
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2023) 26:1375–1393
https://doi.org/10.1007/s10044-023-01166-8

THEORETICAL ADVANCES

TSRN: two‑stage refinement network for temporal action
segmentation

Xiaoyan Tian1 · Ye Jin1 · Xianglong Tang1

Received: 30 March 2022 / Accepted: 19 April 2023 / Published online: 15 May 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
In high-level video semantic understanding, continuous action segmentation is a challenging task aimed at segmenting
an untrimmed video and labeling each segment with predefined labels over time. However, the accuracy of segment pre-
dictions is limited by confusing information in video sequences, such as ambiguous frames during action boundaries or
over-segmentation errors due to the lack of semantic relations. In this work, we present a two-stage refinement network
(TSRN) to improve temporal action segmentation. We first capture global relations over an entire video sequence using a
multi-head self-attention mechanism in the novel transformer temporal convolutional network and model temporal relations
in each action segment. Then, we introduce a dual-attention spatial pyramid pooling network to fuse features from macro-
scale and microscale perspectives, providing more accurate classification results from the initial prediction. In addition, a
joint loss function mitigates over-segmentation. Compared with state-of-the-art methods, the proposed TSRN substantially
improves temporal action segmentation on three challenging datasets (i.e., 50Salads, Georgia Tech Egocentric Activities,
and Breakfast).

Keywords  Temporal action segmentation · Video semantic understanding · Refinement network · Self-attention · Over-
segmentation

1  Introduction

Analyzing and understanding human actions in videos
are fundamental to many applications, such as intelligent
surveillance [1, 2] and human behavioral analysis [3].
Approaches to recognizing short-trimmed videos to predict
action class labels have yielded promising results [4]. How-
ever, action segmentation, which aims to assign an action
label for each frame to divide the entire video sequence
of long untrimmed videos into several disjoint semantic
action segments with fine-grained class labels, remains
challenging.

Temporal action segmentation is a branch of video-
based human action understanding aimed at dividing long
untrimmed videos into segment-level snippets and predict-
ing the action labels of frames for the snippets with the
same predefined label [5]. Conventional action segmen-
tation methods are based on two-phase deep neural net-
works: First, two-dimensional (2D) convolutional neural
networks [6], two-stream networks [7], or three-dimen-
sional (3D) convolutional neural networks [8] extract low-
level spatiotemporal features [48]; Second, using high-
level classifiers such as long short-term memory (LSTM)
[9] and recurrent neural networks (RNNs) [51] temporally
captures frame-wise dependencies. These methods obtain
better results on datasets with a small number of action
classes than previous methods [43–45]. Nevertheless, they
exhibit oscillation predictions on large datasets with vari-
ous action classes and are usually hard to interpret and
correctly train. To tackle these limitations, researchers
have suggested a temporal convolutional network (TCN)-
based [10] method that captures long-range information
using multilayer dilated convolution with increasing an
receptive field. The TCN-based method does only model

 *	 Ye Jin
	 jinye@hit.edu.cn

	 Xiaoyan Tian
	 tianxy@stu.hit.edu.cn

	 Xianglong Tang
	 tangxl@hit.edu.cn

1	 Harbin Institute of Technology, Harbin 150001, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-023-01166-8&domain=pdf

1376	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

temporal patterns with fewer parameters but is also faster
than conventional solutions [9, 51]. It has become a widely
used backbone network for the temporal action segmen-
tation task and has led to the development of follow-up
works [11–16]. While the progress of recognizing action
segments from long untrimmed videos has been made, we
still find three technical difficulties worthy of attention in
the TCN-based method:

The first is the problem of discounting the semantic asso-
ciation among action segments of an entire video. State-of-
the-art methods [11–16] usually adopt a multi-stage architec-
ture based on a TCN that expands temporal receptive fields
with dilated convolutions and outputs an initial prediction
refined by the subsequent stages to capture long-term rela-
tionships. However, the higher dilated convolutional layers
lead to the loss of local features and the lack of correlation
in long-term dependencies. For instance, Farha et al. [11]
simply stacked multiple TCN layers but did not translate this
to a corresponding effective performance. This is because
focusing only on the features of long-term dependencies
tends to lose the semantic association between local action
segments, resulting in incorrect predictions for hard-to-
recognize frames. In fact, the relations among each action
segment indicate a series of continuous activities [16] (e.g.,
when preparing to make salads, the correct order is adding
flavor, cutting vegetables, and mixing). Besides, the under-
lying contextual information in spatial and channel axes is
significant in learning diverse representations in the field of
semantic segmentation [52], which motivates us to design a
model that can perceive various feature representations of a

video sequence and model different timescales (i.e., short-
and long-term timescales) of temporal relationships.

Another difficulty is the inevitable over-segmentation
errors [10, 11, 14] for frame-wise classification. In the upper
part of Fig. 1, over-segmentation errors occur at the initial
predictions when analyzing untrimmed video sequences
with a series of actions, which are caused by visual fea-
tures in one action segment always becoming too similar
to those in other action segments. To further reduce over-
segmentation errors, recent studies have added additional
structures/branches to solve the problem. Wang et al. [12]
trained another network to aggregate local predictions by
leveraging semantic boundary information but their model
incurred higher computational costs. Ishikawa et al. [13]
proposed a boundary regression module and used boundary
detection on the segmentation outputs for refinement during
the post-processing. Moreover, Li et al. [14] and Wang et al.
[23] constructed a smooth loss between the log probability
of the previous frame and the current frame. However, these
methods may incorrectly modify the frame-wise prediction
result in the previous predictions and harm the following
refinement stages due to the errors in the additional mod-
ules or noise in the backbone when identifying ambiguous
segment-level action clips.

In addition, the enormous speed and duration variance
increase the difficulty of classifying action boundaries. For
instance, one “crack_egg” action is completed in 2 s on the
Breakfast dataset [19], but the “fry_egg” action persists for
2 min. We present examples of the frame-wise variance of
I3D features [42] for 21 frames on three challenging datasets
(50Salads [17], GTEA [18], and Breakfast [19]) in Fig. 2.

Fig. 1   Structure of the proposed two-stage refinement network
(TSRN) comprising a transformer temporal convolutional network
(transformer TCN; Sect. 3.1) and a dual-attention spatial pyramid
pooling network (DASPP; Sect. 3.2). After generating self-super-
vision signals, the original video sequence and exchanged video

sequence are inputted from a frame-wise feature extractor and fed
into the prediction block (transformer TCN) as the first step output
of the initial predictions with over-segmentation errors. Then, action
segmentation results are refined in the refinement block (DASPP) as
the second step

1377Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

It is obvious that it is the large changes between adjacent
action segments, which brings the problem of identifying
action boundaries. The ambiguous boundary problem mani-
fests the difficulty of labeling the start or end of an action
segment (seen in Fig. 1), which should be solved to under-
stand untrimmed videos.

Inspired by [53], where objects were detected in a mul-
tiscale vision range, we introduce a two-stage refinement
network (TSRN) that captures macroscale and microscale
features to solve the difficulties mentioned. In Fig. 1, the pro-
posed TSRN consists of a frame-wise feature extractor and
two stages: a transformer temporal convolutional network
(transformer TCN) and a dual-attention spatial pyramid
pooling network (DASPP). Unlike general models that use
the same subnetworks to expand temporal receptive fields by
boosting the network depth, the proposed TSRN redefines
the architecture and modifies the meaning of each stage.

For the transformer TCN, the transformer encoder block
is designed to explore the global features of a video sequence
effectively and then to use multiple dilated convolutional lay-
ers to model the long-range temporal dependency. To refine
the initial predictions from the first stage, we regard the
DASPP as the second stage, which eliminates over-segmen-
tation errors from the initial predictions by understanding
the video sequence's global and local context information,
thus producing more accurate predictions of action bounda-
ries. For DASPP, a channel attention module (CAM) is pro-
posed to capture channel context via reallocating weights
with the importance of channels, a spatial attention module
(SAM) is aimed at generating attention weights to adapt the
most informative video parts, and a spatial pyramid pool-
ing module (SPP) is used to integrate multiscale features
of a video sequence. Furthermore, self-supervised signals
simulate over-segmentation errors to locate wrong temporal
ordered frames and revise them in the predictions. For model
training, to force the TSRN to correct mislabeled frames in
the previous predictions, we form a joint loss to combine the
auxiliary self-supervised function, a traditional loss function

[11, 13, 14], and a focal loss function that smooths the tran-
sition of action probabilities predictions. The contributions
of this study can be summarized as follows:

1.	 We design the novel TSRN that adopts a two-stage strat-
egy to capture macroscale and microscale features from
video sequences. The TSRN comprises a transformer
TCN and a DASPP to overcome the technical difficul-
ties above, improving single-model classification results
by up to 22.8% for the F1 score and 13.3% in terms of
segmental edit distance.

