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Abstract
Estimating depth from a single image presents a formidable challenge due to the inherently ill-posed and ambiguous nature 
of deriving depth information from a 3D scene. Prior approaches to monocular depth estimation have mainly relied on Con-
volutional Neural Networks (CNNs) or Vision Transformers (ViTs) as the primary feature extraction methods. However, 
striking a balance between speed and accuracy for real-time tasks has proven to be a formidable hurdle with these methods. 
In this study, we proposed a new model called EMTNet, which extracts feature information from images at both local and 
global scales by combining CNN and ViT. To reduce the number of parameters, EMTNet introduces the mobile transformer 
block (MTB), which reuses parameters from self-attention. High-resolution depth maps are generated by fusing multi-scale 
features in the decoder. Through comprehensive validation on the NYU Depth V2 and KITTI datasets, the results demonstrate 
that EMTNet outperforms previous real-time monocular depth estimation models based on CNNs and hybrid architecture. 
In addition, we have done the corresponding generalizability tests and ablation experiments to verify our conjectures. The 
depth map output from EMTNet exhibits intricate details and attains a real-time frame rate of 32 FPS, achieving a harmoni-
ous balance between real-time and accuracy.
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1  Introduction

Estimating depth from a single image is a task that humans 
can accomplish easily, but achieving high precision and low 
resource requirements with computational models is notori-
ously difficult. Depth estimation is a fundamental problem in 
computer vision that is significant for various applications 
such as scene understanding [1], robot navigation, autono-
mous driving, augmented reality, scene 3D reconstruction 
[2], and obstacle detection [3].

Monocular depth estimation (MDE) is the task of obtain-
ing depth information for each pixel from a single RGB 
image. It is a challenging task because obtaining 2D depth 
information from a 3D scene is an inherently ill-posed and 
ambiguous problem. A single 2D depth image can be gener-
ated from an infinite number of 3D scenes [4]. Furthermore, 
retrieving depth information without the assistance of addi-
tional data, such as stereo images, optical flow, point clouds, 
and other data, is extremely difficult.

While devices such as depth cameras and LIDAR can 
directly obtain depth information, they can be quite expen-
sive. An alternative approach is to use binocular images and 
video sequences to estimate depth [5–8]. However, stereo 
matching based on binocular vision requires pixel-by-pixel 
correspondence and disparity calculation, resulting in higher 
computational complexity for matching. Moreover, a sin-
gle pixel may match numerous identical feature points in 
low-texture scenes, leading to poor matching outcomes. 
In contrast, monocular depth estimation is relatively less 
expensive and more easily accessible. With the develop-
ment of convolutional neural networks (CNNs), monocular 
depth estimation methods based on CNNs have emerged as 
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an alternative to earlier methods that relied on manually cre-
ated features [9–11].

Previous depth estimation methods have heavily relied on 
CNN-based techniques, which have significantly improved 
accuracy. However, CNN-based methods are not always 
able to make accurate estimates for complex scenes or areas 
with missing depth information. To address these chal-
lenges, researchers have attempted to increase the depth of 
the model to expand the receptive field of convolution and 
improve feature extraction capabilities. However, increas-
ing the depth of the model also leads to an increase in the 
number of parameters, making the model larger and more 
resource-intensive.

The recent proposals of Transformer [12] and ViT [13] 
have led to a new approach in computer vision. ViT uses 
self-attention to learn global information in images for vari-
ous vision tasks, and there are many ViT-based models in 
monocular depth estimation [14–19]. ViT is well-suited for 
extracting global features in vision tasks, but it also makes 
the model larger, slower to infer an image, and more difficult 
to train.

In this paper, we propose the Efficient Mobile Trans-
former Network (EMTNet) for real-time scene depth esti-
mation show in Fig. 1. Inspired by MoCoViT [20], we use 
the mobile transformer block (MTB) to reuse redundant 
parameters in self-attention calculations, reducing the 
number of parameters and improving the real-time per-
formance of the model. The EMTNet encoder utilizes both 
CNN and ViT architectures to extract deep features from 

local and global scales. Furthermore, we use the DPT [21] 
decoder to restore resolution and fuse multi-scale depth 
information to produce high-resolution depth maps.

To validate the performance of our proposed model, 
we evaluated it on two monocular depth estimation data-
sets, NYU Depth V2 (indoor dataset, depth range 0-10 m) 
and KITTI (outdoor dataset, depth range 0-80 m), with 
corresponding training configurations. Our experiments 
demonstrate that our depth map output has higher resolu-
tion and finer detail than other techniques. Moreover, our 
method achieves a frame rate of 32 FPS in real-time while 
maintaining high accuracy depth map output.

The main contributions of this paper are as follows:

•	 Proposed a new model for real-time monocular depth 
estimation based on MTB and named EMTNet. MTB 
uses the Branch Sharing scheme to simplify the computa-
tion of the attention graph, thus reducing the number of 
parameters in the model and achieving real-time detec-
tion. It achieves a harmonious balance between real-time 
capability and minimal parameters within the same archi-
tecture.

•	 In order to enhance the feature extraction capability, we 
construct the encoder segment of the model by combin-
ing the CNN and ViT architectures. The encoder acquires 
deep features from two scales, local and global, respec-
tively, which greatly improves the model’s ability to cap-
ture deep information.

