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Abstract
Subspace learning of Reproducing Kernel Hilbert Space (RKHS) is most popular among domain adaption applications. 
The key goal is to embed the source and target domain samples into a common RKHS subspace where their distributions 
could match better. However, most existing domain adaption measures are either based on the first-order statistics that can’t 
accurately qualify the difference of distributions for non-Guassian distributions or complicated co-variance matrix that is 
difficult to be used and optimized. In this paper, we propose a neat and effective RKHS subspace domain adaption measure: 
Minimum Distribution Gap (MDG), where the rigorous mathematical formula can be derived to learn the weighting matrix of 
the optimized orthogonal Hilbert subspace basis via the Lagrange Multiplier Method. To show the efficiency of the proposed 
MDG measure, extensive numerical experiments with different datasets have been performed and the comparisons with four 
other state-of-the-art algorithms in the literature show that the proposed MDG measure is very promising.

Keywords  Domain adaption · RKHS · Maximum mean difference (MMD) · Lagrange multiplier method (LMM) 
optimization

1  Introduction

Usually, since the distributions of samples from the source 
and target domain are different from each other, directly 
applying the classifiers trained on source domain samples to 
target domain samples would lead to poor classification per-
formance. It’s unwise to retrain a new classifier on target 
domain samples due to the deficiency of labeled samples. 
And domain adaption can address this classification prob-
lem, because it can transfer the knowledge learned from 
source domain to target domain [1–11]. For example, with 
the help of domain adaption, the classifier trained on labeled 
source domain that consists of ID photos under controlled 

condition stored in police stations can work well on the unla-
beled target domain that consists of target photos captured 
by some video monitors [12, 13]. At present, a common way 
of domain adaption based on distribution difference is that 
source and target domains are transformed into a Reproduc-
ing Kernel Hilbert Space (RKHS) subspace shared by the 
domains, which should be optimized so that their distribu-
tions are as close as possible [2, 5–8]. It can be seen that the 
distribution difference metric named as domain adaption 
measure is vital for RKHS subspace learning. The Maxi-
mum Mean Difference (MMD) is the most representative 
domain adaption measure. Many related studies [4–7, 10, 
11, 14] used the MMD measure to judge the distribution gap 
between different domains. Generally, the MMD measure 
between the source domain data 

{
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i
∣ i = 1⋯ ns

}
 and the 

target domain data 
{
xt
j
∣ j = 1,… nt

}
 can be written as

where Hs is a RKHS subspace and ‖⋅‖H is the RKHS norm; 
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Although MMD measure is simple and easy to implement, 
it has its theoretical defect in terms of measuring the distri-
bution difference between two domains: (1) MMD only con-
siders their mean values but ignores their higher-order 
moments, such as variances; (2) domains with diverse dis-
tributions maybe have the same mean value. So, the MMD 
measure is unable to accurately measure the distribution 
discrepancy.

In addition, co-variance matrix measure based on the 
second-order moment proposed by Li [8] and Sun [15] is 
also commonly used to measure the distribution distance 
between source and target domains. And the co-variance 
matrix measure of source domain data and target domain 
data is

where ‖⋅‖F is Frobenius norm and the definition of co-var-
iance matrices is

with

From the perspective of distribution matching, MMD-based 
or co-variance-based domain adaption methods aim to align 
the mean (MMD measure) and covariance (co-variance 
matrix measure) of different domains to align the distribu-
tions of domains, which are suitable for the domains obey-
ing Guassian distribution. However, in real world, domains 
usually obey complex non-Guassian distributions. So, the 
MMD measure and co-variance matrix measure cannot 
fully display the performance of domain adaption based on 
the RKHS subspace learning. In addition, the complicated 
co-variance matrix measure has large computational costs, 
because it needs iterative optimization.

To solve the above limitations, we propose a new domain 
adaption measure MDG. The distributions of the source data 
Xs and target data Xt in subspace can be matched better by 
MDG measure, which enhance the transferability of the 
models trained on source domain. And the MDG measure 
of the source data Xs and target data Xt is as followed:

Our main contributions are as follows, (1) we prove that 
the MDG measure is effective for the RKHS subspace 
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classification; (2) the optimized RKHS subspace has been 
analytically derived through the Lagrange Multiplier Method 
(LMM); and (3) the results of extensive experiments on dif-
ferent dataset have verified the advantages of the proposed 
MDG measure, compared to the approaches based on the 
MMD measure and co-variance matrix measure.

The rest of this paper is organized as follows: In Sect. 2, 
we briefly review partial-related works on traditional 
domain adaption based on RKHS subspace learning and 
deep domain adaption-based neural network; In Sect. 3, we 
introduce some necessary background of second-order ran-
dom variable, the related definitions of RKHS and RKHS 
subspace learning; In Sect. 4, we give the proof of the trans-
formation validity of RKHS subspace, propose the MDG 
measure and apply it into RKHS subspace classification. 
In addition, the optimization problem, algorithm and com-
putational complexity analysis of MDG measure are added 
in Sect. 4. In Sect. 5, the experiments show the validity of 
MDG measure from the aspects of classification accuracy, 
running time and RKHS subspace dimension stability; And 
the conclusion is made in Sect. 6.