2.	 A transformer TCN is proposed to model global depend-
ency by exploring the correlations among frames, and
DASPP is adapted to combine a video's global and local
features. To our best knowledge, it is the first attempt to
leverage channel and spatial attention information for
temporal action segmentation.

3.	 We introduce a joint loss function to smooth the tran-
sition of action probabilities and experiment with the
combination of loss functions for our model. Combining
an auxiliary self-supervised function and a focal loss
function provides a 12.8% improvement in the F1 score
and an 11.4% improvement in segmental edit distance.

4.	 The proposed TSRN achieves state-of-the-art perfor-
mance on three challenging benchmarks for temporal
action segmentation: 50Salads [17], Georgia Tech Ego-
centric Activities (GTEA) [18], and Breakfast [19].

2 � Related work

2.1 � Action segmentation

Action segmentation aims to segment a video sequence
according to the semantic meaning and label each segment-
level action corresponding with predefined labels tempo-
rally. In earlier approaches, a sliding window method [46,
47] with non-maximum suppression is used to detect action

Fig. 2   Frame-wise variance
results of 50Salads, GTEA, and
Breakfast datasets

1378	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

segments. Other traditional methods use Markov models
[29, 40] on the top of frame-wise classifiers. However, these
approaches are very slow and exist to solve the maximization
problem over long sequences.

Inspired by the success of speech synthesis, researchers
have proposed diverse temporal convolutional networks
(TCNs) from WaveNet [20]. Lea et al. [10] proposed the
encoder-decoder TCN (ED-TCN), [21, 50] expanded it to the
temporal deformable residual network with a residual stream
to analyze video information. Although these approaches
obtained long-range dependencies, the increasing pooling
and upsampling operations might discard the fine-grained
details of video sequences. To overcome these challenges, a
multi-stage TCN (MS-TCN) [11] was designed, which used
dilated 1D convolutions to enlarge temporal receptive fields
instead of pooling operations in [10] with a full resolution.
Based on [11], dilated TCNs [11, 14, 22, 23, 49] and a tem-
poral reasoning module with graph convolutional networks
[16, 24] can be fed into the top of temporal action segmenta-
tion models, modeling on the full resolution, capturing long-
range dependencies, and learning fine-grained features of
video sequences. Other works, such as [12, 13], are based on
the anchor-free temporal action proposal task, distinguishing
actions or the possibility of judging whether a frame starts or
ends. Wang et al. [12] trained an extra network to smoothen
action boundaries, and Ishikawa et al. [13] used an action
boundary regression network to mitigate over-segmentation
errors by detecting action boundaries. However, training a
large and time-consuming model limited the performance.
Recently, in [15, 25], domain adaption was introduced to the
action segmentation task. Gao et al. [26] used hierarchical
artificial design receptive fields to build segmentation mod-
els, but they neglected the importance of global and local
contexts of the whole video sequence.

In this study, our model is based on dilated TCNs and
uses a two-stage architecture to capture different timescale
features of video sequences and generates smooth predic-
tions over segment-level action boundaries with low com-
putation costs.

2.2 � Transformer

The transformer [32] is initially applied for natural language
processing tasks. With the immense potential of machine
translation and English constituency parsing [27], research-
ers have recently grown a great interest in applying trans-
former-based models for computer vision tasks, such as
object detection [28], image classification [30], and segmen-
tation [31]. Considering that a transformer is inherently well
suited for sequence-based tasks, we attempt to incorporate
the transformer-based models into the action segmentation
task, which models relations among segment-level actions
of a video sequence. Note that the self-attention mechanism

[32] is the fundamental component in the transformer-based
models. This mechanism precisely computes the output at
each position of video sequences by calculating attention
scores for all positions and fusing the intrinsic features based
on the scores. While a single-head self-attention layer only
focuses on more meaningful position information, multi-
head attention allows the model to gather information from
different representation subspaces. Our model utilizes a
multi-head self-attention mechanism to enhance the seman-
tic association among the local action segments and model
temporal long-range dependencies in videos.

2.3 � Attention mechanism

The attention mechanism plays a vital role in analyzing and
understanding complex scenes [33, 34], diverting attention
to the most critical parts of an image and taking no notice
of irrelevant regions. Some extensive research works on
this domain are relevant to our work. For example, Hu et al.
[35] proposed the sequence-and-excitation (SE) module to
explore the inter-channel relationship and automatically
learn the effectiveness of different channel-wise attentions.
Based on the SE module, Woo et al. [36] introduced the
spatial attention mechanism, which considers that max-pool-
ing operation makes a network pay attention to the essen-
tial channel-wise features, focusing on target space areas.
Some researchers have recently studied the potential for
transformer-based models in image processing and proposed
the vision transformer (ViT) [30] as a pure attention-based
network with a multi-head attention core. Motived by the
above attention mechanism, we introduce the dual-attention
mechanism with a spatial pyramid pooling module (SPP)
[39] to explore the applications for the action segmentation
task.

In addition to the attention-based module for adaptive
feature refinement in the previous works [35, 36, 39], we
extract multiscale features of the video sequence with dif-
ferent receptive fields and fuse them in the channel dimen-
sion of the feature maps to develop features with minimal
modifications. Finally, we eliminate incorrect frame-wise
predictions by focusing on adjacent action segments from a
local perspective and reduce over-segmentation errors from
the prediction block by fusing long- and short-term features.

3 � Approach

This section introduces the proposed temporal action seg-
mentation approach, i.e., TSRN. Our structure consists of
a frame-wise feature extractor and two networks, a trans-
former TCN and a DASPP, as shown in Fig. 1. The frame-
wise feature extractor takes original frames and exchanged
frames as the input, generating input features as input. Then,

1379Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

the transformer TCN develops initial predictions in the first
stage. This stage adapts a multi-head self-attention mecha-
nism with several dilated 1D convolutions. In the second
stage, the TSRN revises previous predictions from the pre-
diction block by stacking refinement blocks that involve a
dual-attention model, an SPP module, and dilated residual
layers.

The remainder of the section is organized as follows:
Sect. 3.1 illustrates how the transformer TCN models long-
range dependencies and develops initial predictions. Sec-
tion 3.2 introduces the multiscale features fusion module in
the DASPP to revise predictions, such as over-segmentation
errors. Finally, Sect. 3.3 describes how the joint loss forms,
and Sect. 3.4 details the experimental setup.

Let X1∶T = (X1, ...XT
) ∈ R

T×D
dim and Xex

1∶T
= (...,Xtj

, ...,Xti
, ...) ∈ RT×Ddim be

the inputs to the TSRN, where T is the number of frames in
a video and Ddim is the feature dimension. Our goal is to
classify the frame-wise action class C1∶T = (C1, ...,CT) ,
whose ground-truth label is set as Ygt

1∶T
= (Y

gt

1
, ..., Y

gt

T
) , where

Y
gt

t ∈ {0, 1}C is a one-hot vector representation of whether
the i th frame is predicted as the true label, C is the number
of action classes, Xex

1∶T
 is swapped in pairs and formed with

the wrong temporal order.

3.1 � Transformer TCN

As shown in Fig. 3, the first layer of the transformer TCN
is a 1 × 1 convolutional layer that adjusts the dimension of
input features to match the number of feature maps D . Then,

a transformer encoder block is included with the multi-head
self-attention mechanism, and its output is transferred to sev-
eral layers of dilated 1D convolutions with a kernel size of 3.
Subsequently, a 1 × 1 convolutional layer is applied after the
output of the last dilated 1D convolutional layer, followed
by a softmax activation to get the action class probabilities
as the first-stage predictions Y1 = (Y1

1
, ..., Y1

T
).

