 720×960 PSP50 97.94 26.5 67.1 TitanX 27.8 41.9
BiSeNetV1 [8] 2018 720×960 Xception 17.28 2.41 65.6 TitanX 175 45.7
BiSeNetV1 [8] 2018 720×960 res18 9.85 61.10 68.7 TitanX 116 76.8
DFANet-A [10] 2019 720×960 Xception 5.14 2.17 64.7 TitanX 120 27.4
FasterSeg [34] 2019 720×960 no 9.2 4.4 71.1 1080Ti 398 34.7
DABNet [36] 2019 360×480 no 3.49 0.76 66.4 1080Ti – 10.3
FANet-18 [53] 2020 720×960 res18 15.7 13.65 69.0 TitanX 154 78.2
FDDWNet [38] 2020 360×480 no 4.66 0.8 66.9 2080Ti 79 10.38
BiSeNetV2 [41] 2021 720×960 no 17.5 2.41 72.4 1080Ti 125 46.6
RGPNet [52] 2021 352×480 res18 – 17.7 66.9 V100 190 –
DCNet [44] 2021 360×480 res18 – – 66.2 2080Ti 166 –
DSANet [45] 2021 360×480 no 101 3.47 69.9 1080Ti 75.3 34.9
FPANet-A [27] 2021 720×960 res18 69.21 14.11 68.6 2080Ti 151 –
JPANet [26] 2021 360×480 GhostNet – 3.49 67.45 1080Ti 294 –
RELAXNet [46] 2021 360×480 no – 1.9 71.2 2080Ti 79 –
LSNet [47] 2022 720×960 res18 – – 72.3 RTX3080 105 –
FEENet [54] 2023 360×480 no – 29.96 68.1 2080Ti 225 –
LARNet [48] 2023 360×480 no 0.95 – 67.1 2080Ti 204 –
ELANet [51] 2023 360×480 – 0.76 9.7 67.9 1080Ti – 32.7
FBRNet(ours) 720×960 res18 47.57 17.62 72.4 Tesla-4 89.8 89.8

Fig. 9   visualization of compare experiments in CamVid datasets
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FPS, which is far from meeting the real-time requirements. 
Compared with BiSeNetV1 using the same backbone net-
work, the segmentation accuracy of FBRNet is improved by 
2.8%, and the inference speed is also equivalent to 3 times 
that of BiSeNetV1. Due to its multi-scale feature fusion 
method and deep supervised training strategy based on fea-
ture pyramid network FPN, FasterSeg also has a segmen-
tation accuracy of 55.1%, which is only 0.1% lower than 
FBRNet, but it is precise because of its complex network 
structure that its inference speed is only 1/2 of FBRNet. 
Figure 10 shows the visual segmentation results of each net-
work on the BDD100K dataset. Due to the use of Laplacian 
as an edge detection operator in FBRNet, it can be observed 
from the third row of rectangular boxes in Fig. 10 that FBR-
Net achieves better contour segmentation results for various 
objects compared to the previous networks.

5 � Conclusion

Based on previous research, we have designed a new real-
time semantic segmentation network, FBRNet, which 
achieves a better balance between segmentation accuracy 

and speed. Our designed arASPP module can extract multi-
scale features in a short time, with smaller weights and 
higher segmentation accuracy. The CSFM module further 
extracts features from both contextual and detailed perspec-
tives, helping to better integrate features from different lay-
ers. The LABRM module combines the Laplacian operator 
and spatial attention mechanism for the first time, fully uti-
lizing the capabilities of existing edge information extrac-
tion algorithms, and improving the segmentation accuracy of 
the model. We have conducted comparative experiments on 
three datasets to validate that our algorithm performs better 
than existing ones. Real-time semantic segmentation has a 
wide range of research possibilities, such as occlusion seg-
mentation, real-time semantic segmentation of small objects, 
and real-time semantic segmentation with limited data. All 
of these studies require more efficient real-time semantic 
segmentation networks. In the method of this paper, we 
introduce several new modules, which increase the com-
plexity of the model to some extent, and in the future, we 
will further simplify the network structure while maintaining 
the high performance of the network, focusing on further 
exploration and design of a lightweight backbone network 
that can efficiently extract multi-scale information while 

Table 10   Compare experiments 
of BDD100k datasets

Method Year Input size Baseline Params (M) GFLOPs (G) mIoU FPS+

DRN-D-22 [55] 2018 720×1280 DRN22 15.90 244.5 53.2 6.5
DRN-D-38 [55] 2018 720×1280 DRN38 26.50 388.8 55.2 4.5
BiSeNetV1 [8] 2018 720×1280 res18 13.43 107.69 52.4 28.9
FasterSeg [34] 2019 720×1280 No 4.4 12.4 55.1 43.7
DABNet [36] 2019 720×1280 No 0.76 37.29 51.8 44.9
FDDWNet [38] 2020 720×1280 No 0.81 24.90 52.8 7.9
BiSeNetV2 [41] 2021 720×1280 No 5.23 128.18 48.3 86.2
FBRNet(ours) 720×1280 res18 17.62 65.07 55.2 100.8

Fig. 10   visualization of compare experiments in BDD100k datasets
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preserving edge features, and we will apply this network to 
various domains mentioned above.
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