2 � Related work

Domain adaption [16] aims to transfer the knowledge 
learned from the well-labeled source domain to help the 
poor-labeled target domain. The domain adaption based 
on RKHS subspace learning [2] is the very popular among 
domain adaption methods, which learn a latent RKHS sub-
space for source and target domains to reduce their distri-
bution difference. So, the key problem of RKHS subspace 
is how to measure the distribution gap of two domains. 
Gretton et al. [14] proposed the MMD to measure the dis-
tribution distance of two domains, which simply takes the 
two means of two domains in RKHS as their distributions, 
respectively. Currently, the MMD-based methods is the 
most common among the RKHS subspace learning. For 
instance, TCA proposed by Pan et al. [17] learned a shared 
and latent RKHS subspace by using the MMD to reduce 
distribution divergence and preserving the data properties 
as much as possible, where the distribution of target domain 
can align the source domain better. Therefore, the trained 
models on source domain could apply and perform well on 
target domain. What’s more, Pan et al. put forward a semi-
supervised TCA (SSTCA) [17], which considers the label 
information in subspace learning. IGLDA [6] not only uses 
MMD to measure the distribution distance of two domains 
but also retains the local geometry of the labeled source 
domain data to unearth a suitable subspace, where the dis-
tributions could be as much as similar. In 2017, the proposed 
MIDA [18] reduces the distribution gap between the source 
domain and target domain by minimizing the MMD distance 
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of them, in the meantime, keeps the maximum independence 
of the domain features. The MMD-based TIT [5] and LPJT 
[19] extend domain adaption into the heterogeneous domain 
adaption [20, 21] which handles domains with arbitrary 
features and dimensionalities by learning different trans-
formations for different domains. In addition to MMD, the 
co-variance matrix measure based on second-order moment 
proposed by DACoM model is used to measure distribution 
gap to match the distributions of domains. And in DACoM 
model [8], the local geometric structure and discriminative 
information are preserved simultaneously.

Deep domain adaption integrates domain adaption into 
the neural networks to learn more transferable features, 
which conducts to adapt models trained on source domain to 
a different but related target domain. For instance, DDC [22] 
proposed a new CNN architecture that introduces an domain 
adaption layer and an additional domain adaption loss term 
based on MMD measure to learn domain invariant repre-
sentation. Therefore, DDC improves the problem of domain 
shift between source domain and target domain. In order to 
further reduce the distribution discrepancy between source 
domain and target domain, DAN [23] proposed multi-kernel 
MMD measure(MK-MMD), and then applied MK-MMD 
measure into pre-trained AlexNet model. Benefiting from 
CNN and MK-MMD measure, the DAN is likely to learn 
features that work well on the target domain. In 2017, Deep 
CORAL [15] extended co-variance matrix measure into the 

deep neural network, that is, co-variance measure between 
the source and target feature activation’s was added as a 
domain adaption loss term. Joint training with co-variance 
loss and classification loss, Deep CORAL could enhance the 
transferability of feature representation. In addition to com-
bining domain adaption and neural network for classifica-
tion, Liang et al. [24] applied MK-MMD measure into CNNs 
and proposed a transferable reconstruction neural network 
for the compressed signal (CTCS), which applied MK-MMD 
measure to fine-tuning the pre-trained network. Therefore, 
the reconstruction capability on target domain signals can be 
achieved by only fine-tuning the network trained on source 
domain signals.

3 � Preliminary

In this section, some related background knowledge are 
introduced. First of all, we give the definition of the sec-
ond-order moment random variable and the necessary and 
sufficient condition for two second-order moment random 
variables to be equal. Next, we review some basic concept 
of RKHS. Finally, we introduce the framework of the RKHS 
subspace learning. The notions appeared in this paper is col-
lected in Table 1.

Table 1   The table of symbols used in the paper

Ω Instance space
L2 Hilbert space composed of quadratic integrable variables
H Reproducing kernel Hilbert space (RKHS) composed of integrable functions
Hs ⊂ H RKHS subspace
ℝ Real number space
ℝ

d d-dimensional real vectors space
(⋅, ⋅)L2 Inner product defined in L2 space
⟨⋅, ⋅⟩H Inner product defined in H space
xi , xsi , x

t
i

An ith general data sample, an ith source data sample, and an ith target data sample in the space Ω
yi , ysi , y

t
i

An ith general data sample, an ith source data sample, and an ith target data sample in the space Hs∑
s , 
∑

t co-variance matrix of source and target instances
𝜇̄s , 𝜇̄t Mean vector of source and target instances
X, Y, Z, Yi , Ys

i
 , Yt

i
Second-order moment random variable

g ∶ Ω → ℝ A function in Hilbert space H
� The mapping from Ω to H
K, k̃i Kernel matrix and the ith column vector of K
k(⋅, ⋅) Kernel function
Θ , �i A set of basis of the subspace of H, and the ith orthonormal basis
W, wij The coefficient matrix, and the element of W
� Parameter of the RBF kernel function
k Parameter of k-Nearest neighbor
N The number of all instances
ns , nt The number of source instances and target instances
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3.1 � Second‑order moment random variable

Given a random variable X which obeys a distribution p(x) , it 
becomes a second-order moment random variable if the condi-
tion E

[|X|2] = ∫
Ω
x
2

p(x)dx < +∞ is satisfied. From a physical 
point of view, a second-order random variable is the limited-
energy random signal. And in real life, all signals have limited 
energy. So, the source and target domain data in original space 
can be treated as the samplings from two second-order random 
variables with different distributions.

Assuming that a set of random variables satisfies {
X
|||E
[|X|2] < +∞

}
 , it is called as a L2 space that is a Hilbert 

space and its inner product is defined as [25, 26]

where ∀X, Y ∈ L2 , the star denotes the complex conjugate, 
and the inner product specified by round brackets on L2 
space. Besides, the norm in L2 is defined as [27]

In light of the positive definiteness of inner product defined 
in Hilbert space L2 , the necessary and sufficient condition 
for two second-order random variables to be equal is that 
the mean squared error between them is zero, which can be 
formulated as follows (see details in “Appendix A”),

where X1 and X2 all are second-order random variables from 
the L2 space.

