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Abstract
In high-level video semantic understanding, continuous action segmentation is a challenging task aimed at segmenting 
an untrimmed video and labeling each segment with predefined labels over time. However, the accuracy of segment pre-
dictions is limited by confusing information in video sequences, such as ambiguous frames during action boundaries or 
over-segmentation errors due to the lack of semantic relations. In this work, we present a two-stage refinement network 
(TSRN) to improve temporal action segmentation. We first capture global relations over an entire video sequence using a 
multi-head self-attention mechanism in the novel transformer temporal convolutional network and model temporal relations 
in each action segment. Then, we introduce a dual-attention spatial pyramid pooling network to fuse features from macro-
scale and microscale perspectives, providing more accurate classification results from the initial prediction. In addition, a 
joint loss function mitigates over-segmentation. Compared with state-of-the-art methods, the proposed TSRN substantially 
improves temporal action segmentation on three challenging datasets (i.e., 50Salads, Georgia Tech Egocentric Activities, 
and Breakfast).

Keywords Temporal action segmentation · Video semantic understanding · Refinement network · Self-attention · Over-
segmentation

1 Introduction

Analyzing and understanding human actions in videos 
are fundamental to many applications, such as intelligent 
surveillance [1, 2] and human behavioral analysis [3]. 
Approaches to recognizing short-trimmed videos to predict 
action class labels have yielded promising results [4]. How-
ever, action segmentation, which aims to assign an action 
label for each frame to divide the entire video sequence 
of long untrimmed videos into several disjoint semantic 
action segments with fine-grained class labels, remains 
challenging.

Temporal action segmentation is a branch of video-
based human action understanding aimed at dividing long 
untrimmed videos into segment-level snippets and predict-
ing the action labels of frames for the snippets with the 
same predefined label [5]. Conventional action segmen-
tation methods are based on two-phase deep neural net-
works: First, two-dimensional (2D) convolutional neural 
networks [6], two-stream networks [7], or three-dimen-
sional (3D) convolutional neural networks [8] extract low-
level spatiotemporal features [48]; Second, using high-
level classifiers such as long short-term memory (LSTM) 
[9] and recurrent neural networks (RNNs) [51] temporally 
captures frame-wise dependencies. These methods obtain 
better results on datasets with a small number of action 
classes than previous methods [43–45]. Nevertheless, they 
exhibit oscillation predictions on large datasets with vari-
ous action classes and are usually hard to interpret and 
correctly train. To tackle these limitations, researchers 
have suggested a temporal convolutional network (TCN)-
based [10] method that captures long-range information 
using multilayer dilated convolution with increasing an 
receptive field. The TCN-based method does only model 
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temporal patterns with fewer parameters but is also faster 
than conventional solutions [9, 51]. It has become a widely 
used backbone network for the temporal action segmen-
tation task and has led to the development of follow-up 
works [11–16]. While the progress of recognizing action 
segments from long untrimmed videos has been made, we 
still find three technical difficulties worthy of attention in 
the TCN-based method:

The first is the problem of discounting the semantic asso-
ciation among action segments of an entire video. State-of-
the-art methods [11–16] usually adopt a multi-stage architec-
ture based on a TCN that expands temporal receptive fields 
with dilated convolutions and outputs an initial prediction 
refined by the subsequent stages to capture long-term rela-
tionships. However, the higher dilated convolutional layers 
lead to the loss of local features and the lack of correlation 
in long-term dependencies. For instance, Farha et al. [11] 
simply stacked multiple TCN layers but did not translate this 
to a corresponding effective performance. This is because 
focusing only on the features of long-term dependencies 
tends to lose the semantic association between local action 
segments, resulting in incorrect predictions for hard-to-
recognize frames. In fact, the relations among each action 
segment indicate a series of continuous activities [16] (e.g., 
when preparing to make salads, the correct order is adding 
flavor, cutting vegetables, and mixing). Besides, the under-
lying contextual information in spatial and channel axes is 
significant in learning diverse representations in the field of 
semantic segmentation [52], which motivates us to design a 
model that can perceive various feature representations of a 

video sequence and model different timescales (i.e., short- 
and long-term timescales) of temporal relationships.

Another difficulty is the inevitable over-segmentation 
errors [10, 11, 14] for frame-wise classification. In the upper 
part of Fig. 1, over-segmentation errors occur at the initial 
predictions when analyzing untrimmed video sequences 
with a series of actions, which are caused by visual fea-
tures in one action segment always becoming too similar 
to those in other action segments. To further reduce over-
segmentation errors, recent studies have added additional 
structures/branches to solve the problem. Wang et al. [12] 
trained another network to aggregate local predictions by 
leveraging semantic boundary information but their model 
incurred higher computational costs. Ishikawa et al. [13] 
proposed a boundary regression module and used boundary 
detection on the segmentation outputs for refinement during 
the post-processing. Moreover, Li et al. [14] and Wang et al. 
[23] constructed a smooth loss between the log probability 
of the previous frame and the current frame. However, these 
methods may incorrectly modify the frame-wise prediction 
result in the previous predictions and harm the following 
refinement stages due to the errors in the additional mod-
ules or noise in the backbone when identifying ambiguous 
segment-level action clips.

In addition, the enormous speed and duration variance 
increase the difficulty of classifying action boundaries. For 
instance, one “crack_egg” action is completed in 2 s on the 
Breakfast dataset [19], but the “fry_egg” action persists for 
2 min. We present examples of the frame-wise variance of 
I3D features [42] for 21 frames on three challenging datasets 
(50Salads [17], GTEA [18], and Breakfast [19]) in Fig. 2. 

Fig. 1  Structure of the proposed two-stage refinement network 
(TSRN) comprising a transformer temporal convolutional network 
(transformer TCN; Sect.  3.1) and a dual-attention spatial pyramid 
pooling network (DASPP; Sect.  3.2). After generating self-super-
vision signals, the original video sequence and exchanged video 

sequence are inputted from a frame-wise feature extractor and fed 
into the prediction block (transformer TCN) as the first step output 
of the initial predictions with over-segmentation errors. Then, action 
segmentation results are refined in the refinement block (DASPP) as 
the second step
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It is obvious that it is the large changes between adjacent 
action segments, which brings the problem of identifying 
action boundaries. The ambiguous boundary problem mani-
fests the difficulty of labeling the start or end of an action 
segment (seen in Fig. 1), which should be solved to under-
stand untrimmed videos.

Inspired by [53], where objects were detected in a mul-
tiscale vision range, we introduce a two-stage refinement 
network (TSRN) that captures macroscale and microscale 
features to solve the difficulties mentioned. In Fig. 1, the pro-
posed TSRN consists of a frame-wise feature extractor and 
two stages: a transformer temporal convolutional network 
(transformer TCN) and a dual-attention spatial pyramid 
pooling network (DASPP). Unlike general models that use 
the same subnetworks to expand temporal receptive fields by 
boosting the network depth, the proposed TSRN redefines 
the architecture and modifies the meaning of each stage.