Fig. 1   The overall framework of EMTNet. Our architecture consists 
of two major components: the encoder section for extracting depth 
features and the decoder section for fusing features at each scale, 

where the encoder consists mainly of Linear Block (LB) and Mobile 
Transformer Block (MTB). The diagrams of LB and MTB are shown 
below the overall architecture diagram, from left to right
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•	 We conducted experiments on two public datasets, NYU 
Depth V2[22] and KITTI[23]. The experimental results 
showed that our method achieved better results in all 
equivalent architectural models. Meanwhile, our model 
outperformed other methods in the output prediction 
results, and it also contained more obvious detail infor-
mation in complex scenes.

The remainder of this work has been structured in the fol-
lowing manner. Section 2 consists of a literature review 
pertaining to this research direction, where the research 
conducted in the field of depth estimation over the past few 
years is discussed. Section 3 has provided a detailed descrip-
tion of the architecture of the network that was proposed 
in this paper, along with its implementation specifics. In 
order to validate the efficacy of our approach, several experi-
ments have been carried out in Sect. 4, and their outcomes 
have been discussed. Section 5 addresses the limitations of 
our methodology and outlines potential avenues for future 
research. Ultimately, the results of this work have been sum-
marized in Sect. 6.

2 � Related work

In this section, we will introduce the research background in 
the field of monocular depth estimation and Vision Trans-
former, and summarize the methods used in some of the past 
previous work.

2.1 � Monocular depth estimation

Depth estimation from a single color image has been an 
active area of research in robotics and computer vision for 
more than a decade. Early methods relied on hand-crafted 
features and probabilistic graphical models to estimate depth 
from RGB images captured by monocular cameras. For 
example, Saxena et al. [24] estimated the absolute scales of 
different image patches and inferred depth using a Markov 
random field model. Nonparametric methods [25–28] have 
also been used to estimate depth by combining the depth of 
the image with similar photometric content retrieved from 
a database. In recent years, depth estimation has shifted 
toward modern deep learning-based methods [29–31], 
replacing manual feature representations with learned fea-
tures extracted from neural networks.

The state-of-the-art methods for depth estimation from 
RGB images involve training convolutional neural networks 
using large-scale datasets. For example, Eigen et al. were 
among the first to use deep learning for this task [29]. They 
proposed a two-stack CNN approach, where one stack pre-
dicts the global coarse scales and the other stack refines local 
details, using fine-scale networks for more accurate depth 

maps. Eigen and Fergus [9] further incorporated auxiliary 
prediction tasks into the architecture. Liu et al. [32] com-
bined a deep CNN with a continuous conditional random 
field to obtain sharper transitions and local details. Laina 
et  al. [30] developed a deep residual network based on 
ResNet [33] and achieved even higher accuracy than previ-
ous methods. To solve the ambiguity problem in prediction, 
Qi et al. [34] trained their network to estimate both depth 
and normals.

Depth estimation is commonly addressed as a dense pre-
diction regression problem, but recent research has explored 
treating it as a classification problem. This involves dividing 
the depth range into multiple bins and predicting which bin 
each pixel belongs to. Fu et al. [31] pioneered this approach 
by utilizing ordinal regression to convert the depth estima-
tion problem into a classification problem. Bhat et al. [14] 
uses adaptive bins and a lightweight neural network to esti-
mate depth probability distributions, which are then com-
bined to generate the final depth map. Li et al. [15] built 
on this approach and incorporated full interaction between 
the probability distribution and bins, using Transformer to 
generate bins. While predicting depth in discrete bins can 
simplify training with limited data, it may reduce accuracy 
compared to predicting continuous values, and the number 
of bins used can also impact accuracy.

Another promising approach to depth estimation is to 
use a ViT-based architecture. The ViT [13] is a deep learn-
ing model that allows the utilization of global features for 
a wide range of computer vision tasks. In recent years, 
many researchers have proposed ViT-based methods for 
monocular depth estimation. For example, Bhat et al. [14] 
and Li et al. [15] both incorporated ViT into their method 
to improve the accuracy of depth estimation. Other studies, 
such as Zhao et al. [16], Bae et al. [17], Li et al. [18], and 
Shu et al. [19], have also proposed ViT-based methods that 
achieve state-of-the-art performance on monocular depth 
estimation benchmarks. These methods generally leverage 
the attention mechanism of the ViT to capture global context 
information and combine it with local features to improve 
the accuracy of depth estimation.

2.2 � Vision transformer

The Vision Transformer is a neural network architecture 
that has shown promising results in computer vision, lead-
ing to the emergence of many works based on ViT. For 
example, DeiT [35] uses knowledge distillation based on 
ViT [13] to train a small model that achieves accuracy 
comparable to that of a larger model. PVT [36] uses a 
pyramid attention mechanism to handle features at differ-
ent scales, and a cross-layer feature pyramid to improve 
feature representation. TNT [37] uses a spatial Trans-
former network and dynamic convolution to improve the 



1836	 Pattern Analysis and Applications (2023) 26:1833–1846

1 3

deformability and receptive field of the model. CoaT [38] 
is a multi-layered network structure that uses multi-scale 
features and multi-layered attention mechanisms to handle 
features at different levels. Finally, Swin Transformer [39] 
uses an interleaved local attention mechanism and a global 
attention mechanism to handle images with relatively large 
aspects.

Moreover, a number of lightweight ViT models have 
been proposed to address real-time applications. For 
instance, ResViT [40] suggests an improved residual con-
nection method to further reduce the computational burden 
of the lightweight ViT model. MobileViT [41] introduces a 
lightweight ViT model for mobile devices, which delivers 
faster inference speed and smaller model size on mobile 
devices. LViT [42] achieves good performance by reduc-
ing the number of model parameters and computational 
complexity through the removal of unnecessary modules 
and downsampling of resolution. Lastly, TinyViT [43] 
employs grouped convolution and depth-separable con-
volution to reduce the number of parameters and compu-
tational complexity of the model, thus enabling efficient 
image classification by introducing the transformer module 
into the conventional neural network.