3.2 � Reproducing kernel Hilbert space

Similarly, the continuous square integrable function space 
H is given by [28]

H is a Hilbert space and the inner product of H space is [9],

where the star denotes the complex conjugate.
In particular, a Hilbert space is called a RKHS space if its 

kernel k(x�, x) ∶ Ω × Ω satisfies the following [10, 25, 26]:
For ∀f ∈ H , it can be reproduced through the RKHS inner 

product of the function itself and the feature vector k(⋅, x) ∶

(X, Y)L2 = E
[
XY∗

]
,

‖X‖L2 =
√
(X,X)L2 .

X1 =X2 ⇔
‖‖X1 − X2

‖‖2L2 =
(
X1 − X2,X1 − X2

)
L2

=E
[||X1 − X2

||2
]
= 0.

H ∶

{
f
||||f ∶ Ω → ℝ,∫Ω

|f (x)|2dx < +∞

}
,

⟨f , g⟩H = ∫Ω

f (x)g∗(x)dx,

f (x) = ⟨f , k(⋅, x)⟩H .

from which the following also holds,

3.3 � The RKHS subspace learning framework

In domain adaption applications, Xs =

{
xs
1
,… , xs

ns

}
 and 

Xt =

{
xt
1
,… , xt

nt

}
 are from the source and target domains 

respectively and obey different distributions. Domain adaption 
based on RKHS subspace learning tries to find a better RKHS 
subspace to minimize their distribution difference.

First, the kernel transformation �(x) = k(⋅, x) maps the data 
s a m p l e s  X = Xs ∪ Xt =
{

xs1,… , xsns , x
t
1,… , xtnt

}

=
{

x1,… , xN
}

⊆ Ω into the RKHS 
space H. And the new orthogonal basis �i of RKHS subspace 
Hs can be constructed through linear combination of these 
non-orthogonal feature vectors:

which can be cast into the matrix form as follows

with

The orthogonality of the new basis Θ satisfies the following 
condition

Substituting Eq. (3) into Eq. (4), the following is obtained:

where K is the kernel matrix given by

⟨
k
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⟩
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Then, a certain domain adaption measure is used to achieve 
the optimal RKHS subspace Hs with basis Θ characterized 
by its weighting matrix W.

Finally, the feature vector �(xi) is projected onto the RKHS 
subspace Hs that satisfies the constraint formula of Eq. (5). 
According to the subspace projection theorem in Hilbert space 
[27], the coordinates yi of the feature vector �(xi) in the RKHS 
subspace basis Hs with Θ is given by

where d is dimension of the RKHS subspace Hs.

4 � RKHS subspace classification with MDG

In this section, we first introduce the proposed MDG measure; 
second, we confirm the mapping validity of RKHS subspace, 
that is, a second-order moment random variable in the original 
data space is still a second-order moment random variable 
when is transformed into RKHS subspace; then, we apply 
our MDG measure for the RKHS classification and derive 
its optimized formula via the LMM; at last, we analysis the 
algorithm of MDG-based RKHS subspace learning and its 
computational cost.

4.1 � Minimum distribution gap

Suppose there are two second-order moment variables, 
that is, source domain Xs ∼ p(x) and target domain 
Xt ∼ q(x) where p(x) ≠ q(x) . In order to achieve the goal 
of aligning the different distributions, we propose an effec-
tive MDG measure to reduce the discrepancy between Xs 
and Xt , as shown in Eq. (1).

In real application, the exact joint probability density 
functions of Xs and Xt are unknown, and only the sampling 
data sets from Xs and Xt  are available, namely 
Xs =

{
xs
1
,… , xs

ns

}
 and Xt =

{
xt
1
,… , xt

nt

}
 . So, Eq. (1) can 

be rewritten as:
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where p(xs, xt) is the joint probability density function of Xs 
and Xt and it is replaced by the uniform distribution.

4.2 � The mapping validity of RKHS subspace

Here, we give a proof for the mapping validity of RKHS 
subspace. In other words, a second-order moment vari-
able is still second-order moment through the transforma-
tion of RKHS subspace. And this proof is essential for 
the MDG measure to be further extended into the RKHS 
subspace.

For a second-order moment random variable X ∈ Ω , we 
get a random variable Y in light of the projection theorem 
Eq. (7):

which represents the projection of �(X) in subspace Hs with 
the orthogonal basis �i(i = 1⋯ d) . Now, we prove Y is a 
second-order moment random variable by proving that each 
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i
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where the X follows the probability density function 
0 ≤ p(x) ≤ 1 and �(x) = k(⋅, x) is an absolutely integrable 
function.

From the above derivation, we can make a useful con-
clusion that mapping second-order moment variables into 
RKHS subspace, these variables still are second-order 
moment. In light of this conclusion, we can apply the 
MDG measure to the domain adaption based on RKHS 
subspace learning.

4.3 � MDG for RKHS subspace classification

In this paper, the MDG as domain adaption measure is 
used for the domain adaption shown in Fig. 1. Specifically, 
we first transform the source domain Xs =

{
xs
1
,… , xs

ns

}
 

and target domain Xt =

{
xt
1
,… , xt

nt

}
 into the RKHS sub-

space Hs to get Ys =
[
ys
1
,… , ys

ns

]
 and Yt =

[
yt
1
,… , yt

nt

]
 , 

which represent the coordinates of the corresponding pro-
jection on the orthogonal basis Θ of subspace Hs . Accord-
ing to the proof in Sect. 4.2, Ys and Yt are second-order 
moment variables.