For the transformer TCN, the transformer encoder block 
is designed to explore the global features of a video sequence 
effectively and then to use multiple dilated convolutional lay-
ers to model the long-range temporal dependency. To refine 
the initial predictions from the first stage, we regard the 
DASPP as the second stage, which eliminates over-segmen-
tation errors from the initial predictions by understanding 
the video sequence's global and local context information, 
thus producing more accurate predictions of action bounda-
ries. For DASPP, a channel attention module (CAM) is pro-
posed to capture channel context via reallocating weights 
with the importance of channels, a spatial attention module 
(SAM) is aimed at generating attention weights to adapt the 
most informative video parts, and a spatial pyramid pool-
ing module (SPP) is used to integrate multiscale features 
of a video sequence. Furthermore, self-supervised signals 
simulate over-segmentation errors to locate wrong temporal 
ordered frames and revise them in the predictions. For model 
training, to force the TSRN to correct mislabeled frames in 
the previous predictions, we form a joint loss to combine the 
auxiliary self-supervised function, a traditional loss function 

[11, 13, 14], and a focal loss function that smooths the tran-
sition of action probabilities predictions. The contributions 
of this study can be summarized as follows:

1. We design the novel TSRN that adopts a two-stage strat-
egy to capture macroscale and microscale features from 
video sequences. The TSRN comprises a transformer 
TCN and a DASPP to overcome the technical difficul-
ties above, improving single-model classification results 
by up to 22.8% for the F1 score and 13.3% in terms of 
segmental edit distance.

2. A transformer TCN is proposed to model global depend-
ency by exploring the correlations among frames, and 
DASPP is adapted to combine a video's global and local 
features. To our best knowledge, it is the first attempt to 
leverage channel and spatial attention information for 
temporal action segmentation.

3. We introduce a joint loss function to smooth the tran-
sition of action probabilities and experiment with the 
combination of loss functions for our model. Combining 
an auxiliary self-supervised function and a focal loss 
function provides a 12.8% improvement in the F1 score 
and an 11.4% improvement in segmental edit distance.

4. The proposed TSRN achieves state-of-the-art perfor-
mance on three challenging benchmarks for temporal 
action segmentation: 50Salads [17], Georgia Tech Ego-
centric Activities (GTEA) [18], and Breakfast [19].

2  Related work

2.1  Action segmentation

Action segmentation aims to segment a video sequence 
according to the semantic meaning and label each segment-
level action corresponding with predefined labels tempo-
rally. In earlier approaches, a sliding window method [46, 
47] with non-maximum suppression is used to detect action 

Fig. 2  Frame-wise variance 
results of 50Salads, GTEA, and 
Breakfast datasets
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segments. Other traditional methods use Markov models 
[29, 40] on the top of frame-wise classifiers. However, these 
approaches are very slow and exist to solve the maximization 
problem over long sequences.

Inspired by the success of speech synthesis, researchers 
have proposed diverse temporal convolutional networks 
(TCNs) from WaveNet [20]. Lea et al. [10] proposed the 
encoder-decoder TCN (ED-TCN), [21, 50] expanded it to the 
temporal deformable residual network with a residual stream 
to analyze video information. Although these approaches 
obtained long-range dependencies, the increasing pooling 
and upsampling operations might discard the fine-grained 
details of video sequences. To overcome these challenges, a 
multi-stage TCN (MS-TCN) [11] was designed, which used 
dilated 1D convolutions to enlarge temporal receptive fields 
instead of pooling operations in [10] with a full resolution. 
Based on [11], dilated TCNs [11, 14, 22, 23, 49] and a tem-
poral reasoning module with graph convolutional networks 
[16, 24] can be fed into the top of temporal action segmenta-
tion models, modeling on the full resolution, capturing long-
range dependencies, and learning fine-grained features of 
video sequences. Other works, such as [12, 13], are based on 
the anchor-free temporal action proposal task, distinguishing 
actions or the possibility of judging whether a frame starts or 
ends. Wang et al. [12] trained an extra network to smoothen 
action boundaries, and Ishikawa et al. [13] used an action 
boundary regression network to mitigate over-segmentation 
errors by detecting action boundaries. However, training a 
large and time-consuming model limited the performance. 
Recently, in [15, 25], domain adaption was introduced to the 
action segmentation task. Gao et al. [26] used hierarchical 
artificial design receptive fields to build segmentation mod-
els, but they neglected the importance of global and local 
contexts of the whole video sequence.

In this study, our model is based on dilated TCNs and 
uses a two-stage architecture to capture different timescale 
features of video sequences and generates smooth predic-
tions over segment-level action boundaries with low com-
putation costs.

2.2  Transformer

The transformer [32] is initially applied for natural language 
processing tasks. With the immense potential of machine 
translation and English constituency parsing [27], research-
ers have recently grown a great interest in applying trans-
former-based models for computer vision tasks, such as 
object detection [28], image classification [30], and segmen-
tation [31]. Considering that a transformer is inherently well 
suited for sequence-based tasks, we attempt to incorporate 
the transformer-based models into the action segmentation 
task, which models relations among segment-level actions 
of a video sequence. Note that the self-attention mechanism 

[32] is the fundamental component in the transformer-based 
models. This mechanism precisely computes the output at 
each position of video sequences by calculating attention 
scores for all positions and fusing the intrinsic features based 
on the scores. While a single-head self-attention layer only 
focuses on more meaningful position information, multi-
head attention allows the model to gather information from 
different representation subspaces. Our model utilizes a 
multi-head self-attention mechanism to enhance the seman-
tic association among the local action segments and model 
temporal long-range dependencies in videos.

2.3  Attention mechanism

The attention mechanism plays a vital role in analyzing and 
understanding complex scenes [33, 34], diverting attention 
to the most critical parts of an image and taking no notice 
of irrelevant regions. Some extensive research works on 
this domain are relevant to our work. For example, Hu et al. 
[35] proposed the sequence-and-excitation (SE) module to 
explore the inter-channel relationship and automatically 
learn the effectiveness of different channel-wise attentions. 
Based on the SE module, Woo et al. [36] introduced the 
spatial attention mechanism, which considers that max-pool-
ing operation makes a network pay attention to the essen-
tial channel-wise features, focusing on target space areas. 
Some researchers have recently studied the potential for 
transformer-based models in image processing and proposed 
the vision transformer (ViT) [30] as a pure attention-based 
network with a multi-head attention core. Motived by the 
above attention mechanism, we introduce the dual-attention 
mechanism with a spatial pyramid pooling module (SPP) 
[39] to explore the applications for the action segmentation 
task.

In addition to the attention-based module for adaptive 
feature refinement in the previous works [35, 36, 39], we 
extract multiscale features of the video sequence with dif-
ferent receptive fields and fuse them in the channel dimen-
sion of the feature maps to develop features with minimal 
modifications. Finally, we eliminate incorrect frame-wise 
predictions by focusing on adjacent action segments from a 
local perspective and reduce over-segmentation errors from 
the prediction block by fusing long- and short-term features.

3  Approach

This section introduces the proposed temporal action seg-
mentation approach, i.e., TSRN. Our structure consists of 
a frame-wise feature extractor and two networks, a trans-
former TCN and a DASPP, as shown in Fig. 1. The frame-
wise feature extractor takes original frames and exchanged 
frames as the input, generating input features as input. Then, 
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the transformer TCN develops initial predictions in the first 
stage. This stage adapts a multi-head self-attention mecha-
nism with several dilated 1D convolutions. In the second 
stage, the TSRN revises previous predictions from the pre-
diction block by stacking refinement blocks that involve a 
dual-attention model, an SPP module, and dilated residual 
layers.