Concretely, a sinusoidal positional encoding module
[32] with dimension D is first incorporated into the origi-
nal embedding in the transformer encoder block to form the
input vector I ∈ RT×D . Second, for the input vector I and the
number of heads h , the input vector is transformed into three
representative groups (i.e., the query group, the key group,
and the value group). In each group, there are h vectors with
dimensions dq = dk = dv = D∕h . Vectors derived from dif-
ferent groups are then packed together into three different
groups of matrices: {Qi}

h
i=1

 , {Ki}
h
i=1

 , and {Vi}
h
i=1

 . Formally,
the multi-head self-attention process is shown as follows:

where MultiHead represents multi-head self-attention, Con-
cat denotes the concatenation operation, ATTN indicates the
attention mechanism; Q, K, and V are the concatenation of
{Qi}

h
i=1

 , {Ki}
h
i=1

 , and {Vi}
h
i=1

 respectively. Here, we set h = 4
(h = 2 for the GTEA and Breakfast datasets) for the number
of heads. To facilitate residual connections, a feed-forward
network is applied after the multi-head self-attention layer,
which consists of an embedding layer and a linear layer,

(1)
MultiHead (Q,K,V) = Concat (head1, ..., headi)W

o,

where headi = ATTN (Qi,Ki,Vi),

Fig. 3   Overview of the transformer temporal convolutional network (transformer TCN). The transformer TCN contains a transformer encoder
block and several dilated 1D convolutions using residual connections

1380	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

producing the output of the transformer encoder block,
which can be formulated as

where W1 and W2 are the two parameter matrices of two lin-
ear transformation layers.

After focusing on the semantic association among the
action segments in the transformer encoder block, we need
to extract different receptive fields of temporal features to
capture the global information. In dilated 1D convolutions,
each layer applies D dilated convolutions with rectified
linear unit activation and a convolutional layer. We further
use residual connections to facilitate the gradient flow. The
output of each dilated residual layer k ∈ {1, 2, ...,K} as
Lk ∈ RT×D can be described by

where Lk−1 is the output of the ( k − 1)th dilated residual
layer, W3 ∈ R3×D×D denotes the weight matrix of dilated 1D
convolution filters with a kernel size of 3, D is the number
of dilated convolutional filters, W4 ∈ R1×D×D is the weight
of the 1 × 1 convolution, and b1 , b2 ∈ RT×D are bias vectors.
To capture long-range dependencies of the video sequence,
we follow [11] that stacked dilated residual layers to expand
receptive fields. Because the receptive fields exponentially
grow with the number of layers, we obtain large receptive
fields with few layers, thus inhibiting over-fitting during the
training of the model. The receptive field of each layer can
be formulated as

where k ∈ [1,K] denotes the layer number. Followed by the
last dilated residual layer K , we apply a 1 × 1 convolution
after a softmax activation layer, i.e.,

where Y1 = (Y1
1
, ..., Y1

T
) ∈ RT×C represents the action class

probabilities at time t for the first-stage prediction of the
TSRN, W ∈ RC×D and b ∈ RC are the weight and bias of the
1 × 1 convolutional layer, respectively, C is the number of
action classes.

Different from the MS-TCN [11], which stacks some
single-stage TCNs [11] and leads to the loss of local infor-
mation in higher layers, we use the transformer TCN to
extract the frame-wise features and generate the first-stage
prediction. To obtain the long-range dependencies of the
entire video, we utilize a transformer-based model that mod-
els temporal relations to generate the local features among
action segments and then constantly perceives the global
features of the whole video.

(2)Ytrans−block = W1(W2(MultiHead (Q,K,V))),

(3)Lk = Lk−1 +W4 ⊗ (ReLU(W3 ⊗ Lk−1 + b1)) + b2,

(4)Receptive Field (k) = 2k − 1,

(5)Y1 = Soft max (W ⊗ LK + b),

3.2 � DASPP

Although the transformer TCN has improved action segmen-
tation predictions, the results still include over-segmentation
errors. Recent methods [11, 14] have focused on modeling
different timescales of features by stacking additional layers
that might lose the local information of a video sequence.
Nevertheless, we use DASPP to revise the initial predic-
tion estimated in the first stage and then selectively aggre-
gate local and global features by employing the multi-stage
architecture.

Given Y1 , DASPP aims to refine the first-stage predic-
tion by fusing multiscale features and revising segment-level
action boundaries, alleviating over-segmentation errors. In
DASPP, each refinement block takes predictions from the
previous block and then refines them. The input of each
refinement block in DASPP is

where Y1 is the input of the first refinement block, Yi is the
output of block i , and F(⋅) shows the multi-stage operation
of DASPP. As shown in Fig. 4, each refinement block of the
DASPP consists of a channel attention module (CAM), a
spatial pyramid pooling module (SPP), a spatial attention
module (SAM), and 10 dilated 1D convolutional residual
layers with a kernel size of 3. To receive the probabilities for
the output class Y5 = (Y5

1
, ..., Y5

T
) ∈ RT×C as the second-stage

refinement prediction, we apply a 1 × 1 convolutional layer
after the last dilated residual layer, followed by a softmax
activation layer in each refinement block.

CAM Channel attention is widely utilized to distinguish
the significance of different channels, thus strengthening
meaningful channel features, and suppressing redundant
features in computer vision. We propose a CAM for a fea-
ture representation sequence to capture channel context via
reallocating weights with the importance of channels. To the
left in Fig. 4, given a feature representation as input, CAM
reduces the number of channels to learn the local depend-
ency between channels via max pooling and average pooling
operations. Then, CAM increases the number of channels
returning to the original size and produces the channel atten-
tion map Mc by the sigmoid activation. The CAM process of
the i th refinement block in DASPP can be summarized as

where Yi
c−max(t)

 and Yi
c−avg(t)

 are max pooling and average
pooling descriptors in a multilayer perceptron network, W5
and W6 are the weights of the 1D convolution with a kernel

(6)
Y1 = Y1

1
, ..., Y1

T
,

Yi = F(Yi−1) i ∈ [2, 5],

(7)
Mc(Y

i) = Sigmoid(W5(W6(Y
i
c−avg(t)

)) +W5(W6(Y
i
c−max(t)

))),

(8)Yi
c(t)

= Yi ⊗Mc(Y
i),

1381Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

size of 1, ⊗ denotes the element-wise product. Equation (7)
indicates the process of the channel attention map with a
dimension-reduction operation, and Eq. (8) is the output of
the channel attention mechanism by the dimension-increas-
ing function.

SPP Similar to a feature pyramid network (FPN) [37],
the SPP relies on the pyramidal shape of the feature hier-
archy to extract multiscale features with strong seman-
tics. Although the transformer TCN has perceived the
global information of a video sequence, variable pooling
kernels can supplement the local context from the input
sequence. In SPP, we overcome the shortcoming of losing
fine-grained information with limited receptive fields by
combining multiscale features with a large temporal recep-
tive field to refine the prediction.

Our SPP is composed of four parallel max-pooling lay-
ers with kernels of 1 × 1 , 5 × 5 , 9 × 9 , and 13 × 13 , which
extract multiscale features and fuses them by concatenat-
ing them in the channel dimension of feature maps. As
the multiscale features obtained by SPP are expected to
refine the predictions with a small computation cost, the
lightweight module can be integrated into the DASPP
effectively. SPP of the i th refinement block is computed as

where Yi
spp(t)

= (Yi
spp(1)

, ..., Yi
spp(T)

) ∈ RT×D . Moreover, f 1×1 ,
f 5×5 , f 9×9 , and f 13×13 represent pooling operations with the
filters of 1 × 1 , 5 × 5 , 9 × 9 , and 13 × 13 , respectively.

(9)
Yi
spp(t)

= Yi
c(t)

+ Concat(f 1×1(Yi
c(t)

);f 5×5(Yi
c(t)

);f 9×9(Yi
c(t)

);f 13×13(Yi
c(t)

)),

SAM. It is acknowledged that common untrimmed video
samples last for 2–3 min, and the samples are downsam-
pled at a rate of 15 or 30 per second, which is difficult to
distinguish the most worthy information across the frames.
Under limited computing resources, it is necessary to
allocate resources for the most informative part of frames
in a video. Apart from CAM, which assigns appropriate
weights according to the importance of the channels, SAM
focuses on identifying different classifications of adjacent
action segments and combining features along the chan-
nel axis.