Recent research [44] has demonstrated that combining 
convolution and Transformer can enhance prediction accu-
racy and improve training stability. BoTNet [45] achieved 
significant advancements in instance segmentation and 
object detection by replacing the last three bottleneck 
blocks of ResNet [33] with self-attention. ConViT [46] 
improved ViT with soft convolutional induction bias by 
introducing gated position self-attention (GPSA). The 
CVT [47] combines CNNs with ViT to improve computer 
vision tasks by introducing localized convolutional opera-
tions. LeViT [48] proposes a lightweight ViT model based 
on the LeNet [49] architecture. In this paper, we adopt the 
approach of combining CNN networks and Transformer by 
incorporating the MTB self-attention module into a CNN 
network, which enhances the model’s feature extraction 
capabilities and real-time depth estimation performance.

3 � Architecture

In this section, we will introduce the overall structure of 
EMTNet and explain its principles accordingly, which 
includes encoder and decoder parts. After that, we will 
introduce the implementation details of the Mobile Trans-
former Block (MTB), which includes Mobile Self-Atten-
tion (MoSA) and Mobile Feed Forward Network (MoFFN) 
specifically designed for lightweight networks. Finally, we 
introduce the loss function we used.

3.1 � Overview of the network

Although previous CNN-based methods excel at extracting 
deep feature information from images, they are limited in 
capturing only localized features due to their restricted 
receptive fields. Achieving an expanded receptive field 
typically involves stacking multi-layer CNNs or using 
dilated convolutions, which inevitably leads to an increase 
in model parameters or loss of feature information. Our 
proposed model, on the other hand, capitalizes on the 
strengths of both CNNs and ViTs. By combining these two 
architecture, our model effectively extracts depth feature 
information at both local and global scales, substantially 
enhancing the overall feature extraction capability. To 
restore depth information for monocular depth estimation 
tasks, we employ a fusion module with a skip connection. 
This module fuses depth information from multiple scales, 
helping to preserve feature information at each scale dur-
ing picture restoration. The overall architecture of our pro-
posed network is illustrated in Fig. 1.

Our network follows a standard Encoder-Decoder archi-
tecture, comprising an encoder for extracting depth features 
and a decoder for fusing multi-scale features. The encoder 
comprises four stages, the first two of which are Linear 
Block (LB) that extract local features in the scene using 
a Conv-net style. The latter two stages use Mobile Trans-
former Block (MTB), which includes two sub-modules, 
MoSA and MoFFN, designed to extract global information 
from the scene while reducing computational effort.

EMTNet Encoder. This part is used to extract depth fea-
tures. It contains a total of four stages, each consisting of 
Ni identical modules, and we set N1 , N2 , N3 and N4 to 4, 
4, 12 and 6 respectively. First, input images are processed 
by a CONV stem with two 3 × 3 convolutions with stride 
2 as patch embedding, which is used to speed up the sub-
sequent model processing,

where Cj represents the number of channels in the jth stage, 
X0 and X1 denote the input of the image and the output of 
the CONV stem, respectively. The X1 then fed into the first 
stage, where we use four LB to initially extract the feature 
information. the structure of the LB is shown in Fig. 1, it 
starting with a pooling layer to extract the low-level features,

where Pool indicates a pooling operation, ConvB,G denotes 
a subsequent convolution containing both BN and GELU 
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operations, and ConvB denotes a subsequent convolution 
containing only BN operations.

The second stage of the operation is similar to the first 
stage, with the use of 4 LB blocks. However, after passing 
through the Embedding layer, the feature map becomes half 
the size but with twice the number of channels.

In the third and fourth stages, we employ 12 and 6 MTBs 
respectively to extract global information from the fea-
tures. The MTBs are constructed by modifying traditional 
self-attention, and consist of two sub-modules: MoSA and 
MoFFN.

where i denotes the tokens entered by the ith MTB and j 
denotes the module operation at stage j.

We decided to place LB before MTB in our network 
architecture based on the intuition that LB is better suited 
for extracting local feature information for constructing edge 
contours, while MTB is better suited for extracting global 
features to estimate continuous large areas. In monocular 
depth estimation, the contour information of objects is par-
ticularly important as the most distinct depth variation is 
often found at the edges of the object, while the depth vari-
ation is smoother or more consistent inside the object con-
tour. Although CNN-based models do expand the receptive 
field of convolution when dealing with higher dimensional 
features and to some extent use global information, they do 
not perform as well as MTB in extracting global informa-
tion. Therefore, placing LB before MTB was based on our 
consideration of feature extraction. In the following sections, 
we will describe the overall structure of the EMTNet in more 
detail.
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EMTNet Decoder. We designed the Fusion module for 
fusing intermediate features from the previous Fusion mod-
ule and the corresponding encoder stage. The use of skip 
connections in the Fusion modules allows for the preser-
vation of feature information at multiple scales, preventing 
information loss during image restoration. The final output 
feature map is 1/4 the size of the original map after being 
downsampled by the four Fusion modules. To produce the 
final depth prediction, we added an output header dedicated 
to depth estimation. The detailed structure of the decoder is 
shown in Fig. 2.