The remainder of the section is organized as follows: 
Sect. 3.1 illustrates how the transformer TCN models long-
range dependencies and develops initial predictions. Sec-
tion 3.2 introduces the multiscale features fusion module in 
the DASPP to revise predictions, such as over-segmentation 
errors. Finally, Sect. 3.3 describes how the joint loss forms, 
and Sect. 3.4 details the experimental setup.

Let X1∶T = (X1, ...XT
) ∈ R

T×D
dim and Xex

1∶T
= (...,Xtj

, ...,Xti
, ...) ∈ RT×Ddim be 

the inputs to the TSRN, where T  is the number of frames in 
a video and Ddim is the feature dimension. Our goal is to 
classify the frame-wise action class C1∶T = (C1, ...,CT ) , 
whose ground-truth label is set as Ygt

1∶T
= (Y

gt

1
, ..., Y

gt

T
) , where 

Y
gt

t ∈ {0, 1}C is a one-hot vector representation of whether 
the i th frame is predicted as the true label, C is the number 
of action classes, Xex

1∶T
 is swapped in pairs and formed with 

the wrong temporal order.

3.1  Transformer TCN

As shown in Fig. 3, the first layer of the transformer TCN 
is a 1 × 1 convolutional layer that adjusts the dimension of 
input features to match the number of feature maps D . Then, 

a transformer encoder block is included with the multi-head 
self-attention mechanism, and its output is transferred to sev-
eral layers of dilated 1D convolutions with a kernel size of 3. 
Subsequently, a 1 × 1 convolutional layer is applied after the 
output of the last dilated 1D convolutional layer, followed 
by a softmax activation to get the action class probabilities 
as the first-stage predictions Y1 = (Y1

1
, ..., Y1

T
).

Concretely, a sinusoidal positional encoding module 
[32] with dimension D is first incorporated into the origi-
nal embedding in the transformer encoder block to form the 
input vector I ∈ RT×D . Second, for the input vector I and the 
number of heads h , the input vector is transformed into three 
representative groups (i.e., the query group, the key group, 
and the value group). In each group, there are h vectors with 
dimensions dq = dk = dv = D∕h . Vectors derived from dif-
ferent groups are then packed together into three different 
groups of matrices: {Qi}

h
i=1

 , {Ki}
h
i=1

 , and {Vi}
h
i=1

 . Formally, 
the multi-head self-attention process is shown as follows:

where MultiHead represents multi-head self-attention, Con-
cat denotes the concatenation operation, ATTN indicates the 
attention mechanism; Q, K, and V are the concatenation of 
{Qi}

h
i=1

 , {Ki}
h
i=1

 , and {Vi}
h
i=1

 respectively. Here, we set h = 4 
(h = 2 for the GTEA and Breakfast datasets) for the number 
of heads. To facilitate residual connections, a feed-forward 
network is applied after the multi-head self-attention layer, 
which consists of an embedding layer and a linear layer, 

(1)
MultiHead (Q,K,V) = Concat (head1, ..., headi)W

o,

where headi = ATTN (Qi,Ki,Vi),

Fig. 3  Overview of the transformer temporal convolutional network (transformer TCN). The transformer TCN contains a transformer encoder 
block and several dilated 1D convolutions using residual connections
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producing the output of the transformer encoder block, 
which can be formulated as

where W1 and W2 are the two parameter matrices of two lin-
ear transformation layers.

After focusing on the semantic association among the 
action segments in the transformer encoder block, we need 
to extract different receptive fields of temporal features to 
capture the global information. In dilated 1D convolutions, 
each layer applies D dilated convolutions with rectified 
linear unit activation and a convolutional layer. We further 
use residual connections to facilitate the gradient flow. The 
output of each dilated residual layer k ∈ {1, 2, ...,K} as 
Lk ∈ RT×D can be described by

where Lk−1 is the output of the ( k − 1)th dilated residual 
layer, W3 ∈ R3×D×D denotes the weight matrix of dilated 1D 
convolution filters with a kernel size of 3, D is the number 
of dilated convolutional filters, W4 ∈ R1×D×D is the weight 
of the 1 × 1 convolution, and b1 , b2 ∈ RT×D are bias vectors. 
To capture long-range dependencies of the video sequence, 
we follow [11] that stacked dilated residual layers to expand 
receptive fields. Because the receptive fields exponentially 
grow with the number of layers, we obtain large receptive 
fields with few layers, thus inhibiting over-fitting during the 
training of the model. The receptive field of each layer can 
be formulated as

where k ∈ [1,K] denotes the layer number. Followed by the 
last dilated residual layer K , we apply a 1 × 1 convolution 
after a softmax activation layer, i.e.,

where Y1 = (Y1
1
, ..., Y1

T
) ∈ RT×C represents the action class 

probabilities at time t  for the first-stage prediction of the 
TSRN, W ∈ RC×D and b ∈ RC are the weight and bias of the 
1 × 1 convolutional layer, respectively, C is the number of 
action classes.

Different from the MS-TCN [11], which stacks some 
single-stage TCNs [11] and leads to the loss of local infor-
mation in higher layers, we use the transformer TCN to 
extract the frame-wise features and generate the first-stage 
prediction. To obtain the long-range dependencies of the 
entire video, we utilize a transformer-based model that mod-
els temporal relations to generate the local features among 
action segments and then constantly perceives the global 
features of the whole video.

(2)Ytrans−block = W1(W2(MultiHead (Q,K,V))),

(3)Lk = Lk−1 +W4 ⊗ (ReLU(W3 ⊗ Lk−1 + b1)) + b2,

(4)Receptive Field (k) = 2k − 1,

(5)Y1 = Soft max (W ⊗ LK + b),

3.2  DASPP

Although the transformer TCN has improved action segmen-
tation predictions, the results still include over-segmentation 
errors. Recent methods [11, 14] have focused on modeling 
different timescales of features by stacking additional layers 
that might lose the local information of a video sequence. 
Nevertheless, we use DASPP to revise the initial predic-
tion estimated in the first stage and then selectively aggre-
gate local and global features by employing the multi-stage 
architecture.

Given Y1 , DASPP aims to refine the first-stage predic-
tion by fusing multiscale features and revising segment-level 
action boundaries, alleviating over-segmentation errors. In 
DASPP, each refinement block takes predictions from the 
previous block and then refines them. The input of each 
refinement block in DASPP is

where Y1 is the input of the first refinement block, Yi is the 
output of block i , and F(⋅) shows the multi-stage operation 
of DASPP. As shown in Fig. 4, each refinement block of the 
DASPP consists of a channel attention module (CAM), a 
spatial pyramid pooling module (SPP), a spatial attention 
module (SAM), and 10 dilated 1D convolutional residual 
layers with a kernel size of 3. To receive the probabilities for 
the output class Y5 = (Y5

1
, ..., Y5

T
) ∈ RT×C as the second-stage 

refinement prediction, we apply a 1 × 1 convolutional layer 
after the last dilated residual layer, followed by a softmax 
activation layer in each refinement block.