Then, we minimize the MDG between Ys and Yt to learn 
a optimal RKHS subspace Hs so that their distributions 
are as close as possible. So, our goal is to minimize the 
following problem:

With the help of Sects. 4.1 and 4.2, Eq. (9) can be derived 
as follows

where �ij = K(∶, i) − K(∶, ns + j) , and

(9)
arg min

W
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Fig. 1   The illustration of RKHS subspace domain adaption via MDG. 
Firstly, we map the instances from two domains into the RKHS space 
(the red dots and blue dots represent instances from source and target 
domains respectively). Then, we project these mapped instances into 
RKHS subspace H

s
 and RKHS subspace H′

s
 respectively, where H

s
 is 

the optimal subspace learned by minimizing the MDG measure pro-
posed in this paper and H′

s
 is non-optimal. Obviously, the distribution 

gap of the two domains data has been minimized more dramatically 
in the optimal RKHS subspace H

s
 than in the non-optimal RKHS 

subspace H′

s



1431Pattern Analysis and Applications (2023) 26:1425–1439	

1 3

Finally, optimization problem of Eq. (9) reduces to

4.4 � Optimization problem

Next, we explain in detail how Eq. (12) is solved by LMM: 
Because K is a SPD matrix, it can be factorized through its 
eigenvalues and eigenvectors matrices as follows

where UUT = I and Λ is a diagonal matrix.
Denoting Λ

1

2UT by L, the following are obtained

from which the matrix trace of Eq. (12) is given by

Now, denoting G = LW  , the optimization problem of 
Eq. (12) is transformed into

with

which can be solved through the LMM with the Lagrangian 
function given by [29]

where Z is a symmetric matrix and zij are Lagrange 
multipliers.

Equation (17) can be solved as follows

(12)arg min
W

tr
(
WTΨW

)
, s.t. WTKW = Id.

(13)K = UΛUT = UΛ
1

2Λ
1

2UT ,

(14)K = LTL, WTKW = WTLTLW = Id,

tr
(
WTΨW

)
= tr

(
WTLT

(
LT

)−1
ΨL−1LW

)
.

(15)arg min
G

tr
(
GTAG

)
, s.t. GTG = Id,

(16)A =
(
LT

)−1
ΨL−1,

(17)L(G,Z) = tr
(
GTAG

)
− tr

((
GTG − Id

)
Z
)
,

When Z is a diagonal matrix, if G is the eigenvectors matrix 
of A, then Eq. (18) is satisfied and the minimization prob-
lem of Eq. (15) can be achieved by selecting the smallest d 
eigenvalues and the corresponding eigenvectors.

When Z is not a diagonal matrix but symmetric, it can be 
factorized in terms of its eigenvalues matrix Σ and eigenvec-
tors matrix V as follows,

Substituting Eq. (19) into Eq. (18), the following is obtained,

where G̃ = GV  and we have used the orthogonality relation 
of the eigenvectors matrix VTV = Id.

It’s clear that the eigenvalues matrix Σ is a diagonal 
matrix and the minimization problem of Eq. (15) can be 
achieved when G̃ is formed with d smallest eigenvectors of 
A.

According to the above analysis, the minimization prob-
lem of Eq. (15) can be achieved by selecting the smallest d 
eigenvectors of A.

Finally, we can get the optimized weighting matrix W 
of the original optimization problem of Eq. (12) as follows

4.5 � Algorithm of RKHS classification with MDG

The procedure for the solution of MDG is summarized in 
Algorithm 1, which is explained as follows:

(18)

⎧
⎪⎨⎪⎩

�L(G,Z)

�G
= 2AG − 2GZ = 0

�L(G,Z)

�Z
=
�
GTG − Id

�T
= 0

⇒

�
AG = GZ;

GTG = Id.

(19)Z = VΣVT .

(20)
{
AG = GVΣVT

⇒ AGV = GVΣ ⇒ AG̃ = G̃Σ,

GTG = Id ⇒ VTGTGV = Id ⇒ G̃TG̃ = Id,

(21)W = L−1G =

(
Λ

1

2UT
)−1

G = UΛ
−

1

2G.

Fig. 2   Examples of four 
domains in Office-Caltech10 
dataset
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Algorithm 1 Calculate W under MDG measure
Inputs:
Two different instance set Xs, Xt;
Dimension of subspace d;
Kernel function k (·, ·).
Output:
Coefficient matrix W .

1: ns ← size(Xs, 2).
2: nt ← size(Xt, 2).
3: Construct the RKHS kernel matrix K from Xs and Xt according to Eq.

(6), and matrix Ψ = 1
nsnt

∑ns

i=1
∑nt

j=1 ϕijϕ
T
ij according to Eq. (10).

4: Calculate eigenvectors matrix U and eigenvalues matrix Λ of K according
to Eq. (13).

5: Calculate L ← Λ
1
2UT according to Eq. (14) and form the matrix A ←

LT
)−1 ΨL−1 according to Eq. (16).

6: Select the d smallest eigenvectors of the matrix A to construct matrix G
according to Eq. (18) or Eq. (20).

7: Finally, obtain the weighting matrix of the RKHS subspace W ← L−1G
according to Eq. (21).

The input of the algorithm are samples from Xs and Xt , 
the kernel function k(⋅, ⋅) , and the RKHS subspace dimen-
sion d; and the output of the algorithm are the weighting 
matrix W that characterizes the orthogonal basis Θ of the 
RKHS subspace.