The Fusion module starts with a convolutional layer to 
adjust the dimensionality of the feature map, which we set 
to remain the same before and after the convolution in our 
implementation. We also plan to incorporate depthwise 
separable convolution (DSC) in subsequent ablation experi-
ments to test our hypothesis. The output of the convolutional 
layer then undergoes a Residual Conv Unit, which is added 
to the output of the previous module. The result is passed 
through another Residual Conv Unit, followed by upsam-
pling and linear projection for the final output to the next 
module. To ensure better performance, we use the GELU 
activation function instead of the ReLU activation function 
in the Fusion module, as verified in the ablation experiment 
Sect. 4.4. In the following section, we will delve into the 
specifics of the MTB.

3.2 � Mobile transformer block

Although CNN-based methods can extract depth features, 
they are limited in their ability to extract global feature infor-
mation due to their inherent characteristics. The Transformer 
[12] and ViT [13] were proposed to address this limitation 
by enabling models to extract features by combining global 
information from the image, thus improving generaliza-
tion ability and accuracy. However, these approaches using 

Fig. 2   The overview of Fusion 
module. The Fusion module 
consists mainly of a CNN archi-
tecture for fusing features at 
different scales and upsampling 
the output to the next module
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global attention have a significantly larger number of param-
eters compared to CNN-based models, making them less 
suitable for real-time applications. In our proposed method, 
we enhance traditional self-attention by introducing MTB 
to reduce the number of parameters and FLOPs of the 
model, enabling real-time monocular depth estimation with 
improved accuracy. Self-attention used in the traditional ViT 
is,

where Q, K and V are the three matrices that can be 
learned by model. The Q and K matrices operations take up 
the majority of the model’s processes for the calculation of 
self-attention, so this is where the MTB module needs to be 
improved the most.

While self-attention is a powerful mechanism for capturing 
global dependencies in an image, it becomes less advanta-
geous than convolutional layers in lightweight models with 
constrained capacity due to its quadratic computational 
complexity with relation to spatial resolution. To compute a 
linear combination of results for V, traditional self-attention 
requires three linear layers of the same level. When dealing 
with multi-head self-attention, the superposition of multiple 
self-attentions significantly increases the number of param-
eters. To address this problem, we introduce MoSA, which 

(4)Self-Attention(Q,K,V) = Softmax

�
QKT

√
dk

�
V ,

replaces traditional self-attention with an attention mechanism 
specifically designed for lightweight Transformer structures.

Mobile Self-Attention (MoSA). MoSA uses a branch shar-
ing scheme to reuse weights in the Q, K and V calculations, 
making it an attention mechanism designed for lightweight 
Transformer structures. As shown in Fig. 3, Fq , Fk and Fv are 
projections of Q, K and V with the same input features, respec-
tively. The approach reuses the features V directly into Q and 
K based on the intuition that Q and K are only involved in the 
computation of the attention graph, while the final result of the 
self-attention mechanism is a linear combination of each token 
in V. Thus, V must retain more semantic information than Q 
and K to guarantee the final weight and representational power 
of the results. As a result, the correlation between the results 
of self-attention and V is stronger than their correlation with 
Q and K. This simplifies the computation of Q and K for real-
time tasks, achieving a better balance of performance over-
head. Compared to traditional self-attention, MoSA replaces 
the Q and K matrices with the V matrix, resulting in fewer 
parameters and faster computation.

where Fv , Fq and Fk are projections used to compute V, Q 
and K, respectively. To avoid feature loss, a depth-separable 

(5)

Fv = Fk = Fq

V = Fv(X)

K = Fk(X) = VT

Q = Fq(X) = V

Fig. 3   The Mobile Transformer 
Block. Mobile Transformer 
Block consists of Mobile 
Self-Attention (MoSA) and 
Mobile Feed Forward Net-
work (MoFFN). The branch 
sharing mechanism in MoSA 
avoids computing Q and K, and 
computes the attention map 
by reusing V. Ghost module is 
used to replace Linear layer, 
and LayerNorm is removed for 
efficiency



1839Pattern Analysis and Applications (2023) 26:1833–1846	

1 3

convolution branch is added to the output of V. The improved 
self-attention is,

Mobile Feed Forward Network (MoFFN). MoFFN is a fine-
grained feature operation that replaces the linear layer in 
traditional self-attention with a more efficient Ghost [50] 
module. To extract features on the channels, MoFFN con-
tains two Ghost modules with a Squeeze-and-Excitation Net-
works (SENet) [51] inserted between them. In image pro-
cessing tasks, channel domain attention explicitly models the 
interdependencies between feature channels. Following the 
suggestion of Hu et al. [51], we placed the SENet inside the 
model of the residual structure, and the module ends with a 
residual connection.

Figure 3 illustrates the MoFFN module and the Ghost 
structure, a widely used technique in lightweight networks 
for constructing features in a cost-effective manner. The 
Ghost module uses standard convolution to generate a 
few intrinsic feature maps, which are then expanded to a 
larger number of channels using cheap linear operations. To 
achieve a better balance between performance and speed, 
these linear operations are typically implemented as depth-
wise convolutions. MoFFN can be expressed as follows,

where SE denotes the channel attention module, DWConvB,G 
denotes the subsequent depthwise separable convolution 
containing BN and GELU operations, and ConvB,G denotes 
the subsequent ordinary convolution containing BN and 
GELU operations.

The Ghost module is a widely acknowledged structure in 
lightweight networks, and its effectiveness has been exten-
sively demonstrated. The MoFFN, consisting of the Ghost 
module and SENet [51], serves as an efficient replacement 
for the traditional Feed-Forward Network (FFN) in ViT. The 
MoFFN module proves highly effective in addressing real-
time tasks.