CAM Channel attention is widely utilized to distinguish 
the significance of different channels, thus strengthening 
meaningful channel features, and suppressing redundant 
features in computer vision. We propose a CAM for a fea-
ture representation sequence to capture channel context via 
reallocating weights with the importance of channels. To the 
left in Fig. 4, given a feature representation as input, CAM 
reduces the number of channels to learn the local depend-
ency between channels via max pooling and average pooling 
operations. Then, CAM increases the number of channels 
returning to the original size and produces the channel atten-
tion map Mc by the sigmoid activation. The CAM process of 
the i th refinement block in DASPP can be summarized as

where Yi
c−max(t)

 and Yi
c−avg(t)

 are max pooling and average 
pooling descriptors in a multilayer perceptron network, W5 
and W6 are the weights of the 1D convolution with a kernel 

(6)
Y1 = Y1

1
, ..., Y1

T
,

Yi = F(Yi−1) i ∈ [2, 5],

(7)
Mc(Y

i) = Sigmoid(W5(W6(Y
i
c−avg(t)

)) +W5(W6(Y
i
c−max(t)

))),

(8)Yi
c(t)

= Yi ⊗Mc(Y
i),
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size of 1, ⊗ denotes the element-wise product. Equation (7) 
indicates the process of the channel attention map with a 
dimension-reduction operation, and Eq. (8) is the output of 
the channel attention mechanism by the dimension-increas-
ing function.

SPP Similar to a feature pyramid network (FPN) [37], 
the SPP relies on the pyramidal shape of the feature hier-
archy to extract multiscale features with strong seman-
tics. Although the transformer TCN has perceived the 
global information of a video sequence, variable pooling 
kernels can supplement the local context from the input 
sequence. In SPP, we overcome the shortcoming of losing 
fine-grained information with limited receptive fields by 
combining multiscale features with a large temporal recep-
tive field to refine the prediction.

Our SPP is composed of four parallel max-pooling lay-
ers with kernels of 1 × 1 , 5 × 5 , 9 × 9 , and 13 × 13 , which 
extract multiscale features and fuses them by concatenat-
ing them in the channel dimension of feature maps. As 
the multiscale features obtained by SPP are expected to 
refine the predictions with a small computation cost, the 
lightweight module can be integrated into the DASPP 
effectively. SPP of the i th refinement block is computed as

where Yi
spp(t)

= (Yi
spp(1)

, ..., Yi
spp(T)

) ∈ RT×D . Moreover, f 1×1 , 
f 5×5 , f 9×9 , and f 13×13 represent pooling operations with the 
filters of 1 × 1 , 5 × 5 , 9 × 9 , and 13 × 13 , respectively.

(9)
Yi
spp(t)

= Yi
c(t)

+ Concat(f 1×1(Yi
c(t)

);f 5×5(Yi
c(t)

);f 9×9(Yi
c(t)

);f 13×13(Yi
c(t)

)),

SAM. It is acknowledged that common untrimmed video 
samples last for 2–3 min, and the samples are downsam-
pled at a rate of 15 or 30 per second, which is difficult to 
distinguish the most worthy information across the frames. 
Under limited computing resources, it is necessary to 
allocate resources for the most informative part of frames 
in a video. Apart from CAM, which assigns appropriate 
weights according to the importance of the channels, SAM 
focuses on identifying different classifications of adjacent 
action segments and combining features along the chan-
nel axis.

As shown in the right of Fig. 4, SAM first compresses 
the dimension of input features from T × D to T × 1 
through average-pooling and maximum-pooling opera-
tions. The corresponding feature descriptors Yi

s−avg(t)
 and 

Yi
s−max(t)

 are processed by a 3 × 3 convolutional layer to 
squeeze multichannel features into a single channel, gen-
erating a spatial attention map Ms:

where f 3×3 denotes a convolution operation with a filter size 
of 3 × 3 . The relations among adjacent frames are captured 
by Eq. (10) to represent the information importance in each 
frame. Then, we multiply the spatial attention map Ms with 
the intermediate features Yi

spp(t)
 to generate spatial features 

Yi
s(t)

= (Yi
s(1)

, ...Yi
s(T)

) ∈ RT×D . The SAM process of the i th 
refinement block is

(10)
Ms(Y

i
spp(t)

) = Sigmoid(f 3×3(Concat(Yi
s−avg(t)

;Yi
s−max(t)

))),

Fig. 4  Dual-attention spatial pyramid pooling network (DASPP) contains five refinement blocks. Each refinement block includes a channel 
attention module (CAM), a spatial pyramid pooling module (SPP), a spatial attention module (SAM), and several dilated 1D convolutions
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where ⊗ denotes an element-wise product.

3.3  Joint loss

To train TSRN, we use the loss function as in Farha and Gall 
[11], which comprises the cross-entropy loss Lcls and the regu-
larization loss Lreg for classifying and smoothing each frame. 
In addition, the proposed focal loss Lfocal solves the imbal-
anced frequency among action classes during training. In 
Fig. 5, we have illustrated the calculated number of instances 
per action class for the three datasets, and the results indicate a 
significant class imbalance. If there are no reasoning weighting 
restrictions, an imbalance training may cause over-segmenta-
tion errors. Moreover, the auxiliary self-supervised loss Lself  
(including Lex and Lcorr[16]) enhances temporal reasoning by 
exchanging frames in pairs and strengthens the connection 
between short- and long-term timescales. Thus, it identifies 
exchanged frames and predicts the correct action labels at their 
corresponding instances.

3.3.1  Classification loss

We adopt the cross-entropy loss Lcls to determine the proximity 
between the prediction and ground truth:

(11)Yi
s(t)

= Yi
spp(t)

⊗Ms(Y
i
spp(t)

),

(12)Lcls =
1

T

∑

t

∑

c

−Y
i(gt)
t,c log(Yi

t,c
) =

1

T

∑

t

− log(Yi
t,c
),

where Yi
t,c

 is the predicted probability for the target label c at 
time t of the i th block in our TSRN, and Yi(gt)

t,c  is the ground-
truth label corresponding to Yi

t,c
.

3.3.2  Regularization loss

While the classification loss treats each frame independently, 
it might cause over-segmentation errors. To encourage smooth 
transitions between frames, we use the truncated mean squared 
error proposed in [11] as the regularization loss:

where T  is the length of the video, C is the number of action 
classes, and � denotes the hyperparameter sets to 0.15.

3.3.3  Focal loss

In multi-class classification, a balanced dataset has target 
labels that are evenly distributed. In real scenarios, datasets 
usually have an imbalanced distribution of action instances, 
which may cause two problems: (1) Most instances are 
defined as well-classified samples that contribute no mean-
ingful training information. (2) The well-classified samples 
might overwhelm the training and lead to model degrada-
tion. The frequency of different action segments varies for 
each action class, which results in imbalanced weightings 
during training. Thus, we impose the focal loss [38] to 
down-weight the well-classified samples such that their con-
tribution to the joint loss is small, even though the amount 
of their samples is large, and focuses on the hard-to-classify 
samples. The focal loss function is defined as follows:

(13)Lreg =
�

TC

∑

c

∑

t

(Yi
t−1,c

− Yi
t,c
)
2
,

Fig. 5  Distribution of action classes for the 50Salads, GTEA, and Breakfast datasets
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where � is the weighting factor for balancing the weights 
of all action classes, and (1 − Yi

t,c
)� is the modulating factor 

with the focusing parameter � , which focuses on hard-to-
classify samples during training by reducing the weights of 
the well-classified samples among different action segments.