As shown in the right of Fig. 4, SAM first compresses
the dimension of input features from T × D to T × 1
through average-pooling and maximum-pooling opera-
tions. The corresponding feature descriptors Yi

s−avg(t)
 and

Yi
s−max(t)

 are processed by a 3 × 3 convolutional layer to
squeeze multichannel features into a single channel, gen-
erating a spatial attention map Ms:

where f 3×3 denotes a convolution operation with a filter size
of 3 × 3 . The relations among adjacent frames are captured
by Eq. (10) to represent the information importance in each
frame. Then, we multiply the spatial attention map Ms with
the intermediate features Yi

spp(t)
 to generate spatial features

Yi
s(t)

= (Yi
s(1)

, ...Yi
s(T)

) ∈ RT×D . The SAM process of the i th
refinement block is

(10)
Ms(Y

i
spp(t)

) = Sigmoid(f 3×3(Concat(Yi
s−avg(t)

;Yi
s−max(t)

))),

Fig. 4   Dual-attention spatial pyramid pooling network (DASPP) contains five refinement blocks. Each refinement block includes a channel
attention module (CAM), a spatial pyramid pooling module (SPP), a spatial attention module (SAM), and several dilated 1D convolutions

1382	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

where ⊗ denotes an element-wise product.

3.3 � Joint loss

To train TSRN, we use the loss function as in Farha and Gall
[11], which comprises the cross-entropy loss Lcls and the regu-
larization loss Lreg for classifying and smoothing each frame.
In addition, the proposed focal loss Lfocal solves the imbal-
anced frequency among action classes during training. In
Fig. 5, we have illustrated the calculated number of instances
per action class for the three datasets, and the results indicate a
significant class imbalance. If there are no reasoning weighting
restrictions, an imbalance training may cause over-segmenta-
tion errors. Moreover, the auxiliary self-supervised loss Lself
(including Lex and Lcorr[16]) enhances temporal reasoning by
exchanging frames in pairs and strengthens the connection
between short- and long-term timescales. Thus, it identifies
exchanged frames and predicts the correct action labels at their
corresponding instances.

3.3.1 � Classification loss

We adopt the cross-entropy loss Lcls to determine the proximity
between the prediction and ground truth:

(11)Yi
s(t)

= Yi
spp(t)

⊗Ms(Y
i
spp(t)

),

(12)Lcls =
1

T

∑

t

∑

c

−Y
i(gt)
t,c log(Yi

t,c
) =

1

T

∑

t

− log(Yi
t,c
),

where Yi
t,c

 is the predicted probability for the target label c at
time t of the i th block in our TSRN, and Yi(gt)

t,c is the ground-
truth label corresponding to Yi

t,c
.

3.3.2 � Regularization loss

While the classification loss treats each frame independently,
it might cause over-segmentation errors. To encourage smooth
transitions between frames, we use the truncated mean squared
error proposed in [11] as the regularization loss:

where T is the length of the video, C is the number of action
classes, and � denotes the hyperparameter sets to 0.15.

3.3.3 � Focal loss

In multi-class classification, a balanced dataset has target
labels that are evenly distributed. In real scenarios, datasets
usually have an imbalanced distribution of action instances,
which may cause two problems: (1) Most instances are
defined as well-classified samples that contribute no mean-
ingful training information. (2) The well-classified samples
might overwhelm the training and lead to model degrada-
tion. The frequency of different action segments varies for
each action class, which results in imbalanced weightings
during training. Thus, we impose the focal loss [38] to
down-weight the well-classified samples such that their con-
tribution to the joint loss is small, even though the amount
of their samples is large, and focuses on the hard-to-classify
samples. The focal loss function is defined as follows:

(13)Lreg =
�

TC

∑

c

∑

t

(Yi
t−1,c

− Yi
t,c
)
2
,

Fig. 5   Distribution of action classes for the 50Salads, GTEA, and Breakfast datasets

1383Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

where � is the weighting factor for balancing the weights
of all action classes, and (1 − Yi

t,c
)� is the modulating factor

with the focusing parameter � , which focuses on hard-to-
classify samples during training by reducing the weights of
the well-classified samples among different action segments.

3.3.4 � Auxiliary self‑supervised loss

Due to the inherent temporal information of videos that can
be used as supervision signals for self-supervised auxiliary
tasks, we follow [16] that simulated over-segmentation
errors in the temporal action segmentation results to bolster
the temporal relations among action segments.

We select 20% of frames in pairs from the input video
sequence X1∶T and exchange them into the wrong tempo-
ral order Xex

1∶T
 . The output corresponds to Xex

1∶T
 contain-

ing action likelihoods Yi(ex)

1∶T
∈ RT×C and exchanged likeli-

hoods ei(ex)
1∶T

∈ RT×2 . Besides, binary self-supervised signals
p1∶T = (p1, ..., pT) are designed to label the frames, where
pt = {0, 1}2 is the one-hot vector representing whether
the i th frame is exchanged. Based on the temporal order
information obtaining an absolute dominance for simulat-
ing over-segmentation errors, the original video sequence’s
ground-truth label Y (gt)

1∶T
∈ {0, 1}C and auxiliary self-super-

vised signals are used as training labels for the auxiliary
self-supervised loss. The auxiliary self-supervised loss is

The output of our network is frame-wise action predic-
tions. Therefore, the final loss function to train the TSRN is
the combination of the four losses

(14)Lfocal = −�(1 − Yi
t,c
)� log(Yi

t,c
),

(15)Lself = Lex(e
i(ex)

1∶T
, p) + Lcorr(Y

i(ex)

1∶T
, Y

(gt)

1∶T
),

(16)L =
∑

i

Lcls + Lreg + Lfocal + Lself,

where i is the number of the blocks in TSRN ( i = 6 and
includes one prediction block and five refinement blocks.)

3.4 � Experimental setup

The TSRN consists of two stages: 1) a prediction block and
2) five refinement blocks. We use 64 convolutional filters
(128 for the GTEA dataset) for all blocks, and the kernel
size is 3. Because the GTEA dataset contains the fewest
action classes and videos of the datasets listed in Table 1,
more features are required to classify the frames of action
segments during model training. For the transformer TCN,
we set the number of dilated residual layers to 11 ( K = 11 ).
For the DASPP, we set the number of layers to 10 ( L = 10 ).
In addition, in focal loss Lfocal , we keep � = 2 for all data-
sets, � = 0.15 for the 50Salads and Breakfast datasets, and
� = 0.25 for the GTEA dataset. We train the model for 100
epochs in all experiments using Adam optimization with a
learning rate of 0.0005 and a batch size of one [11, 13, 14].
During network training, action segmentation results from
the transformer TCN are predictions refined by the DASPP.
Our implementations are based on the PyTorch library and
implemented on a computer equipped with an NVIDIA
TESLA V100 graphics processor.

4 � Experiments

In this section, we describe the datasets and evaluation met-
rics. Then, we report the ablation studies and their results.
Finally, we compare the proposed TSRN with the state-of-
the-art temporal action segmentation methods and provide
qualitative results.

4.1 � Datasets and metrics

Datasets We evaluate our TSRN on three challenging data-
sets: 50Salads [17], GTEA [18], and Breakfast [19]. Table 1
shows the details of the three challenging datasets. The
50Salads dataset contains over four hours of annotated accel-
erometer data and 50 RGB-D videos and captures 25 actors
preparing to mix two different salads. On average, each
video consists of 20 action categories and keeps 6.4 min.
For evaluation, we use five-fold cross-validation and count
the average value as the final results. The GTEA dataset con-
tains 28 egocentric videos and seven daily activities, such
as taking, pouring, and opening, each performed by four
different subjects. We follow four-fold cross-validation as
prior works. The Breakfast dataset is the largest dataset with
1712 videos, which comprises 48 different action classes
related to breakfast preparation, performed by 52 different
individuals in 18 different kitchens, and each video has six

Table 1   Details of the datasets used in this study. #classes and
#videos are the number of action classes and videos, respectively.
#instances/video is the average number of action classes of each
video

classes # videos #
instances/
video

cross-
valida-
tion

Description

50Salads 17 50 20 5 Prepare for
salads

GTEA 11 28 20 4 Daily activities
Breakfast 48 1712 6 4 Making break-

fast

1384	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

action categories on average. We follow [19] for the evalua-
tion, suggesting the standard four-split cross-validation.

For the three datasets, we follow [10–12, 14, 16, 23, 26]
that extracted I3D [42] features for the video sequences and
use these features as the input to our model in all experi-
ments. For each frame, the feature is obtained by concatenat-
ing the RGB and flow streams, which means the dimensions
of the pre-extracted feature sequences are T × 2048.