The algorithm takes the samples from both Xs and Xt to 
form the joint RKHS subspace kernel matrix K; then its 
eigenvectors matrix U is calculated; after that, the interme-
diate matrix L and A are calculated from Eqs. (14) and (16), 
respectively; and finally, the weighting matrix W that char-
acterizes the orthogonal basis of the RKHS subspace is 
obtained by selecting the d smallest eigenvectors of the 
intermediate matrix A according to Eq. (21).

After having the weighting matrix W that characterizes 
the orthogonal basis of the RKHS subspace, the unknown 
labels of instances Xt can be obtained as follows: 

1.	 The data samples set X = Xs ∪ Xt in Hs can be pro-
jected to the RKHS subspace as Y = WTK : the sam-
ples set from source domain Xs are projected to get 
Ys = Y

(
∶, ns

)
 , and the data samples set Xt are projected 

to get Yt = Y
(
∶, ns + 1 ∶ ns + nt

)
;

2.	 Train the classifier with the projection samples Ys;
3.	 Use the trained classifier to label the projection samples 

Yt.

4.6 � Computational complexity

According to the Algorithm 1, the computation costs of 
our MDG-based RKHS subspace learning consists of three 
major parts: 

1.	 The Construction the kernel matrix K in step 3, and it 
costs O

(
mn2

)
 for computing (m is the dimension of sam-

ples)
2.	 The construction of matrix Ψ in step 3, and it costs 

O
(
nsntn

2
)
 for computing ( n = ns + nt)

3.	 The optimization of coefficient matrix W in step 4 and 
step 7, which costs O

(
dn2

)

So, the overall computational complexity of Algorithm 1 
would be O

(
mn2 + nsntn

2 + dn2
)
.

5 � Experiments

In this section, we conduct two kinds of experiments to 
verify the classification effectiveness of our MDG meas-
ure: one is the comparison with the MMD and co-variance 
measures; the another is to apply our MDG measure into the 
four domain adaption algorithms to replace their original 
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distribution discrepancy measures to evaluate MDG meas-
ure’s performance. In addition, we conduct the experiment to 
verify the insensitivity of MDG measure to RKHS subspace 
dimension.

5.1 � The real‑world datasets

We assess the performance of the proposed MDG measure 
on four popular datasets: Office-Caltech10 dataset, handwrit-
ten digits dataset, text dataset and VLSIC dataset. The data 
that support the findings of this study are available from this 
website.1 Next, the four datasets are introduced, respectively. 

1.	 Office-Caltech10 dataset. Office-Caltech10 dataset 
consists of four domains: Amazon (A, collected from 

Amazon), DSLR (D, shot by SLR camera), webcam 
(W, collected by webcam), and Caltech (C, collected by 
Caltech) [30]. Each domain contains 10 classes, such as 
backpack, monitor, headphone and so on. Examples of 
headphones from A, D, W, and C domains are shown in 
Fig. 2. And each domain is used as source domain and 
target domain repeatedly.

2.	 Text dataset. This dataset comes from Reuters-21,578 
dataset2 including 21,578 documents and 672 catego-
ries. In fact, we use a pre-processed dataset, which are 
divided into three categories: orgs, places, and people, 
with each category containing two sub-classes [6]. We 
regard these three categories as three domains and select 

Fig. 3   Examples of 0–9 digits in 
handwritten digits dataset

(a) Samples from MNIST Dataset (b) Samples from USPS Dataset

Table 2   Classification accuracy comparison of the Office-Caltech10 dataset

k = 1 MDG MMD Cov k = 3 MDG MMD Cov

A → C 0.2048 0.0971 0.1238 A → C 0.2012 0.1211 0.1300
A → D 0.1529 0.0510 0.0892 A → D 0.1529 0.0701 0.0828
C → A 0.1670 0.0793 0.1378 C → A 0.1733 0.1096 0.1315
D → A 0.1858 0.0835 0.1002 D → A 0.1806 0.0866 0.1023
D → C 0.1523 0.0825 0.0908 D → C 0.1478 0.0935 0.1264
D → W 0.3966 0.0915 0.0915 D → W 0.2949 0.0983 0.0847
W → A 0.1795 0.0825 0.0908 W → A 0.1983 0.0929 0.0971
W → C 0.1273 0.0935 0.1051 W → C 0.1407 0.0971 0.1140

k = 5 MDG MMD Cov k = 7 MDG MMD Cov

A → C 0.2208 0.1282 0.1443 A → C 0.2315 0.1273 0.1434
A → D 0.1529 0.0764 0.1019 A → D 0.1529 0.0892 0.0764
C → A 0.1587 0.1013 0.1106 C → A 0.1618 0.0971 0.1388
D → A 0.1754 0.0887 0.1065 D → A 0.1743 0.0981 0.1033
D → C 0.1434 0.0962 0.1256 D → C 0.1514 0.0971 0.1238
D → W 0.2881 0.1322 0.0949 D → W 0.2475 0.1593 0.1186
W → A 0.2077 0.0939 0.0905 W → A 0.1983 0.0971 0.1033
W → C 0.1532 0.0944 0.1113 W → C 0.1621 0.0944 0.1104

1  https://​github.​com/​jindo​ngwang/​trans​ferle​arning/​tree/​master/​data.
2  http://​www.​david​dlewis.​com/​resou​rces/​testc​ollec​tions/​reute​rs215​
78/.

https://github.com/jindongwang/transferlearning/tree/master/data
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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randomly two categories as source and target domain 
respectively on each classification task.