3.3.4  Auxiliary self‑supervised loss

Due to the inherent temporal information of videos that can 
be used as supervision signals for self-supervised auxiliary 
tasks, we follow [16] that simulated over-segmentation 
errors in the temporal action segmentation results to bolster 
the temporal relations among action segments.

We select 20% of frames in pairs from the input video 
sequence X1∶T and exchange them into the wrong tempo-
ral order Xex

1∶T
 . The output corresponds to Xex

1∶T
 contain-

ing action likelihoods Yi(ex)

1∶T
∈ RT×C and exchanged likeli-

hoods ei(ex)
1∶T

∈ RT×2 . Besides, binary self-supervised signals 
p1∶T = (p1, ..., pT ) are designed to label the frames, where 
pt = {0, 1}2 is the one-hot vector representing whether 
the i th frame is exchanged. Based on the temporal order 
information obtaining an absolute dominance for simulat-
ing over-segmentation errors, the original video sequence’s 
ground-truth label Y (gt)

1∶T
∈ {0, 1}C and auxiliary self-super-

vised signals are used as training labels for the auxiliary 
self-supervised loss. The auxiliary self-supervised loss is

The output of our network is frame-wise action predic-
tions. Therefore, the final loss function to train the TSRN is 
the combination of the four losses

(14)Lfocal = −�(1 − Yi
t,c
)� log(Yi

t,c
),

(15)Lself = Lex(e
i(ex)

1∶T
, p) + Lcorr(Y

i(ex)

1∶T
, Y

(gt)

1∶T
),

(16)L =
∑

i

Lcls + Lreg + Lfocal + Lself,

where i is the number of the blocks in TSRN ( i = 6 and 
includes one prediction block and five refinement blocks.)

3.4  Experimental setup

The TSRN consists of two stages: 1) a prediction block and 
2) five refinement blocks. We use 64 convolutional filters 
(128 for the GTEA dataset) for all blocks, and the kernel 
size is 3. Because the GTEA dataset contains the fewest 
action classes and videos of the datasets listed in Table 1, 
more features are required to classify the frames of action 
segments during model training. For the transformer TCN, 
we set the number of dilated residual layers to 11 ( K = 11 ). 
For the DASPP, we set the number of layers to 10 ( L = 10 ). 
In addition, in focal loss Lfocal , we keep � = 2 for all data-
sets, � = 0.15 for the 50Salads and Breakfast datasets, and 
� = 0.25 for the GTEA dataset. We train the model for 100 
epochs in all experiments using Adam optimization with a 
learning rate of 0.0005 and a batch size of one [11, 13, 14]. 
During network training, action segmentation results from 
the transformer TCN are predictions refined by the DASPP. 
Our implementations are based on the PyTorch library and 
implemented on a computer equipped with an NVIDIA 
TESLA V100 graphics processor.

4  Experiments

In this section, we describe the datasets and evaluation met-
rics. Then, we report the ablation studies and their results. 
Finally, we compare the proposed TSRN with the state-of-
the-art temporal action segmentation methods and provide 
qualitative results.

4.1  Datasets and metrics

Datasets We evaluate our TSRN on three challenging data-
sets: 50Salads [17], GTEA [18], and Breakfast [19]. Table 1 
shows the details of the three challenging datasets. The 
50Salads dataset contains over four hours of annotated accel-
erometer data and 50 RGB-D videos and captures 25 actors 
preparing to mix two different salads. On average, each 
video consists of 20 action categories and keeps 6.4 min. 
For evaluation, we use five-fold cross-validation and count 
the average value as the final results. The GTEA dataset con-
tains 28 egocentric videos and seven daily activities, such 
as taking, pouring, and opening, each performed by four 
different subjects. We follow four-fold cross-validation as 
prior works. The Breakfast dataset is the largest dataset with 
1712 videos, which comprises 48 different action classes 
related to breakfast preparation, performed by 52 different 
individuals in 18 different kitchens, and each video has six 

Table 1  Details of the datasets used in this study. #classes and 
#videos are the number of action classes and videos, respectively. 
#instances/video is the average number of action classes of each 
video

# classes # videos # 
instances/
video

# cross-
valida-
tion

Description

50Salads 17 50 20 5 Prepare for 
salads

GTEA 11 28 20 4 Daily activities
Breakfast 48 1712 6 4 Making break-

fast
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action categories on average. We follow [19] for the evalua-
tion, suggesting the standard four-split cross-validation.

For the three datasets, we follow [10–12, 14, 16, 23, 26] 
that extracted I3D [42] features for the video sequences and 
use these features as the input to our model in all experi-
ments. For each frame, the feature is obtained by concatenat-
ing the RGB and flow streams, which means the dimensions 
of the pre-extracted feature sequences are T × 2048.

Metrics. We report the three metrics employed in [11] for 
the above datasets, namely, frame-wise accuracy (Acc), seg-
mental edit distance (Edit) [41], and F1 score at the IOU 
thresholds 10%, 25%, and 50%, denoted as F1@{10, 25, 50}

[10]. While Acc is the most prevalent metric in deep learn-
ing, it is oblivious to the continuity of action segments in the 
video sequence, which brings about over-segmentation 
errors in the action segmentation. In addition, large action 
duration variance in the datasets has an important influence 
on Acc, making this metric unsuitable for measuring the 
qualitative differences among long action segments. Hence, 
Edit is used to calculate the Levenshtein distance [41] 
between predictions and ground-truth labels to address this 
limitation. Meanwhile, the F1 score with the overlapping 
threshold k% ( F1@k ) is defined as F1 =

2×Precision×Recall

Precision+Recall
 to 

evaluate the quality of the predictions as proposed by [10], 
where precision and recall are computed for the true posi-
tives, false positives, and false negatives summed over all 
action classes. Similarly, the F1 score also penalizes over-
segmentation errors and disregards temporal shifts between 

the predictions and ground truth in the temporal action seg-
mentation task.

4.2  Evaluation of the two‑stage architecture

This subsection adds the transformer TCN and DASPP for 
the prediction and refinement in our two-stage architec-
ture. Table 2 shows that this architecture outperforms the 
one-stage variants by 24.6% in the F1 score, 25.2% in the 
segmental edit distance, and 5.7% in the frame-wise accu-
racy. This highlights the gains of the transformer TCN and 
DASPP. To determine the impact of utilizing the transformer 
TCN and DASPP in all stages, we also trained the TSRN 
with the transformer TCN and DASPP in the two stages. 
As shown in Table 2, the substantial improvement of TSRN 
with a two-stage architecture indicates that extracting and 
moving the refinement part so that it comes after the initial 
prediction part is critical for the design. While the temporal 
relations are modeled to access the global features by the 
transformer TCN, the refinement blocks in the second stage 
focus on fusing the global and local features using DASPP. 
Regardless of whether the transformer TCN and DASPP are 
used in a one-stage architecture, the evaluation metrics drop 
substantially because of overfitting during training.