Metrics. We report the three metrics employed in [11] for
the above datasets, namely, frame-wise accuracy (Acc), seg-
mental edit distance (Edit) [41], and F1 score at the IOU
thresholds 10%, 25%, and 50%, denoted as F1@{10, 25, 50}

[10]. While Acc is the most prevalent metric in deep learn-
ing, it is oblivious to the continuity of action segments in the
video sequence, which brings about over-segmentation
errors in the action segmentation. In addition, large action
duration variance in the datasets has an important influence
on Acc, making this metric unsuitable for measuring the
qualitative differences among long action segments. Hence,
Edit is used to calculate the Levenshtein distance [41]
between predictions and ground-truth labels to address this
limitation. Meanwhile, the F1 score with the overlapping
threshold k% ( F1@k ) is defined as F1 =

2×Precision×Recall

Precision+Recall
 to

evaluate the quality of the predictions as proposed by [10],
where precision and recall are computed for the true posi-
tives, false positives, and false negatives summed over all
action classes. Similarly, the F1 score also penalizes over-
segmentation errors and disregards temporal shifts between

the predictions and ground truth in the temporal action seg-
mentation task.

4.2 � Evaluation of the two‑stage architecture

This subsection adds the transformer TCN and DASPP for
the prediction and refinement in our two-stage architec-
ture. Table 2 shows that this architecture outperforms the
one-stage variants by 24.6% in the F1 score, 25.2% in the
segmental edit distance, and 5.7% in the frame-wise accu-
racy. This highlights the gains of the transformer TCN and
DASPP. To determine the impact of utilizing the transformer
TCN and DASPP in all stages, we also trained the TSRN
with the transformer TCN and DASPP in the two stages.
As shown in Table 2, the substantial improvement of TSRN
with a two-stage architecture indicates that extracting and
moving the refinement part so that it comes after the initial
prediction part is critical for the design. While the temporal
relations are modeled to access the global features by the
transformer TCN, the refinement blocks in the second stage
focus on fusing the global and local features using DASPP.
Regardless of whether the transformer TCN and DASPP are
used in a one-stage architecture, the evaluation metrics drop
substantially because of overfitting during training.

Figure 6 shows the qualitative results among several
architectures with different color codes. The given video
is obtained from the 50Salads dataset, which depicts fine-
grained actions of making salads. The segmentation results
show the one-stage architecture with the transformer TCN or
DASPP wrongly classifies “cut_tomato” as “place_tomato_
into_bowl,” “cut_lettuce” as “cut_cucumber,” “place_
cucumber_into_bowl,” and “cut_tomato.” Our two-stage
TSRN indicates that the model can infer activities around
neighboring action segments in global semantic relation-
ships (e.g., “The process of dealing with lettuce is continu-
ous, which makes it asemantic to predict extra actions, such
as placing tomato into the bowl.”). Moreover, ambiguous
frames near the action boundaries have been alleviated based
on the two-stage TSRN, shown in the black boxes in Fig. 6.
Therefore, our two-stage TSRN mitigates over-segmentation

Table 2   Comparison between one- and two-stage architectures on the
50Salads dataset

The bold values indicate the highest value for each metric (column) in
that table/comparison

F1@{10, 25, 50} Edit Acc

One stage w/ the transformer TCN 61.2 58.9 53.3 54.1 83.4
One stage w/ the DASPP 76.0 73.3 65.2 68.7 78.8
Two-stage TSRN 84.9 83.5 77.3 79.3 84.5

Table 3   Comparison with or without the multi-head self-attention
mechanism on the 50Salads, GTEA, and Breakfast datasets

The bold values indicate the highest value for each metric (column) in
that table/comparison

50Salads F1@{10, 25, 50} Edit Acc

w/o multi-head self-attention 77.3 75.7 67.1 70.2 81.3
w/ multi-head self-attention (ours) 84.9 83.5 77.3 79.3 84.5
GTEA
w/o multi-head self-attention 85.8 84.4 73.8 80.0 78.2
w/ multi-head self-attention (ours) 89.4 87.8 80.1 84.9 80.6
Breakfast
w/o multi-head self-attention 49.4 44.7 34.9 55.8 68.0
w/ multi-head self-attention (ours) 75.4 70.3 56.2 75.0 71.6

Table 4   Performance of the multi-head self-attention mechanism
with different heads and layers on the 50Salads dataset

The bold values indicate the highest value for each metric (column) in
that table/comparison

F1@{10, 25, 50} Edit Acc

one head 83.1 80.1 70.3 76.1 84.0
two heads 84.9 83.5 77.3 79.3 84.5
four heads 82.7 80.4 73.2 75.0 83.0
one layer 80.1 78.3 69.5 75.3 82.0
two layers 81.1 80.2 70.6 75.1 82.1
four layers 84.5 83.4 77.3 79.3 84.5

1385Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

errors in predictions compared with simply stacking the
same subnetworks.

4.3 � Effectiveness of the multi‑head self‑attention
mechanism

To demonstrate the effectiveness of the multi-head self-
attention mechanism in the transformer TCN, we report the
performance of our TSRN and its variants with and with-
out the multi-head self-attention mechanism. As shown in
Table 3, the multi-head self-attention mechanism effectively
improves the quality of action segmentation results. Par-
ticularly, the improvement of the F1 score by up to 26% on
the Breakfast dataset indicates that attaching the multi-head
self-attention mechanism in the transformer encoder block
can capture temporal relations to alleviate over-segmentation
errors. In addition, the numbers of heads and layers in the
transformer encoder block are listed in Table 4.

The multi-head self-attention mechanism helps under-
stand the local information of action segments and infer

actions around neighboring action segments in global
semantic relations. For example, we select a video
sequence from the 50Salads dataset and obtain the atten-
tion matrix from the standard deviation. The horizontal
and vertical axes represent the frames of a video sequence.

Fig. 6   Qualitative results of the temporal action segmentation for
one- and two-stage architectures with different colors. (1) First row:
ground-truth labels corresponding to each video sequence frame. (2)
Second row: one stage with transformer TCN, which regards it as

one basic block and stacks six blocks. (3) Third row: one stage with
DASPP, which regards it as one basic block and stacks six blocks. (4)
Fourth row: our two-stage TSRN includes one prediction block and
five refinement blocks

Fig. 7   Visualization of the
attention matrix for the multi-
head self-attention mechanism

Table 5   Effect of the number of dilated residual layers ( K ) in the
transformer TCN on the results for the 50Salads dataset

The bold values indicate the highest value for each metric (column) in
that table/comparison

F1@{10, 25, 50} Edit Acc

K = 0 72.6 71.1 64.8 66.4 81.4
K = 4 75.6 73.8 68.7 66.6 83.2
K = 6 75.7 73.4 64.2 68.1 81.9
K = 8 80.7 79.0 70.7 73.0 83.9
K = 10 81.3 79.3 72.3 74.1 84.3
K = 11 84.9 83.5 77.3 79.3 84.5
K = 12 82.6 80.3 75.0 75.2 84.1

1386	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

The visualization results in Fig. 7 show that for a query
frame “ + ,” the neighboring areas (red boxes) indicate that
the multi-head self-attention mechanism focuses on the
meaningful locations of adjacent action segments. That
is, actions that are irrelevant to the local semantics (e.g.,
“cut cucumber” and “cut tomato” are incorrect predictions
for the local information of processing lettuce) cannot be
predicted in the consecutive video sequence. Hence, the
multi-head self-attention mechanism effectively models
the temporal relations in each action segment.

To better understand how the transformer TCN con-
stantly receives global features after capturing the tem-
poral relations among local continuous action segments
by utilizing the multi-head self-attention mechanism, we
present the performance of different residual layers after
the transformer encoder block on the 50Salads dataset.
As shown in Table 5, increasing K from 0 to 11 typi-
cally improves the performance, especially for F1 scores
and segmental edit distance. This indicates expanding
the receptive fields after the transformer encoder block
achieves better results because the global features are
obtained gradually, which demonstrates that capturing
long-range dependencies in the transformer TCN plays an
essential role in the first-stage prediction.

4.4 � Effectiveness of the DASPP

In this section, we validate the effectiveness of the DASPP
in our TSRN, which captures multiscale features with large
temporal receptive fields and precisely revises segmentation
boundaries. As presented in Table 6, both the SPP and atten-
tion modules (CAM and SAM) greatly improve the action
segmentation performance. Compared with the variant with-
out any module in the DASPP, the variant with CAM and

SAM brings a 7% improvement in F1@50 , which indicates
that channel attention and spatial attention are essential for
focusing on the local features of action segments. In Fig. 8,
although the action appearances are similar in each action
segment, the CAM and SAM in the DASPP helps the infor-
mation flow within the network by learning which infor-
mation is worth emphasizing (valuable information in the
image is indicated by a red box) or which is inhibiting.