3.	 Handwritten digits dataset. The handwritten digits data-
set consists of MNIST3 and USPS4 dataset with different 
distributions, which include handwritten 10 digits from 
0 to 9. MNIST dataset contains 70,000 sheets of 28 × 
28 gray images, and the USPS dataset contains 11,000 
sheets of 16 × 16 gray images. Since the large amount of 
samples in this dataset and the limited processing power 
of our device, the subset of handwritten digits dataset are 
used in following experiments, which consists of 2000 
images from MNIST and 1800 images from USPS that 
are all randomly selected. Then, some data preparation 
are done for this subset, which contains the uniformly 
scaling these gray images to 16 × 16 images, and then 
flattening each image into 256 dimensional vector. Some 
examples of the handwritten digits dataset are shown 
in Fig. 3. And MNIST and USPS dataset are taken as 
source and target domain by turns.

4.	 VLSIC dataset. The VLSIC dataset consists of 5 
domains: VOC2007(V), LabelMe(L), SUN09(S), 
ImageNet(I) and Caltech101(C) from different distribu-
tions. Since the original data have very high dimension, 

we firstly applied PCA [31] to reduce the dimension of 
original data from 4096 into 300. And then we selected 
the 5 classes shared by the five domains to conduct the 
experiments.

5.2 � The comparison with MMD and co‑variance 
measures

In this subsection, we conduct the comparison with MMD 
and co-variance measures on the above four dataset. Spe-
cially, the MMD measure is the most popular among 
domain adaption algorithms, and co-variance measure has 
recently been used in domain adaption algorithms [8, 15]. 
For simplicity, co-variance measure be denoted as cov in 
Tables 2, 3, 4 and 5. In this subsection experiments, the used 
parameters are set up to: 

1.	 The Gaussian Radial Basis function (RBF) kernel 
is chosen as the reproducing kernel of RKHS [9]: 

k
�
x1, x2

�
= e

−
‖x1−x2‖2

2�2 , � = 10.
2.	 The dimension of the RKHS subspace Hs has been set 

to d = 30 for the handwritten digits dataset and d = 100 
for the other three datasets.

3.	 k-Nearest Neighbor method (knn) [32] is used for 
classification, and experiments are carried out on 
k = [1, 3, 5, 7] . The calculation of classification accuracy 
is as followed: 

 where Xt is target domain samples set and num
{
Xt

}
 is 

the number of samples in Xt , knn
{
xt
}
 is the label pre-

dicted by knn method for a target data xt and label 
{
xt
}
 

is the ground truth label of xt.
4.	 The number of iterations of the co-variance domain 

adaption measure is set to 10.

And the specific classification task arrangement are as 
followed: 

1.	 Office-Caltech10 dataset classification. According to 
IGLDA [6], the SURF (Speed Up Robust Features) [33] 
of the dataset are first extracted; then the features are 
normalized and z-scored so that their means are zero 
and the standard deviations are set up to one. In total, we 
carried out six tasks: A → C , A → D , C → A , D → A , 
D → C , D → W  , W → A , W → C . In detail, A → C 

accuracy =

∑
xt∈Xt

�
xt ∈ Xt ∩ knn

�
xt
�
= label

�
xt
��

num
�
Xt

� ,

Table 3   Classification accuracy comparison of the text dataset

Orgs → places MDG MMD Cov

k = 1 0.5465 0.4612 0.5177
k = 3 0.5523 0.5062 0.5091
k = 5 0.5446 0.4976 0.5110
k = 7 0.5638 0.5072 0.5283

Table 4   Accuracy comparison of the handwritten digits dataset

MDG MMD Cov

MNIST → USPS
k = 1 0.6489 0.1739 0.4267
k = 3 0.6517 0.1844 0.4150
k = 5 0.6683 0.1878 0.4156
k = 7 0.6728 0.2100 0.4167
USPS → MNIST
k = 1 0.3775 0.2120 0.1000
k = 3 0.3865 0.2450 0.1435
k = 5 0.3795 0.2555 0.1410
k = 7 0.3675 0.2530 0.1625

3  http://​yann.​lecun.​com/​exdb/​mnist/​index.​html.
4  http://​www-​i6.​infor​matik.​rwth-​aachen.​de/.

http://yann.lecun.com/exdb/mnist/index.html
http://www-i6.informatik.rwth-aachen.de/
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means that Amazon is the source domain and Caltech is 
the target domain.

2.	 Text dataset classification. We set up only one classifica-
tion task: orgs → places.

3.	 Handwritten digits dataset classification. For the hand-
written digits dataset, we set two tasks, MNIST → 
USPS and USPS → MNIST, where MNIST → USPS 
means that the MNIST dataset are selected as the source 
domain and USPS dataset are target domain.

4.	 VLSIC dataset classification. Six tasks are set up on this 
dataset: C → L , C → S , C → V  , I → C , I → V  , V → L.