Figure 6 shows the qualitative results among several 
architectures with different color codes. The given video 
is obtained from the 50Salads dataset, which depicts fine-
grained actions of making salads. The segmentation results 
show the one-stage architecture with the transformer TCN or 
DASPP wrongly classifies “cut_tomato” as “place_tomato_
into_bowl,” “cut_lettuce” as “cut_cucumber,” “place_ 
cucumber_into_bowl,” and “cut_tomato.” Our two-stage 
TSRN indicates that the model can infer activities around 
neighboring action segments in global semantic relation-
ships (e.g., “The process of dealing with lettuce is continu-
ous, which makes it asemantic to predict extra actions, such 
as placing tomato into the bowl.”). Moreover, ambiguous 
frames near the action boundaries have been alleviated based 
on the two-stage TSRN, shown in the black boxes in Fig. 6. 
Therefore, our two-stage TSRN mitigates over-segmentation 

Table 2  Comparison between one- and two-stage architectures on the 
50Salads dataset

The bold values indicate the highest value for each metric (column) in 
that table/comparison

F1@{10, 25, 50} Edit Acc

One stage w/ the transformer TCN 61.2 58.9 53.3 54.1 83.4
One stage w/ the DASPP 76.0 73.3 65.2 68.7 78.8
Two-stage TSRN 84.9 83.5 77.3 79.3 84.5

Table 3  Comparison with or without the multi-head self-attention 
mechanism on the 50Salads, GTEA, and Breakfast datasets

The bold values indicate the highest value for each metric (column) in 
that table/comparison

50Salads F1@{10, 25, 50} Edit Acc

w/o multi-head self-attention 77.3 75.7 67.1 70.2 81.3
w/ multi-head self-attention (ours) 84.9 83.5 77.3 79.3 84.5
GTEA
w/o multi-head self-attention 85.8 84.4 73.8 80.0 78.2
w/ multi-head self-attention (ours) 89.4 87.8 80.1 84.9 80.6
Breakfast
w/o multi-head self-attention 49.4 44.7 34.9 55.8 68.0
w/ multi-head self-attention (ours) 75.4 70.3 56.2 75.0 71.6

Table 4  Performance of the multi-head self-attention mechanism 
with different heads and layers on the 50Salads dataset

The bold values indicate the highest value for each metric (column) in 
that table/comparison

F1@{10, 25, 50} Edit Acc

one head 83.1 80.1 70.3 76.1 84.0
two heads 84.9 83.5 77.3 79.3 84.5
four heads 82.7 80.4 73.2 75.0 83.0
one layer 80.1 78.3 69.5 75.3 82.0
two layers 81.1 80.2 70.6 75.1 82.1
four layers 84.5 83.4 77.3 79.3 84.5
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errors in predictions compared with simply stacking the 
same subnetworks.

4.3  Effectiveness of the multi‑head self‑attention 
mechanism

To demonstrate the effectiveness of the multi-head self-
attention mechanism in the transformer TCN, we report the 
performance of our TSRN and its variants with and with-
out the multi-head self-attention mechanism. As shown in 
Table 3, the multi-head self-attention mechanism effectively 
improves the quality of action segmentation results. Par-
ticularly, the improvement of the F1 score by up to 26% on 
the Breakfast dataset indicates that attaching the multi-head 
self-attention mechanism in the transformer encoder block 
can capture temporal relations to alleviate over-segmentation 
errors. In addition, the numbers of heads and layers in the 
transformer encoder block are listed in Table 4.

The multi-head self-attention mechanism helps under-
stand the local information of action segments and infer 

actions around neighboring action segments in global 
semantic relations. For example, we select a video 
sequence from the 50Salads dataset and obtain the atten-
tion matrix from the standard deviation. The horizontal 
and vertical axes represent the frames of a video sequence. 

Fig. 6  Qualitative results of the temporal action segmentation for 
one- and two-stage architectures with different colors. (1) First row: 
ground-truth labels corresponding to each video sequence frame. (2) 
Second row: one stage with transformer TCN, which regards it as 

one basic block and stacks six blocks. (3) Third row: one stage with 
DASPP, which regards it as one basic block and stacks six blocks. (4) 
Fourth row: our two-stage TSRN includes one prediction block and 
five refinement blocks

Fig. 7  Visualization of the 
attention matrix for the multi-
head self-attention mechanism

Table 5  Effect of the number of dilated residual layers ( K ) in the 
transformer TCN on the results for the 50Salads dataset

The bold values indicate the highest value for each metric (column) in 
that table/comparison

F1@{10, 25, 50} Edit Acc

K = 0 72.6 71.1 64.8 66.4 81.4
K = 4 75.6 73.8 68.7 66.6 83.2
K = 6 75.7 73.4 64.2 68.1 81.9
K = 8 80.7 79.0 70.7 73.0 83.9
K = 10 81.3 79.3 72.3 74.1 84.3
K = 11 84.9 83.5 77.3 79.3 84.5
K = 12 82.6 80.3 75.0 75.2 84.1
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The visualization results in Fig. 7 show that for a query 
frame “ + ,” the neighboring areas (red boxes) indicate that 
the multi-head self-attention mechanism focuses on the 
meaningful locations of adjacent action segments. That 
is, actions that are irrelevant to the local semantics (e.g., 
“cut cucumber” and “cut tomato” are incorrect predictions 
for the local information of processing lettuce) cannot be 
predicted in the consecutive video sequence. Hence, the 
multi-head self-attention mechanism effectively models 
the temporal relations in each action segment.

To better understand how the transformer TCN con-
stantly receives global features after capturing the tem-
poral relations among local continuous action segments 
by utilizing the multi-head self-attention mechanism, we 
present the performance of different residual layers after 
the transformer encoder block on the 50Salads dataset. 
As shown in Table 5, increasing K  from 0 to 11 typi-
cally improves the performance, especially for F1 scores 
and segmental edit distance. This indicates expanding 
the receptive fields after the transformer encoder block 
achieves better results because the global features are 
obtained gradually, which demonstrates that capturing 
long-range dependencies in the transformer TCN plays an 
essential role in the first-stage prediction.

4.4  Effectiveness of the DASPP

In this section, we validate the effectiveness of the DASPP 
in our TSRN, which captures multiscale features with large 
temporal receptive fields and precisely revises segmentation 
boundaries. As presented in Table 6, both the SPP and atten-
tion modules (CAM and SAM) greatly improve the action 
segmentation performance. Compared with the variant with-
out any module in the DASPP, the variant with CAM and 

SAM brings a 7% improvement in F1@50 , which indicates 
that channel attention and spatial attention are essential for 
focusing on the local features of action segments. In Fig. 8, 
although the action appearances are similar in each action 
segment, the CAM and SAM in the DASPP helps the infor-
mation flow within the network by learning which infor-
mation is worth emphasizing (valuable information in the 
image is indicated by a red box) or which is inhibiting.