Furthermore, to achieve the fusion of local and global
features from the video sequence, we added three detection
headers built on the top of the three feature maps after the
CAM module in DASPP at different scales for fusing mul-
tiscale features in the input sequence. The results in Table 6
show that the SPP improves the F1 score from 70.1% to
77.3% and the segmental edit distance from 73.8% to 79.3%,
demonstrating that fusing the multiscale features makes it
easier to classify the ambiguous frames of action segments
than using only two attention modules (CAM and SAM). In
Fig. 9, we compare the baseline model with the TSRN to vis-
ualize the effectiveness of DASPP. MS-TCN [11] is based on
dilated temporal convolutional networks that adopt a multi-
stage architecture similar to that of our TSRN (i.e., itera-
tively refining the prediction from the backbone model sev-
eral times to obtain the revised version segmental results),
and it is the baseline model of the TSRN. In contrast to the
TSRN, the MS-TCN [11], which does not contain DASPP,
wrongly recognized “add_vinegar” as “add_oil,” “add_salt”
as “add_oil” and “add_pepper.” Moreover, “place_cucum-
ber_into_bowl” is misidentified as “place_tomato_into_
bowl” and “cut_cheese”. This phenomenon shows that the
DASPP produces more accurate action boundaries and iden-
tifies different adjacent action segments when segmenting
indistinguishable appearance actions.

Table 6   Performance of the
TSRN using DASPP and
variants with and without
channel attention (Channel),
spatial pyramid pooling module
(SPP), and spatial attention
(Spatial)

The bold values indicate the highest value for each metric (column) in that table/comparison

Channel SPP Spatial F1@{10, 25, 50} Edit Acc

 ×   ×   ×  74.5 73.2 63.1 70.2 80.0
√ √  ×  77.7 75.1 66.6 70.5 80.4
 ×  √ √ 80.1 77.1 69.4 72.1 82.7
√  ×  √ 80.6 78.5 70.1 73.8 82.2
√ √ √ 84.9 83.5 77.3 79.3 84.5

Fig. 8   Illustration of how the CAM and SAM in the DASPP focus on the local features of action segments

1387Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

4.5 � Effectiveness of the joint loss

We first make a parameter ablation study of the focal loss
Lfocal in the proposed joint loss function for the subsequent
experiments. In the focal loss, � is used to adjust the rate to
smooth the hard-to-classify samples during training, which
is fixed to 2 for all datasets because of the advanced perfor-
mance. � is a critical parameter (shown in Eq. (14)) to bal-
ance the distribution of well-classified and hard-to-classify
samples. Table 7 shows the performance in the focal loss
Lfocal of different � values on the 50Salads and GTEA data-
sets. From Table 7, we observe that the best weighting factor
is � = 0.15 for the 50Salads dataset, which denotes the pro-
portion of hard-to-classify samples estimated at 85%. This
forces the model to focus on hard-to-classify frames dur-
ing training, alleviating the ambiguity of identifying action
boundaries. The sample distributions of different datasets
are different, so we need to select suitable � values for vari-
ous datasets. Hence, we observe that when � = 0.15 and
� = 0.25 for the Breakfast and GTEA datasets, respectively,
we achieve excellent performance.

To verify the effectiveness of the joint loss function, we
report the performance of TSRN and its variants with and
without focal loss and auxiliary self-supervision signals
while training the two-stage architecture on the 50Salads
and Breakfast datasets. Table 8 compares the performance
of each combination of loss functions. The proposed joint
loss function improves the F1 score by up to 10.9% and the
segmental edit distance by 8.7% on the 50Salads dataset
after incorporating auxiliary self-supervised loss Lself and
focal loss Lfocal . After training with self-supervision sig-
nals on the 50Salads dataset, our TSRN outperforms the

Fig. 9   Confusion matrix results for the test set of the 50Salads dataset. (Left) MS-TCN [11] baseline model without the DASPP. (Right) TSRN
with the DASPP

Table 7   Performance of different � values in the focal loss L
focal

 on
the 50Salads and GTEA datasets

The bold values indicate the highest value for each metric (column) in
that table/comparison

50Salads F1@{10, 25, 50} Edit Acc

� = 0.10 81.2 79.7 73.2 75.4 83.3
� = 0.15 84.9 83.5 77.3 79.3 84.5
� = 0.20 84.3 81.2 74.4 76.1 82.5
GTEA
� = 0.15 86.4 83.9 76.5 79.4 78.8
� = 0.20 88.5 86.4 78.8 81.3 79.2
� = 0.25 89.4 87.8 80.1 84.9 80.6

Table 8   Comparison of the combinations of loss functions on the
50Salads and Breakfast datasets

The bold values indicate the highest value for each metric (column) in
that table/comparison

50Salads F1@{10, 25, 50} Edit Acc

Lfocal + Lself 79.5 77.4 68.2 71.7 83.1
Lcls + Lreg 78.4 75.6 66.6 71.0 80.9
Lcls + Lreg + Lfocal 78.0 75.6 66.4 70.6 80.4
Lcls + Lreg + Lfocal + Lself 84.9 83.5 77.3 79.3 84.5
Breakfast
Lfocal + Lself 30.3 24.5 14.3 32.3 36.5
Lcls + Lreg 59.5 53.8 43.0 63.1 69.8
Lcls + Lreg + Lfocal 75.4 70.3 56.2 75.0 71.6
Lcls + Lreg + Lfocal + Lself 58.4 53.3 42.5 61.5 71.2

1388	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

same network without self-supervision signals by 4% in all
evaluation metrics on the 50Salads dataset, which indicates
the auxiliary self-supervision task is able to improve the
segmental results and reduce over-segmentation errors.
The performance of the model that contains auxiliary self-
supervision loss trained on the Breakfast dataset does not
work effectively because the correct temporal relations in the
video sequence have been severely disrupted. Exchanging
frames in the Breakfast dataset that include the maximum
action classes may exacerbate the burden of classifying the
exchanged frames and the original frames while ignoring
how to correct the exchanged frames. Moreover, our joint
loss leads to a remarkable improvement in the Breakfast
dataset results after a focal loss has been added, i.e., there
is nearly 11% improvement in all metrics, except for frame-
wise accuracy. Note that the performance of the combina-
tion of the cross-entropy and truncated mean squares error
losses is relatively bad because of the noises during training,
while focal loss is effective in balancing the frequency of dif-
ferent action classes and smoothing the transition of action
probabilities.

The qualitative comparison in Fig. 10 shows that the aux-
iliary self-supervision task is essential for boosting tempo-
ral relations and revising the labels of incorrectly labeled

action segments, reducing over-segmentation errors at the
boundaries of action segments. Moreover, focal loss plays
an indispensable role in balancing the frequency of each
action class, which shows the potential for enhancing the
generalizability of the model.

4.6 � Effectiveness of the number of refinement
blocks

To illustrate the effectiveness of stacking several refinement
blocks over the second stage in the TSRN, we compare the
segmental results from the different refinement blocks. To
declare that the improvement of our model is due to the
design choice instead of simply raising the model’s capacity,
we compare the proposed TSRN with its variants by the fol-
lowing evaluation metrics: F1 score, segmental edit distance,
frame-wise accuracy, floating-point operations per second
(FLOPs), and parameters (Params) in Table 9.