MoSA and MoFFN together constitute the MTB. In this 
work, we leverage MTB to reduce the computational load of 
the model, enhancing its efficiency while preserving model 
accuracy. The primary objective of adopting MTB is to 
streamline attention computation and improve the real-time 
speed of the model. Significantly, the computational speed 
of MTB outperforms that of the traditional self-attention 
module. In the forthcoming experimental section, we will 
comprehensively compare the information processing speed 
of models featuring different architectures, providing a com-
prehensive analysis of their respective performances.

(6)MoSA(V) = Softmax

�
VVT

√
d
k

�
V + Depthwise(V)

(7)

y = Ghost(SE(Ghost(x))) + x

Ghost(x) = Concat
[
DWConvB,G

(
ConvB,G(x)

)
, ConvB,G(x)

]

Loss function: Inspired by [52], we use the Scale-Invar-
iant (SI) loss proposed by Eigen et  al. [29] as our loss 
function,

where gi = log d̃i − log di , di is the ground truth depth, d̃i is 
the estimated depth and T denotes the number of pixels hav-
ing valid ground truth values. We use � = 0.85 and � = 10 
for all our experiments.

4 � Experiments

We have conducted extensive experiments on standard 
depth estimation for single image datasets for both indoor 
and outdoor scenes. In the following, the first section begins 
with a brief description of the individual datasets and the 
evaluation metrics. The second section describes the imple-
mentation details of the experiments. In the third part, we 
compare the model quantitatively with previous monocular 
depth estimation methods and perform generalizability tests. 
In the fourth section, we conduct ablation experiments to 
validate the effectiveness of our network. In the last section, 
we summarize and analyze all the experimental results and 
discuss the final results of the experiments.

4.1 � Datasets and evaluation metrics

We tested the model on three datasets and in that section 
the datasets and the treatment of the data are presented. The 
evaluation metrics used is presented at the end.

NYU Depth V2 is a dataset that provides images and depth 
maps of various indoor scenes captured at a pixel resolu-
tion of 640 × 480 [22]. The dataset comprises 1,449 densely 
labeled images and 407,024 pseudo-labeled and unlabeled 
images. We used a subset of 24,231/654/654 images for 
training, validation, and testing. During the training period, 
we preprocessed the original data through random cropping 
and rotation, using a crop size of 416×544. We used the 
original image size of 480×640 during the testing period.

KITTI is a dataset that provides stereo images and cor-
responding 3D laser scans of outdoor scenes captured using 
equipment mounted on a moving vehicle [23]. The KITTI 
dataset contains real image data collected from urban, rural, 
and highway scenes, with a sampling resolution of 375×
1,242, sampled and synchronized at 10Hz. We selected 
the depth prediction dataset as our model test data, using 
a subset of 23,158/697/697 images for training, validation, 
and testing, respectively. During the training period, we 
performed image enhancement on the original data through 

(8)�pixel = �

√√√√√ 1

T

∑

i

g2
i
−

�
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(
∑

i

gi
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random cropping and rotation in the image preprocessing 
step. We used a crop size of 320×1,056 for the random 
cropping operation. We did not use the same preprocessing 
operation for validation, and we used the original size of 
375×1,242 for both validation and testing.

SUN RGB-D is a publicly available dataset on scene 
understanding from the Vision & Robotics Group at Prince-
ton University. SUN RGB-D is captured by four different 
sensors and contains 10,000 RGB-D images, at a similar 
scale as PASCAL VOC [53]. The whole dataset is densely 
annotated and includes 146,617 2D polygons and 58,657 3D 
bounding boxes with accurate object orientations, as well 
as a 3D room layout and category for scenes. This dataset 
enables us to train data-hungry algorithms for scene-under-
standing tasks, evaluate them using direct and meaningful 
3D metrics, avoid overfitting to a small testing set, and study 
cross-sensor bias. We use this dataset as a benchmark of 
model generalization ability for determining the generaliza-
tion results of different models trained on NYU Depth V2.

Evaluate metrics. To evaluate the accuracy of the depth 
estimation results, we used the generalized standard metric 
for depth estimation proposed by Eigen et al. [29]. These 
error metrics are defined as:

•	 threshold accuracy ( �i ): % of yp s.t. max(
yp

ŷp
,
ŷp

yp
) = 𝛿 < thr 

for thr = 1.25, 1.252, 1.253;
•	 absolute relative error (AbsRel): 1

n

∑n

p

�yp−ŷp�
y

;

•	 squared relative error (SqRel): 1
n

∑n

p

‖yp−ŷp‖2

y
;

•	 root mean squared error (RMSE): 
�

1

n

∑n

p
(yp − ŷp)

2;
•	 root  mean  squared  log  e r ror  (RMSE log) : �

1

n

∑n

p

���log(yp) − log(ŷp)
���
2;

where yp is a pixel in depth image y, ŷp is a pixel in the pre-
dicted depth image ŷ , and n is the total number of pixels for 
each depth image.

4.2 � Implementation details

We implemented the proposed method using PyTorch 
version 1.12 on Ubuntu 20.04, and trained it on a single 
NVIDIA GeForce RTX 2080 Ti graphics card. Prior to 
inputting the original image into the model, we applied 
standard data augmentation and image enhancement tech-
niques to the image. The specific methods are as follows:

•	 Cropping: both the input image and the target image were 
randomly cropped. For the NYU Depth V2 dataset, the 
image was cropped to a size of 416 × 544, and for the 

KITTI dataset, the image was cropped to a size of 320 × 
1056.

•	 Rotation: we randomly rotated the input image and target 
image between the angles r ∈ [−2.5, 2.5].

•	 Gamma enhancement: we applied gamma enhancement 
to the original image with � powers. The value of � was 
randomly selected from the range � ∈ [0.9, 1.1].