5.3 � Comparisons with state‑of‑the‑art domain 
adaption algorithms

In this subsection, we compare the proposed MDG meas-
ure with TIT [5], IGLDA [6], LPJT [19] and MIDA [18] 
algorithms in the literature to show its performance. It’s 
noted that the above algorithms consist of not only domain 

Table 5   Accuracy comparison of the VLSIC dataset

k = 1 MDG MMD Cov k = 3 MDG MMD Cov

C → L 0.4620 0.2771 0.2364 C → L 0.4635 0.2677 0.2003
C → S 0.3827 0.2367 0.1999 C → S 0.3851 0.1987 0.1496
C → V 0.4437 0.2707 0.2145 C → V 0.4437 0.2556 0.1807
I → C 0.3781 0.1929 0.2007 I → C 0.3816 0.1731 0.1816
I → V 0.3353 0.1842 0.1928 I → V 0.3326 0.1505 0.1431
V → L 0.3823 0.3008 0.3200 V → L 0.3923 0.3313 0.3343

k = 5 MDG MMD Cov k = 7 MDG MMD Cov

C → L 0.4646 0.2944 0.2101 C → L 0.4654 0.3309 0.2161
C → S 0.3851 0.2188 0.1755 C → S 0.3851 0.2282 0.1755
C → V 0.4437 0.2823 0.1899 C → V 0.4437 0.3089 0.1931
I → C 0.2678 0.1767 0.1908 I → C 0.2707 0.1710 0.1830
I → V 0.1525 0.1517 0.1466 I → V 0.1540 0.1327 0.1437
V → L 0.4040 0.3566 0.3611 V → L 0.3938 0.3859 0.3938

Table 6   Accuracy comparison 
of the Office-Caltech10: TIT 
versus TIT_MDG

Source → Target TIT TIT_MDG Source → Target TIT TIT_MDG

A → C 0.5314 0.5527 D → A 0.6761 0.6823
A → D 0.5143 0.5238 D → C 0.5367 0.5474
A → W 0.6294 0.6447 D → W 0.7970 0.8122
C → A 0.6792 0.6948 W → A 0.6181 0.6275
C → D 0.5429 0.5524 W → C 0.5060 0.5154
C → W 0.5228 0.5787 W → D 0.7810 0.8095

Table 7   Accuracy comparison 
of the Office-Caltech10: IGLDA 
versus IGLDA_MDG

Source → Target IGLDA IGLDA_MDG Source → Target IGLDA IGLDA_MDG

A → C 0.3108 0.3215 D → A 0.3486 0.3977
A → D 0.2866 0.3949 D → C 0.3019 0.3224
A → W 0.2169 0.3627 D → W 0.7390 0.7153
C → A 0.3591 0.3998 W → A 0.3727 0.3862
C → D 0.2166 0.3057 W → C 0.3072 0.3455
C → W 0.2712 0.3356 W → D 0.6624 0.7261

Table 8   Accuracy comparison of the handwritten digits dataset: LPJT 
versus LPJT_MDG

Source → Target LPJT LPJT_MDG

MNIST → USPS 0.7439 0.7911
USPS → MNIST 0.5605 0.5800
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adaption measures, but also other regularization terms to 
ensure the classification performance. For the objective 
assessment of our MDG, we replace the domain adaption 
measure used in each algorithm with the MDG measure 
so that we get four nearly-new domain adaption algo-
rithms, namely, TIT_MDG, IGLDA_MDG, LPJT_MDG 
and MIDA_MDG. For example, TIT_MDG is obtained 
by replacing the domain adaption measure used in the TIT 
algorithm with MDG method, and the original regulariza-
tion of TIT algorithm remains unchanged. And IGLDA_
MDG, MIDA_MDG and LPJT_MDG are generated alike. 
We totally have four comparison tasks: TIT vs TIT_MDG, 
IGLDA vs IGLDA_MDG, MIDA vs MIDA_MDG and LPJT 
vs LPJT_MDG. Since the four original algorithms all apply 
SVM to classify, the very common SVM classifiers with dif-
ferent kernels are used to classify the target domain samples. 
Besides, the dimension of RKHS subspace is 100. 

1.	 TIT versus TIT_MDG. In this experiment, the Office-
Caltech10 dataset are used and twelve tasks are set up 
totally. We randomly select two domains samples for 
each task, and one is as source domain and the other as 
target domain. In addition, we use the SVM classifier 
with RBF kernel.

2.	 IGLDA versus IGLDA_MDG. We conduct 12 tasks on 
Office-Caltech10 dataset to compare the IGLDA_MDG 

with IGLDA, and tasks setup are as above. In addition, 
the SVM classifier based on linear kernel is used.

3.	 LPJT versus LPJT_MDG. In this experiment, we con-
duct two tasks on handwritten digits dataset, that is, 
MNIST→USPS and USPS → MNIST. And we select 
the RBF kernel-based SVM classifier to classify.

4.	 MIDA versus MIDA_MDG. Here, we compare the com-
bined algorithm MIDA_MDG with MIDA to verify the 
effectiveness of our MDG measure on handwritten digits 
dataset. And SVM classifier based on linear kernel is 
used.

5.4 � Classification results

Under the experiment setting of Sects.  5.2 and  5.3, 
we get the all classification results and report them in 

Table 9   Accuracy comparison of the Text dataset: MIDA vs MIDA_
MDG

Source → target MIDA MIDA_MDG

Orgs → people 0.5828 0.6035
Orgs → places 0.5542 0.6069
People → places 0.5227 0.5525

Fig. 4   The classification 
accuracy of MDG, MMD, co-
variance measure in different k 
on Office-Caltech10 dataset

(a) k=1 (b) k=3

(c) k=5 (d) k=7

Fig. 5   The classification accuracy of MDG, MMD, co-variance 
measure in different k on text dataset
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Tables 2, 3, 4, 5, 6, 7, 8 and 9 and the best result in each 
classification task is bolded for convenience.