Table 9 tabulates the performance of different numbers
of refinement blocks on the 50Salads dataset. The results
show that increasing the number of refinement blocks from
3 to 5 significantly improves the performance due to the
expansion of receptive fields. However, the performance
starts to diminish by adding the 6th refinement block,

Fig. 10   Qualitative comparison
of action segmentation results. a
Comparison of TSRN with and
without auxiliary self-super-
vision loss on the 50Salads
dataset. b Comparison of TSRN
trained with and without focal
loss on the Breakfast dataset

Table 9   Comparison of the numbers of refinement blocks on the 50Salads dataset. The floating-point operations per second (FLOPs) are one
random video sequence with 4000 frames. Params and FLOPs are calculated on a single Tesla V100 GPU with batch size = 1

The bold values indicate the highest value for each metric (column) in that table/comparison

F1@{10, 25, 50} Edit Acc Params (M) FLOPs (G)

TSRN (3 refinement blocks) 80.9 79.0 71.7 73.7 85.0 0.95 4.88
TSRN (4 refinement blocks) 82.9 79.5 73.6 76.1 85.1 1.13 5.71
TSRN (5 refinement blocks) 84.3 83.5 76.7 78.3 85.4 1.31 6.27
TSRN (6 refinement blocks) 82.5 80.6 72.6 74.7 84.7 1.49 6.96

1389Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

Ta
bl

e 
10

  
Pe

rfo
rm

an
ce

 o
f t

he
 T

SR
N

 a
nd

 st
at

e-
of

-th
e-

ar
t m

et
ho

ds
 o

n
th

e
50

Sa
la

ds
, G

TE
A

, a
nd

 B
re

ak
fa

st
da

ta
se

ts

Th
e

bo
ld

 v
al

ue
s i

nd
ic

at
e

th
e

hi
gh

es
t v

al
ue

 fo
r e

ac
h

m
et

ric
 (c

ol
um

n)
 in

 th
at

 ta
bl

e/
co

m
pa

ris
on

M
et

ho
ds

50
Sa

la
ds

G
TE

A
B

re
ak

fa
st

F
1
@
{
1
0
,
2
5
,
5
0
}

Ed
it

A
cc

F
1
@
{
1
0
,
2
5
,
5
0
}

Ed
it

A
cc

F
1
@
{
1
0
,
2
5
,
5
0
}

Ed
it

A
cc

ST
-C

N
N

 [4
8]

55
.9

49
.6

37
.1

45
.9

59
.4

58
.7

54
.4

41
.9

49
.1

60
.6

–
–

–
–

–
B

i-L
ST

M
 [9

]
62

.8
58

.3
47

.0
55

.6
55

.7
66

.5
59

.0
43

.6
–

55
.5

–
–

–
–

–
ED

-T
C

N
 [1

0]
68

.0
63

.9
52

.6
59

.8
64

.7
72

.2
69

.3
56

.0
–

64
.7

–
–

–
–

43
.3

Tr
ic

or
N

et
 [5

]
70

.1
67

.2
56

.6
62

.8
67

.5
72

.2
76

.0
71

.1
59

.2
64

.8
–

–
–

–
–

TR
N

 [2
1]

70
.2

65
.4

56
.3

63
.7

66
.9

67
.1

63
.7

51
.9

60
.3

59
.9

–
–

–
–

–
TD

R
N

 [2
1]

72
.9

68
.5

57
.2

66
.0

68
.1

79
.2

74
.4

62
.7

74
.1

70
.1

–
–

–
–

–
LC

D
C

 [5
0]

73
.8

–
–

66
.9

72
.1

75
.4

–
–

72
.8

65
.3

–
–

–
–

65
.3

H
ua

ng
 e

t a
l.

[2
4]

75
.4

72
.8

63
.9

67
.5

82
.6

–
–

–
–

–
57

.5
54

.0
43

.3
58

.7
65

.0

Zh
an

g
et

 a
l.

[2
2]

78
.4

75
.8

66
.7

71
.0

80
.6

86
.7

84
.3

72
.7

77
.2

82
.3

–
–

–
–

–

R
PG

au
ss

ia
n

[4
9]

78
.3

75
.0

66
.4

72
.3

80
.1

88
.3

86
.8

74
.6

84
.0

78
.5

62
.0

56
.0

43
.7

63
.5

64
.2

M
S-

TC
N

 [1
1]

76
.3

74
.0

64
.5

67
.9

80
.7

86
.8

83
.4

69
.8

79
.0

76
.3

52
.6

48
.1

37
.9

61
.7

66
.3

M
S- TC

N
 +

  +
 [1

4]
80

.7
78

.5
70

.1
74

.3
83

.7
88

.8
85

.7
76

.0
83

.5
80

.1
64

.1
58

.6
45

.9
65

.6
67

.6

G
2L

 [2
6]

80
.3

78
.0

69
.8

73
.4

82
.2

89
.9

87
.3

75
.8

84
.6

78
.5

76
.3

69
.9

54
.6

74
.5

70
.8

D
TG

R
M

 [1
6]

79
.1

75
.9

66
.1

72
.0

80
.0

87
.8

86
.6

72
.9

83
.0

77
.6

68
.7

61
.9

46
.4

68
.9

68
.3

G
-F

R
N

et
 [2

3]
78

.0
76

.2
67

.0
71

.4
80

.7
89

.1
85

.7
72

.8
83

.5
76

.7
71

.1
65

.7
53

.6
70

.6
67

.7
B

C
N

 [1
2]

82
.3

81
.3

74
.0

74
.3

84
.4

88
.5

87
.1

77
.3

84
.4

79
.8

68
.7

65
.5

55
.0

66
.2

70
.4

TS
R

N
83

.4
83

.5
76

.7
78

.3
85

.4
89

.4
87

.8
80

.1
84

.9
80

.6
75

.4
70

.3
56

.2
75

.0
71

.6

1390	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

caused by over-fitting during the training process. Besides,
as the number of blocks grows, the computational burden
also becomes onerous, which is reflected in the FLOPs and
Params evaluation metrics. To balance the model perfor-
mance and the computational power, 5 refinement blocks
are selected in TSRN for all experiments. Our TSRN has
1.31 million parameters and requires 6.27 GB FLOPs, and
its computational burden is affordable considering the avail-
able hardware.

4.7 � Comparison with state‑of‑the‑art methods
and results

We compare our proposed TSRN with state-of-the-art
methods on the 50Salads, GTEA, and Breakfast datasets.
Table 10 shows that the proposed TSRN is exceptional to
the state-of-the-art methods with a competitive F1 score and
segmental edit distance, particularly with a large margin of
up to 22.8% for the F1 score and 10.4% for the segmental

edit distance when compared with the baseline model [11].
Moreover, it is worth noting that our framework also exceeds
the existing methods on the 50Salads dataset for all evalua-
tion metrics. The F1 score and segmental edit distance are
fundamental metrics that evaluate the accuracy of segmenta-
tion. The F1@10 performances of TSRN and the temporal
convolutional encoder-decoder with bilinear pooling opera-
tion [22, 49] are similar on the GTEA dataset. However,
TSRN increases by 7.4% in terms of F1@50 because our
network is suitable for identifying actions that largely over-
lap with ground truth segments.

We crucially compare TSRN with the following seven
methods that adopt a similar multi-stage architecture as
TSRN: MS-TCN [11], MS-TCN +  + [14], Huang, et al.
[24], DTGRM [16], G2L [26], G-FRNet [23], and BCN
[12]. MS-TCN +  + [14] is an extended version of the base-
line model MS-TCN [11], and it uses the same backbone
model and parameters as [11]. The methods of DTGRM [16]
and Huang et al. [24] are built on top of [11] and refine the
original results using graph convolutional networks, which

Fig. 11   Qualitative results for
the temporal action segmenta-
tion task from the representative
samples on the a 50Salads, b
GTEA, and c Breakfast datasets
obtained from the baseline
method without a two-stage
refinement (MS-TCN [11]),
one-stage architecture before
the refinement process, pro-
posed two-stage TSRN and GT
(ground truth)

1391Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

are related to our TSRN as they model relations among
action segments in a similar manner. G-FRNet [23] forces
the refinement process to correct the errors in the previ-
ous segmental results. G2L [26] is a proposed global-to-
local scheme that is akin to TSRN, which captures long-
and short-term features in a hierarchical structure. Table 10
reveals that TSRN substantially outperforms MS-TCN [11]
and MS-TCN +  + [14] in significant improvements on all
datasets, indicating the necessity of temporal reasoning
in temporal convolutional networks. As for the Breakfast
dataset, our TSRN outperforms DTGRM [16] and Huang
et al. [24] with a large margin, i.e., 6%-17% increases in
F1 score and segmental edit distance, which demonstrates
that TSRN not only models the temporal relations but also
refines ambiguous action boundaries in temporal action seg-
mentation. Even though the performances of BCN [12] and
G2L [26] are close to that of TSRN, the notable improve-
ment in segmental edit distance reveals that TSRN penalizes
over-segmentation errors, whereas these two methods still
have a large room for improvement.

It should be mentioned that the above seven methods
based on dilated TCNs have impressive research value for
action segmentation. However, TSRN further overcomes
the limitations by gradually developing the global and local
features in a two-stage strategy. Although the accuracy
of TSRN is more competitive than that of the-state-of-art
models, the results of our TSRN on the GTEA and Break-
fast datasets are potentially not optimal. This is because the
number of action instances in each video in GTEA is more
than those in other datasets, and the number of videos in
Breakfast is the maximum of all datasets, resulting in the
arduous task of predicting fine-grained actions with strong
reasoning abilities. Our TSRN is based on the architecture
of dilated TCNs that makes the improvements of frame-
wise temporal reasoning, while it does not consider over-
segmentation errors and the ambiguous boundary problem in
instance-wise action predictions in long videos. i.e., current
works have not paid attention to increasing the accuracy of
predicted action instances. In future research, we will inves-
tigate more effective methods to model instance-wise tempo-
ral relations and enhance the training process with an aug-
mentation strategy to promote the robustness of our model.