•	 Brightness enhancement: we multiplied the original 
image with d to create a random variation in brightness. 
For the NYU Depth V2 dataset, the value of d was ran-
domly selected from the range d ∈ [0.75, 1.25] , and for 
the KITTI dataset, the value of d was randomly selected 
from the range d ∈ [0.9, 1.1].

•	 Color enhancement: we multiplied the original image by 
a random RGB value c ∈ [0.9, 1.1].

•	 Horizontal flip: we randomly flipped the image and target 
image horizontally with a probability of 0.5.

In addition to the above operations, several training tech-
niques were used to accelerate the convergence of the model. 
The training method was set as follows.

We employed the AdamW optimization algorithm with 
weight decay 0.1 to update the parameters of our models 
during the training period. The maximum learning rate for 
the NYU Depth V2 and KITTI datasets was set to 5 × 10−4 
and 3.75 × 10−4 , respectively. To accelerate the convergence 
of the model, we also employed learning rate warm-up [33] 
and OneCycleLR policy [54]. Specifically, we set the learn-
ing rate with max_lr = 3.5 × 10−4 and warm-up the learning 
rate from max_lr/25 to max_lr for the first 30% of iterations, 
followed by cosine annealing to max_lr/100. The number of 
training epochs was set to 200, with a batch size of 10, until 
the model finally converged and stopped. Training our model 
took approximately 25 min per epoch on a single node with 
one NVIDIA GeForce RTX 2080 Ti graphics card. Finally, 
we validated each dataset after training and tested the test 
set with the best model on the validation set.

4.3 � Comparison with the most advanced available

We assess the efficacy of our proposed network through rig-
orous evaluations on two datasets: the NYU Depth V2 and 
KITTI. To ensure a comprehensive appraisal, we judiciously 
curate pertinent methodologies hitherto applied in real-time 
monocular depth estimation. These established approaches 
serve as benchmarks for comparative analysis, affording 
invaluable insights into the performance of our architectural 
model. Furthermore, we conduct expansive generalizability 
assessments on the SUN RGB-D dataset, alongside meticu-
lous ablation experiments aimed at validating the model’s 
robustness.

Results on NYU Depth V2. Table 1 presents a comprehen-
sive performance comparison on the official NYU Depth V2 
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test set. Our model outperforms previous methods on most 
metrics, showcasing its superiority. However, we noticed 
that it does not exhibit significant improvement on certain 
metrics, such as RMSE and RMSElog, and only marginal 
enhancements on others. We speculate that one of the rea-
sons why our method did not show a strong advantage on 
this dataset may be that the MTB module is too much on the 
speed side and somewhat less on the accuracy side, which is 
inevitable. Nevertheless, Fig. 4 visually illustrates the depth 
prediction results of our model alongside its comparison 
model, emphasizing subtle differences in the same scene 
with white dashed boxes. Despite not necessarily dominat-
ing in quantity, our method excels in the quality of generated 
depth maps, particularly in capturing finer detail informa-
tion within complex scenes. Moreover, our model exhibits 
remarkable depth completion ability in regions with missing 
depth compared to other models. In contrast, outputs from 
comparison models like An et al.[61] and Wofk et al.[56] 
exhibit erroneous estimations in depth-missing regions, ren-
dering them nearly indistinguishable from the surrounding 
scene information. These findings highlight the strength of 
our model in producing accurate and detailed depth maps, 
especially in challenging scenarios.

Results on KITTI. Table 2 provides an overview of the 
performance metrics for all related models on the KITTI 
test set. Our model emerges as the clear leader, showcasing 
significantly superior results across all evaluated metrics. 
Particularly noteworthy is its outstanding performance when 
compared to methods like MonoFormer, Lite-Mono, and 
Varma et al., which also utilize the Transformer architecture. 
Quantitatively, our approach obviously outperforms these 
Transformer-based methods. Figure 5 illustrates the depth 
prediction results for our model alongside the comparison 
methods. Focusing on areas highlighted by white dashed 
boxes in the figure, our model excels in capturing intricate 
details and exhibits exceptional depth prediction accuracy, 
especially in regions with missing depth information.

Results on SUN RGB-D. Table 3 presents the results of 
the generalization tests on SUN RGB-D. For the assess-
ment of generalization ability, we carefully selected a 
diverse set of methods with different architectures for 
comparison. All models were pre-trained on NYU Depth 
V2 without fine-tuning their parameters. Among the mod-
els tested, Adabins [68] represents the depth estimation 
model using a pure Transformer architecture. Upon ana-
lyzing the results, we observed that our model exhibits 

Table 1   Comparison of 
performances on the NYU 
Depth V2. The reported 
numbers are from the 
corresponding original papers. 
Measurements are made for the 
depth range from 0 m to 10 m. 
The best results are in bold, 
second best are underlined 

Methods �
1
↑ �

2
↑ �

3
↑ AbsRel↓ SqRel↓ RMSE↓ RMSElog ↓

Nekrasov el al.[55] 0.816 0.952 0.989 0.142 0.127 0.483 0.196
Eigin el al. [29] 0.719 0.860 0.941 0.223 – 0.687 0.260
FastDepth[56] 0.731 0.926 0.978 0.175 0.149 0.605 0.216
FastDepth V2[56] 0.778 0.946 0.986 0.156 0.116 0.539 0.210
CReaM[57] 0.704 0.917 0.977 0.190 – 0.687 0.251
DepthNet [58] 0.807 0.949 0.983 0.144 0.105 0.599 –
Ma el al.[59] 0.681 0.899 0.969 0.201 0.187 0.667 –
Yucel el al.[60] 0.775 – – – − 0.599 –
An el al.[61] 0.803 0.953 0.987 0.146 0.106 0.514 0.199
EMTNet (Ours) 0.815 0.953 0.989 0.141 0.099 0.490 0.199