The classification results of Sect. 5.2 on the four real-
world dataset are all collected in Tables 2, 3 and 4 and 
visualize with Figs. 4, 5, 6 and 7, respectively. Among 
these domain adaption measures, the MDG measure works 
much better than the MMD measure and the un-optimized 
co-variance measure, which delivers more decent classi-
fication accuracy. It show that MDG measure can learn 
a good common subspace for source and target domain 
samples, where their distributions match better than in the 
subspace learned by MMD or co-variance. For 80% tasks 
of this subsection, co-variance measure achieves higher 
classification accuracy than MMD measure. The reason is 
that MMD measure use the first-order moment statistical 
information of domain, while the second-order statistical 
information are used in co-variance. And the generally low 
classification accuracy of tasks in the subsection is due 
to the fact that the domain adaption measure only focus 
on global information—inter-domain distribution differ-
ence, but ignores the local information such as intra-class 
distance within domain, the local geometric structure, and 
discriminative information [5, 6, 8, 11, 16, 18, 19]. So, 
current domain adaption algorithms all consider the global 

and local information at the same time. However, since the 
innovation of this paper is to propose a neat and effective 
MDG measure to align the different distributions, the local 
information is not considered for the time being.

Fig. 6   The classification 
accuracy of MDG, MMD, co-
variance measure in different k 
on handwritten digits dataset

Fig. 7   The classification 
accuracy of MDG, MMD, co-
variance measure in different k 
on VLSIC Datasets

(a) k=1 (b) k=3

(c) k=5 (d) k=7

Fig. 8   The classification accuracy of orgs → places task with RKHS 
subspace dimension d from 350 to 60
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Tables 6, 7, 8 and 9 show that the proposed MDG works 
well on the four dataset, which transforms the source and 
target data into a great latent RKHS subspace where the 
distribution gap is smaller than the original algorithms so 
that it enhances the ability to classify.

In addition, we compared their running speed on the 
domain adaption task orgs → places. The codes of MMD, 
co-variance and MDG were written in MATLAB R2018a, 
and no parallel computing was used. The running times of 
MMD, co-variance and MDG were 0.5 s, 96.3 s and 29.1 s, 
respectively. Although the running time of our measure is 
not the shortest, it is acceptable compared with the co-var-
iance method. And considering the classification results, 
MDG is more practical to use than MMD and co-variance 
measures.

5.5 � RKHS subspace dimension sensitivity analysis

The RKHS is an infinite linear space, so its subspace 
dimension can be arbitrary or even infinite. Therefore, it 
is difficult or even impossible to realize RKHS subspace 
learning by computer. For domain adaption methods based 
on RKHS subspace learning, the subspace is constructed 
by the linear combination of the transformed samples in 
RKHS. According to Sect. 3.3, the upper limit of the sub-
space dimension d is the rank of the kernel matrix K, that 
is N. In practice, d is often selected adaptively according 
to the input data.

We perform the experiment on tuning d(d < N) to show 
that the proposed RKHS subspace learning based on MDG 
measure is robust on the parameter d, namely the clas-
sification accuracy remains stable when d changes over a 
large range. Keeping other parameters unchanged, we con-
stantly adjust the dimension d of the subspace from 350 to 
60, and conduct a classification task every 10 dimension 
on orgs → places. And the results of different d is showed 
in Fig. 8

From Fig. 8, we can see that the classification results 
remain robust even d changes over a large range.

6 � Conclusion

In this paper, we study a neat and effective MDG measure 
for RKHS subspace domain adaption classification prob-
lem. The MDG measure optimizes the RKHS subspace, 
where distribution difference between the source-domain 
data and the target-domain data are as small as possible. 
Compared to the first-order moment MMD measure and 
the second-order moment co-variance, the MDG measure 
has the advantage of capturing the higher-order moments 

of the distribution. Also, compared to the complicated 
co-variance measure, it has the advantage of easy to use 
and can be optimized analytically: rigorous mathemati-
cal formula has been derived for the weighting matrix of 
the optimized orthogonal Hilbert subspace basis, via the 
LMM optimization. At last, extensive experiments with 
four image dataset have been carried out. Comparisons 
with other four state-of-the-art domain adaption algo-
rithms in the literature with both the MMD and co-var-
iance measures show that the RKHS subspace based on 
MDG measure approach does achieve better classification 
performance in general.

And according to Sect. 2, some recent works have applied 
MMD and co-variance into deep neural network as addi-
tional loss term to enhance the transferability of feature 
representation. Hence, in our future work, we will consider 
extending MDG measure into the deep learning architecture.

Appendix A: Identical random variables

Two second-order moment random variables are identical if 
and only if their statistical mean square error is zero,

To demonstrate this, the variance of Eq.  (22) can be 
expressed as follows

Because both 
(
y − y�

)2 and p(y, y�) are semi-definite or non-
negative, Eq. (23) is zero when one of the following two 
conditions are met for all points in the probability domain Ω,

It can be shown that Eq. (24) is equivalent to the joint prob-
ability p(y, y�) = f (y)�(y − y�),

from which the marginal probabilities of Y and Y ′ are identi-
cal and Eq. 22 is proved.
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this manuscript.

(22)E
[||Y − Y �||2

]
= 0 ⇔ Y = Y �.

(23)E
[||Y − Y �||2

]
= ∫ ∫Ω(Y ,Y �)

(
y − y�

)2
p(y, y�)dydy�.

(24)
{(

y − y�
)2

= 0;

p(y, y�) = 0.

(25)
p(y) = ∫y�

p(y, y�)dy� = ∫y�
f (y)�(y − y�)dy� = f (y),

p(y�) = ∫y

p(y, y�)dy = ∫y

f (y)�(y − y�)dy = f (y),
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