Furthermore, to achieve the fusion of local and global 
features from the video sequence, we added three detection 
headers built on the top of the three feature maps after the 
CAM module in DASPP at different scales for fusing mul-
tiscale features in the input sequence. The results in Table 6 
show that the SPP improves the F1 score from 70.1% to 
77.3% and the segmental edit distance from 73.8% to 79.3%, 
demonstrating that fusing the multiscale features makes it 
easier to classify the ambiguous frames of action segments 
than using only two attention modules (CAM and SAM). In 
Fig. 9, we compare the baseline model with the TSRN to vis-
ualize the effectiveness of DASPP. MS-TCN [11] is based on 
dilated temporal convolutional networks that adopt a multi-
stage architecture similar to that of our TSRN (i.e., itera-
tively refining the prediction from the backbone model sev-
eral times to obtain the revised version segmental results), 
and it is the baseline model of the TSRN. In contrast to the 
TSRN, the MS-TCN [11], which does not contain DASPP, 
wrongly recognized “add_vinegar” as “add_oil,” “add_salt” 
as “add_oil” and “add_pepper.” Moreover, “place_cucum-
ber_into_bowl” is misidentified as “place_tomato_into_
bowl” and “cut_cheese”. This phenomenon shows that the 
DASPP produces more accurate action boundaries and iden-
tifies different adjacent action segments when segmenting 
indistinguishable appearance actions.

Table 6  Performance of the 
TSRN using DASPP and 
variants with and without 
channel attention (Channel), 
spatial pyramid pooling module 
(SPP), and spatial attention 
(Spatial)

The bold values indicate the highest value for each metric (column) in that table/comparison

Channel SPP Spatial F1@{10, 25, 50} Edit Acc

 ×  ×  × 74.5 73.2 63.1 70.2 80.0
√ √  × 77.7 75.1 66.6 70.5 80.4
 × √ √ 80.1 77.1 69.4 72.1 82.7
√  × √ 80.6 78.5 70.1 73.8 82.2
√ √ √ 84.9 83.5 77.3 79.3 84.5

Fig. 8  Illustration of how the CAM and SAM in the DASPP focus on the local features of action segments
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4.5  Effectiveness of the joint loss

We first make a parameter ablation study of the focal loss 
Lfocal in the proposed joint loss function for the subsequent 
experiments. In the focal loss, � is used to adjust the rate to 
smooth the hard-to-classify samples during training, which 
is fixed to 2 for all datasets because of the advanced perfor-
mance. � is a critical parameter (shown in Eq. (14)) to bal-
ance the distribution of well-classified and hard-to-classify 
samples. Table 7 shows the performance in the focal loss 
Lfocal of different � values on the 50Salads and GTEA data-
sets. From Table 7, we observe that the best weighting factor 
is � = 0.15 for the 50Salads dataset, which denotes the pro-
portion of hard-to-classify samples estimated at 85%. This 
forces the model to focus on hard-to-classify frames dur-
ing training, alleviating the ambiguity of identifying action 
boundaries. The sample distributions of different datasets 
are different, so we need to select suitable � values for vari-
ous datasets. Hence, we observe that when � = 0.15 and 
� = 0.25 for the Breakfast and GTEA datasets, respectively, 
we achieve excellent performance.

To verify the effectiveness of the joint loss function, we 
report the performance of TSRN and its variants with and 
without focal loss and auxiliary self-supervision signals 
while training the two-stage architecture on the 50Salads 
and Breakfast datasets. Table 8 compares the performance 
of each combination of loss functions. The proposed joint 
loss function improves the F1 score by up to 10.9% and the 
segmental edit distance by 8.7% on the 50Salads dataset 
after incorporating auxiliary self-supervised loss Lself  and 
focal loss Lfocal . After training with self-supervision sig-
nals on the 50Salads dataset, our TSRN outperforms the 

Fig. 9  Confusion matrix results for the test set of the 50Salads dataset. (Left) MS-TCN [11] baseline model without the DASPP. (Right) TSRN 
with the DASPP

Table 7  Performance of different � values in the focal loss L
focal

 on 
the 50Salads and GTEA datasets

The bold values indicate the highest value for each metric (column) in 
that table/comparison

50Salads F1@{10, 25, 50} Edit Acc

� = 0.10 81.2 79.7 73.2 75.4 83.3
� = 0.15 84.9 83.5 77.3 79.3 84.5
� = 0.20 84.3 81.2 74.4 76.1 82.5
GTEA
� = 0.15 86.4 83.9 76.5 79.4 78.8
� = 0.20 88.5 86.4 78.8 81.3 79.2
� = 0.25 89.4 87.8 80.1 84.9 80.6

Table 8  Comparison of the combinations of loss functions on the 
50Salads and Breakfast datasets

The bold values indicate the highest value for each metric (column) in 
that table/comparison

50Salads F1@{10, 25, 50} Edit Acc

Lfocal + Lself 79.5 77.4 68.2 71.7 83.1
Lcls + Lreg 78.4 75.6 66.6 71.0 80.9
Lcls + Lreg + Lfocal 78.0 75.6 66.4 70.6 80.4
Lcls + Lreg + Lfocal + Lself 84.9 83.5 77.3 79.3 84.5
Breakfast
Lfocal + Lself 30.3 24.5 14.3 32.3 36.5
Lcls + Lreg 59.5 53.8 43.0 63.1 69.8
Lcls + Lreg + Lfocal 75.4 70.3 56.2 75.0 71.6
Lcls + Lreg + Lfocal + Lself 58.4 53.3 42.5 61.5 71.2
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same network without self-supervision signals by 4% in all 
evaluation metrics on the 50Salads dataset, which indicates 
the auxiliary self-supervision task is able to improve the 
segmental results and reduce over-segmentation errors. 
The performance of the model that contains auxiliary self-
supervision loss trained on the Breakfast dataset does not 
work effectively because the correct temporal relations in the 
video sequence have been severely disrupted. Exchanging 
frames in the Breakfast dataset that include the maximum 
action classes may exacerbate the burden of classifying the 
exchanged frames and the original frames while ignoring 
how to correct the exchanged frames. Moreover, our joint 
loss leads to a remarkable improvement in the Breakfast 
dataset results after a focal loss has been added, i.e., there 
is nearly 11% improvement in all metrics, except for frame-
wise accuracy. Note that the performance of the combina-
tion of the cross-entropy and truncated mean squares error 
losses is relatively bad because of the noises during training, 
while focal loss is effective in balancing the frequency of dif-
ferent action classes and smoothing the transition of action 
probabilities.

The qualitative comparison in Fig. 10 shows that the aux-
iliary self-supervision task is essential for boosting tempo-
ral relations and revising the labels of incorrectly labeled 

action segments, reducing over-segmentation errors at the 
boundaries of action segments. Moreover, focal loss plays 
an indispensable role in balancing the frequency of each 
action class, which shows the potential for enhancing the 
generalizability of the model.

4.6  Effectiveness of the number of refinement 
blocks

To illustrate the effectiveness of stacking several refinement 
blocks over the second stage in the TSRN, we compare the 
segmental results from the different refinement blocks. To 
declare that the improvement of our model is due to the 
design choice instead of simply raising the model’s capacity, 
we compare the proposed TSRN with its variants by the fol-
lowing evaluation metrics: F1 score, segmental edit distance, 
frame-wise accuracy, floating-point operations per second 
(FLOPs), and parameters (Params) in Table 9.