Table 2   Comparison of 
performances on the KITTI. 
The reported numbers are from 
the corresponding original 
papers. Measurements are made 
for the depth range from 0 m 
to 80 m. The best results are in 
bold, second best are underlined 

Methods �
1
↑ �

2
↑ �

3
↑ AbsRel↓ SqRel↓ RMSE↓ RMSElog ↓

Nekrasov el al.[55] 0.898 0.966 0.994 0.099 0.544 3.866 –
FastDepth[56] 0.839 0.966 0.990 0.139 0.714 4.952 0.132
FastDepth V2[56] 0.876 0.968 0.991 0.100 0.498 3.868 0.092
Ma el al.[59] 0.916 0.968 0.997 0.087 0.352 2.994 –
Amir el al.[62] 0.923 0.967 0.984 0.110 0.929 4.726 0.194
SGDepth [63] 0.879 0.961 0.981 0.113 0.835 4.693 –
An el al.[61] 0.915 0.985 0.996 0.087 0.347 3.107 0.084
MiniNet [64] 0.825 0.941 0.976 0.141 1.080 5.264 0.216
MonoFormer [65] 0.884 0.963 0.983 0.104 0.846 4.058 0.183
Lite-Mono [66] 0.886 0.963 0.983 0.107 0.765 4.561 0.183
Varma el al. [67] 0.851 0.952 0.980 0.125 0.905 5.096 0.203
EMTNet (Ours) 0.928 0.988 0.997 0.082 0.324 2.946 0.075
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a slightly lower overall generalization ability compared 
to the Transformer architecture approach. However, when 
compared to hybrid architectures like MonoFormer [65] 
and Lite-Mono[66], our method demonstrates better 

generalization ability. Moreover, in the comparison with 
methods utilizing CNN architecture, our model emerges as 
the more advantageous choice in terms of generalization 
performance.

We conducted a comprehensive comparison of different 
models by evaluating both Params and real-time perfor-
mance (FPS) on the same device, ensuring a fair assessment 
under identical conditions. Table 4 presents the test results, 
with AbsRel measured on the KITTI dataset. Theoretical 
analysis suggests that the Transformer architecture typically 
exhibits higher computational complexity than CNN-based 
models due to the inclusion of the attention module. The 
test results show that our model showcases a significant 
advantage, boasting fewer parameters compared to a model 
employing the Transformer architecture. Furthermore, when 
pitted against hybrid architectures such as Lite-Mono[66] 
and MonoFormer (Hybrid)[65], our model outperforms in 
terms of accuracy. In regard to real-time performance, our 
model is slower than pure CNN-based models but faster and 
more accurate than pure Transformer-based models. This 
trade-off allows our approach to strike an optimal balance 

Table 3   Comparison of performances on SUN RGB-D test set without fine-tuning the models trained on NYU Depth V2. The best results are in 
bold and second best are underlined. The range of ground truth depth for evaluation from 0m to 8m

Methods �
1
↑ �

2
↑ �

3
↑ AbsRel↓ RMSE↓ RMSElog ↓

FastDepth[56] 0.669 0.744 0.812 0.188 0.691 0.279
MonoFormer (Hybrid)[65] 0.741 0.866 0.923 0.165 0.632 0.243
Lite-Mono[66] 0.717 0.854 0.910 0.168 0.656 0.247
AdaBins[68] 0.771 0.944 0.983 0.159 0.476 0.211
EMTNet (Ours) 0.759 0.893 0.954 0.164 0.580 0.232

Table 4   Quantitative comparison of different architecture models.

The test results used were performed using 224 × 224 images on a 
single NVIDIA GeForce RTX 2080 Ti graphics card. Hybrid in the 
table indicates the method using CNN and Transformer architectures

Methods Architecture AbsRel ↓ #Params(M)↓ FPS↑

DepthNet Nano[58] CNN 0.103 1.75 57
FastDepth[56] CNN 0.139 3.96 53
MonoFormer (ViT)

[65]
Transformer 0.118 54.2 27

MonoFormer 
(Hybrid)[65]

Hybrid 0.104 23.9 28

Lite-Mono[66] Hybrid 0.107 10.3 41
AdaBins[68] Transformer 0.058 78.0 21
DORN[31] Transformer 0.072 99.8 18
EMTNet (Ours) Hybrid 0.082 16.3 32

Fig. 4   Qualitative comparison with An et al. [61], Nekrasov et al. [55], Wofk et al. [56], Ma et al. [59]. All the models are pre-trained on NYU 
Depth V2 [22] training set
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concerning the number of parameters and computational 
efficiency within the hybrid architecture models. As a result, 
our model achieves remarkable results in terms of both accu-
racy and computational performance.

4.4 � Ablation study

In the ablation study, we evaluated the impact that the fol-
lowing different design choices had on our model.

Depthwise separable convolution (DSC). DSC originates 
from MobileNet [69], a lightweight model for computer 
vision tasks that is often used in environments with limited 
hardware resources. Intuitively, its use allows our model to 
be more adaptable to real-time tasks. Therefore, during the 
experimental stage, we used DSC in the skip-connection 
part between the encoder and the decoder. However, the 
experiments showed that including DSC reduced the num-
ber of parameters in the model, but the model’s accuracy 
decreased, which was not desirable.

Activation function. In our experiments, we used both 
ReLU and GeLU activation functions to verify the real-time 
performance of the model. ReLU is a linear function, while 

GeLU is nonlinear in the real number domain. In theory, 
using linear activation functions in environments with lim-
ited hardware resources allows for faster information pro-
cessing. However, our experiments showed that using GeLU 
was superior, which was surprising.

MTB Block. MTB is the module we introduced to reduce 
the number of model parameters and FLOPs. In the abla-
tion experiments, we compared the outcomes of using MTB 
and traditional self-attention and found that using MTB led 
to better performance. Although it is not as good in real-
time as using DSC, it showed better accuracy performance 
(Table 5).

4.5 � Experimental discussion

We propose a real-time monocular depth estimation model 
named EMTNet, which is built upon the Mobile Transformer 
Block (MTB). EMTNet effectively integrates CNN and ViT, 
enabling the extraction of both local and global features in 
complex scenes. This synergy accounts for the network’s 
capacity to enhance depth map details and exhibit robust 
generalization capabilities. Furthermore, the Branch Sharing 

Fig. 5   Qualitative comparison on KITTI Eigen split [23]. For each column, from top to bottom we present the input image, the prediction from 
An et al. [61], Nekrasov et al. [55], Wofk et al. [56], Ma et al. [59] and EMTNet (ours)
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scheme employed by MTB efficiently reduces the model’s 
parameter, thereby endowing it with the capability for real-
time depth estimation. EMTNet is going to outperform the 
other models in terms of the detail performance of the output 
depth map. However, using MTB comes with a trade-off 
between accuracy and real-time performance. While the 
model’s accuracy is not significantly improved compared to 
previous works on the NYU Depth V2 dataset, its real-time 
efficiency is compromised. In the generalization test on the 
SUN RGB-D dataset, our network performs well with the 
same hybrid architecture, but there is still a lot of room for 
improvement compared to the network using the pure Trans-
former architecture.

Our aim is to enhance the model’s accuracy and real-time 
performance, but using a global attention approach could 
cause a decline in real-time performance. Therefore, strik-
ing a balance between real-time and accuracy is challenging 
for depth estimation models. Furthermore, high-resolution 
depth maps are not always necessary for most depth esti-
mation tasks, as depth information is often correlated with 
continuity over most regions. High-resolution outputs could 
only make sense in complex depth scenes, but they also 
reduce the model’s real-time performance. Also the high-
resolution output reduces the real-time nature of the model. 
Thus far, we have achieved our desired results in terms of 
model accuracy and real-time performance.

5 � Limitations and future directions

Our method has demonstrated promising results in experi-
ments conducted on two datasets, surpassing CNN-based 
models and even some Transformer-based methods. How-
ever, we acknowledge that our model still has certain limi-
tations due to architectural design deficiencies and model 
training issues. One major concern is the substantial number 
of parameters and computational complexity of our model 
compared to the other hybrid model (CNN+Transformer). 
Redundant computations also pose a challenge. Moreover, 
we observed variations in prediction accuracy across differ-
ent datasets, with the model performing less effectively on 
NYU Depth V2 compared to KITTI. Some metrics showed 
only marginal improvement, and in some cases, even a 

reduction was observed. We suspect that the lack of coordi-
nation between the CNN and Transformer components dur-
ing the depth feature extraction in the encoder stage results 
in the loss of important features during transmission. Addi-
tionally, our model faced convergence issues during train-
ing, necessitating the setting of multiple epochs for slow 
convergence.

To address these limitations and enhance our method, 
we are planning to explore alternative advanced modeling 
approaches. This exploration could involve delving into a 
pure Transformer architecture paradigm with pre-trained 
parameter initialization, along with an investigation into 
the integration of a depth-interval categorization (Bins-
based) methodology to expedite the model’s convergence 
speed. Additionally, within the model’s training regimen, 
we have deliberately incorporated a broader array of data 
augmentation techniques. This strategic augmentation of 
the training dataset contributes significantly to amplifying 
the model’s generalization prowess. Moreover, we aspire to 
examine the model’s adaptability and the potential appli-
cation of its enhanced methodologies in a wide range of 
visual tasks. These tasks encompass, but are not limited to, 
semantic segmentation, target detection, and multi-image 
3D reconstruction.

6 � Conclusion

We present EMTNet, an innovative real-time monocular 
depth estimation model constructed upon the Mobile Trans-
former Block (MTB). This model synergistically harnesses 
the capabilities of both CNN and ViT architectures to elevate 
feature extraction across local and global domains. Leverag-
ing the Branch Sharing scheme within MTB, EMTNet suc-
cessfully achieves parameter reduction, thereby optimizing 
its aptitude for real-time depth estimation tasks. To produce 
finer depth maps, we synthesize high-resolution depth maps 
by fusing multi-scale features in the decoder section. Our 
model achieves good results on two benchmark datasets. 
When comparing the output prediction maps, our model 
demonstrates superior ability in generating high-quality 
depth maps, especially in complex scenes. Moreover, in 

Table 5   Ablation results of the 
DSC, ReLU, GeLU and MTB.

The best results for the combined performance are shown in bold font

DSC ReLU GeLU MTB AbsRel RMSE FPS

✓ ✓ ✓ 0.174 0.586 36.93
✓ ✓ 0.141 0.490 31.74

✓ ✓ 0.141 0.490 32.55
✓ 0.192 0.651 27.77

✓ 0.192 0.651 27.69
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depth missing regions, our model excels in depth comple-
tion compared to other models. In terms of real-time perfor-
mance, our approach achieves 32 frames per second, striking 
a harmonious equilibrium between accuracy and speed.
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