Table 9 tabulates the performance of different numbers 
of refinement blocks on the 50Salads dataset. The results 
show that increasing the number of refinement blocks from 
3 to 5 significantly improves the performance due to the 
expansion of receptive fields. However, the performance 
starts to diminish by adding the 6th refinement block, 

Fig. 10  Qualitative comparison 
of action segmentation results. a 
Comparison of TSRN with and 
without auxiliary self-super-
vision loss on the 50Salads 
dataset. b Comparison of TSRN 
trained with and without focal 
loss on the Breakfast dataset

Table 9  Comparison of the numbers of refinement blocks on the 50Salads dataset. The floating-point operations per second (FLOPs) are one 
random video sequence with 4000 frames. Params and FLOPs are calculated on a single Tesla V100 GPU with batch size = 1

The bold values indicate the highest value for each metric (column) in that table/comparison

F1@{10, 25, 50} Edit Acc Params (M) FLOPs (G)

TSRN (3 refinement blocks) 80.9 79.0 71.7 73.7 85.0 0.95 4.88
TSRN (4 refinement blocks) 82.9 79.5 73.6 76.1 85.1 1.13 5.71
TSRN (5 refinement blocks) 84.3 83.5 76.7 78.3 85.4 1.31 6.27
TSRN (6 refinement blocks) 82.5 80.6 72.6 74.7 84.7 1.49 6.96
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caused by over-fitting during the training process. Besides, 
as the number of blocks grows, the computational burden 
also becomes onerous, which is reflected in the FLOPs and 
Params evaluation metrics. To balance the model perfor-
mance and the computational power, 5 refinement blocks 
are selected in TSRN for all experiments. Our TSRN has 
1.31 million parameters and requires 6.27 GB FLOPs, and 
its computational burden is affordable considering the avail-
able hardware.

4.7  Comparison with state‑of‑the‑art methods 
and results

We compare our proposed TSRN with state-of-the-art 
methods on the 50Salads, GTEA, and Breakfast datasets. 
Table 10 shows that the proposed TSRN is exceptional to 
the state-of-the-art methods with a competitive F1 score and 
segmental edit distance, particularly with a large margin of 
up to 22.8% for the F1 score and 10.4% for the segmental 

edit distance when compared with the baseline model [11]. 
Moreover, it is worth noting that our framework also exceeds 
the existing methods on the 50Salads dataset for all evalua-
tion metrics. The F1 score and segmental edit distance are 
fundamental metrics that evaluate the accuracy of segmenta-
tion. The F1@10 performances of TSRN and the temporal 
convolutional encoder-decoder with bilinear pooling opera-
tion [22, 49] are similar on the GTEA dataset. However, 
TSRN increases by 7.4% in terms of F1@50 because our 
network is suitable for identifying actions that largely over-
lap with ground truth segments.

We crucially compare TSRN with the following seven 
methods that adopt a similar multi-stage architecture as 
TSRN: MS-TCN [11], MS-TCN +  + [14], Huang, et  al. 
[24], DTGRM [16], G2L [26], G-FRNet [23], and BCN 
[12]. MS-TCN +  + [14] is an extended version of the base-
line model MS-TCN [11], and it uses the same backbone 
model and parameters as [11]. The methods of DTGRM [16] 
and Huang et al. [24] are built on top of [11] and refine the 
original results using graph convolutional networks, which 

Fig. 11  Qualitative results for 
the temporal action segmenta-
tion task from the representative 
samples on the a 50Salads, b 
GTEA, and c Breakfast datasets 
obtained from the baseline 
method without a two-stage 
refinement (MS-TCN [11]), 
one-stage architecture before 
the refinement process, pro-
posed two-stage TSRN and GT 
(ground truth)



1391Pattern Analysis and Applications (2023) 26:1375–1393 

1 3

are related to our TSRN as they model relations among 
action segments in a similar manner. G-FRNet [23] forces 
the refinement process to correct the errors in the previ-
ous segmental results. G2L [26] is a proposed global-to-
local scheme that is akin to TSRN, which captures long- 
and short-term features in a hierarchical structure. Table 10 
reveals that TSRN substantially outperforms MS-TCN [11] 
and MS-TCN +  + [14] in significant improvements on all 
datasets, indicating the necessity of temporal reasoning 
in temporal convolutional networks. As for the Breakfast 
dataset, our TSRN outperforms DTGRM [16] and Huang 
et al. [24] with a large margin, i.e., 6%-17% increases in 
F1 score and segmental edit distance, which demonstrates 
that TSRN not only models the temporal relations but also 
refines ambiguous action boundaries in temporal action seg-
mentation. Even though the performances of BCN [12] and 
G2L [26] are close to that of TSRN, the notable improve-
ment in segmental edit distance reveals that TSRN penalizes 
over-segmentation errors, whereas these two methods still 
have a large room for improvement.

It should be mentioned that the above seven methods 
based on dilated TCNs have impressive research value for 
action segmentation. However, TSRN further overcomes 
the limitations by gradually developing the global and local 
features in a two-stage strategy. Although the accuracy 
of TSRN is more competitive than that of the-state-of-art 
models, the results of our TSRN on the GTEA and Break-
fast datasets are potentially not optimal. This is because the 
number of action instances in each video in GTEA is more 
than those in other datasets, and the number of videos in 
Breakfast is the maximum of all datasets, resulting in the 
arduous task of predicting fine-grained actions with strong 
reasoning abilities. Our TSRN is based on the architecture 
of dilated TCNs that makes the improvements of frame-
wise temporal reasoning, while it does not consider over-
segmentation errors and the ambiguous boundary problem in 
instance-wise action predictions in long videos. i.e., current 
works have not paid attention to increasing the accuracy of 
predicted action instances. In future research, we will inves-
tigate more effective methods to model instance-wise tempo-
ral relations and enhance the training process with an aug-
mentation strategy to promote the robustness of our model.

The qualitative results for the representative examples 
of temporal action segmentation are shown in Fig. 11. 
Predictions without two-stage architecture or one stage 
before the refinement process appear as ambiguous frames 
in action boundaries. Over-segmentation errors occurred 
in the predictions due to lacking semantic connections, 
resulting in incorrect short intervals in a continuous video 
sequence. In contrast, the TSRN mitigates these problems 
through its two-stage architecture (Fig. 11a, b, and c). 
Compared with MS-TCN [11] and one-stage architecture 
before the refinement process, the action boundary of the 

video sequence predicted by our two-stage TSRN is more 
precise and closer to the ground-truth labels. At the same 
time, for actions unrelated to global semantics, TSRN can 
identify and revise them into the correct labels (e.g., the 
color-coding in the black of Fig. 11c indicates the actions 
are unrelated to the entire video).

Despite the significant progress of the TSRN, some 
actions may be confusing because of the incredibly high 
similar motion appearance of the images. As can be seen 
in Fig. 9 Right, it is difficult to distinguish “add_salt” and 
“add_pepper” in the process of making salads, which leads 
us to pay more attention to identifying similar actions in 
a video.

5  Conclusion

We present the TSRN for the temporal action segmentation 
task, consisting of two stages: transformer TCN for focus-
ing on the semantic association among the action segments 
and gradually receiving global features and DASPP for 
fusing multiscale features to alleviate over-segmentation 
errors. In addition, we introduce a joint loss that further 
refines the predictions. The TSRN outperforms state-of-
the-art methods on three challenging datasets. The results 
imply that the performance of the TSRN achieves better 
than simply stacking more convolutional networks. To per-
fect our work, we will find a practical method to classify 
similar actions in a continuous video sequence. We hope 
this work could promote the development of action under-
standing and provide the mentality for potential applica-
tions, such as action parsing and action reasoning.
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