The qualitative results for the representative examples
of temporal action segmentation are shown in Fig. 11.
Predictions without two-stage architecture or one stage
before the refinement process appear as ambiguous frames
in action boundaries. Over-segmentation errors occurred
in the predictions due to lacking semantic connections,
resulting in incorrect short intervals in a continuous video
sequence. In contrast, the TSRN mitigates these problems
through its two-stage architecture (Fig. 11a, b, and c).
Compared with MS-TCN [11] and one-stage architecture
before the refinement process, the action boundary of the

video sequence predicted by our two-stage TSRN is more
precise and closer to the ground-truth labels. At the same
time, for actions unrelated to global semantics, TSRN can
identify and revise them into the correct labels (e.g., the
color-coding in the black of Fig. 11c indicates the actions
are unrelated to the entire video).

Despite the significant progress of the TSRN, some
actions may be confusing because of the incredibly high
similar motion appearance of the images. As can be seen
in Fig. 9 Right, it is difficult to distinguish “add_salt” and
“add_pepper” in the process of making salads, which leads
us to pay more attention to identifying similar actions in
a video.

5 � Conclusion

We present the TSRN for the temporal action segmentation
task, consisting of two stages: transformer TCN for focus-
ing on the semantic association among the action segments
and gradually receiving global features and DASPP for
fusing multiscale features to alleviate over-segmentation
errors. In addition, we introduce a joint loss that further
refines the predictions. The TSRN outperforms state-of-
the-art methods on three challenging datasets. The results
imply that the performance of the TSRN achieves better
than simply stacking more convolutional networks. To per-
fect our work, we will find a practical method to classify
similar actions in a continuous video sequence. We hope
this work could promote the development of action under-
standing and provide the mentality for potential applica-
tions, such as action parsing and action reasoning.

Acknowledgements  This work was supported in part by the National
Natural Science Foundation of China (Grant Number: 51935005), Basic
Scientific Research Project (Grant Number: JCKY20200603C010),
Natural Science Foundation of Heilongjiang Province of China (Grant
Number: LH2021F023), and Science & Technology Planned Project of
Heilongjiang Province of China (Grant Number: GA21C031)

Declarations 

Competing Interests  The authors declare that they have no known
competing financial interests or personal relationships that have influ-
enced the work reported in this manuscript.

Data availability  All data included in this study are available upon
request by contact with the corresponding author.

References

	 1.	 Febin IP, Jayasree K, Joy PT (2020) Violence detection in videos
for an intelligent surveillance system using MoBSIFT and move-
ment filtering algorithm. Pattern Anal Appl 23(2):611–623

1392	 Pattern Analysis and Applications (2023) 26:1375–1393

1 3

	 2.	 Pan Z, Liu S, Sangaiah AK, Muhammad K (2018) Visual attention
feature (VAF): a novel strategy for visual tracking based on cloud
platform in intelligent surveillance systems. J Parallel Distr Com
120:182–194

	 3.	 Stenum J, Rossi C, Roemmich RT (2021) Two-dimensional video-
based analysis of human gait using pose estimation. Plos Comput
Biol 17(4):e1008935

	 4.	 Feichtenhofer C, Pinz A, Wildes RP (2017) Spatiotemporal mul-
tiplier networks for video action recognition. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition (CVPR), IEEE, pp 4768–4777

	 5.	 Ding L, Xu C (2017) Tricornet: A hybrid temporal convolu-
tional and recurrent network for video action segmentation.
arXiv preprint arXiv:​1705.​07818

	 6.	 Lin J, Gan C, Han S (2019) Tsm: Temporal shift module for
efficient video understanding. In: Proceedings of the IEEE/CVF
international conference on computer vision (ICCV), IEEE, pp
7083–7093

	 7.	 Simonyan K, Zisserman A (2014) Two-stream convolutional
networks for action recognition in videos. arXiv preprint arXiv:​
1406.​2199

	 8.	 Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015)
Learning spatiotemporal features with 3d convolutional net-
works. In: Proceedings of the IEEE international conference
on computer vision (ICCV), IEEE, pp 4489–4497

	 9.	 Singh B, Marks TK, Jones M, Tuzel O, Shao M (2016) A multi-
stream bi-directional recurrent neural network for fine-grained
action detection. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (CVPR), IEEE, pp
1961–1970

	10.	 Lea C, Flynn MD, Vidal R, Reiter A, Hager GD (2017) Tempo-
ral convolutional networks for action segmentation and detec-
tion. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (CVPR), IEEE, pp 156–165

	11.	 Farha YA, Gall J (2019) Ms-tcn: Multi-stage temporal convolu-
tional network for action segmentation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion (CVPR), IEEE, pp 3575–3584

	12.	 Wang Z, Gao Z, Wang L, Li Z, Wu G (2020) Boundary-aware
cascade networks for temporal action segmentation. In: Pro-
ceedings of the European conference on computer vision
(ECCV), Springer, pp 34–51

	13.	 Ishikawa Y, Kasai S, Aoki Y, Kataoka H (2021) Alleviating
over-segmentation errors by detecting action boundaries. In:
Proceedings of the IEEE/CVF winter conference on applications
of computer vision (WACV), IEEE, pp 2322–2331

	14.	 Li SJ, Abufarha Y, Liu Y, Cheng MM, Gall J (2020) Ms-tcn++:
Multi-stage temporal convolutional network for action seg-
mentation. IEEE Trans Pattern Anal. https://​doi.​org/​10.​1109/​
TPAMI.​2020.​30217​56

	15.	 Chen MH, Li B, Bao Y, Alregib G, Kira Z (2020) Action seg-
mentation with joint self-supervised temporal domain adapta-
tion. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (CVPR), IEEE, pp 9454–9463

	16.	 Wang D, Hu D, Li X, Dou D (2021) Temporal Relational
Modeling with Self-Supervision for Action Segmentation. In:
Proceedings of the aaai conference on artificial intelligence
(AAAI). 35(4), pp 2729–2737

	17.	 Stein S, Mckenna SJ (2013) Combining embedded accelerom-
eters with computer vision for recognizing food preparation
activities. In: Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing, pp 729–738

	18.	 Fathi A, Ren X, Rehg JM (2011) Learning to recognize objects
in egocentric activities. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition (CVPR),
IEEE, pp 3281–3288

	19.	 Kuehne H, Arslan A, Serre T (2014) The language of actions:
Recovering the syntax and semantics of goal-directed human
activities. In: Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition (CVPR), IEEE, pp 780–787

	20.	 Oord AVD, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves
A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet:
A generative model for raw audio. arXiv preprint arXiv:​1609.​
03499.

	21.	 Lei P, Todorovic S (2018) Temporal deformable residual net-
works for action segmentation in videos. In: Proceedings of the
IEEE/CVF Conference on computer vision and pattern recogni-
tion (CVPR), IEEE, pp 6742–6751

	22.	 Zhang Y, Tang S, Muandet K, Jarvers C, Neumann H (2019)
Local temporal bilinear pooling for fine-grained action pars-
ing. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (CVPR), IEEE, pp 12005–12015

	23.	 Wang D, Yuan Y, Wang Q (2020) Gated forward refinement
network for action segmentation. Neurocomputing 407:63–71

	24.	 Huang Y, Sugano Y, Sato Y (2020) Improving action segmenta-
tion via graph-based temporal reasoning. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion (CVPR), IEEE, pp 14024–14034

	25.	 Chen MH, Li B, Bao Y, Alregib G (2020) Action segmenta-
tion with mixed temporal domain adaptation. In: Proceedings of
the IEEE/CVF Winter conference on applications of computer
vision (WACV), IEEE, pp 605–614

	26.	 Gao SH, Han Q, Li ZY, Peng P, Wang L, Cheng MM (2021)
Global2local: Efficient structure search for video action seg-
mentation. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (CVPR), IEEE, pp
16805–16814

	27.	 Kitaev N, Cao S, Klein D (2018) Multilingual constituency pars-
ing with self-attention and pre-training. arXiv preprint arXiv:​
1812.​11760.

	28.	 Cheng X, Qiu G, Jiang Y, Zhu Z (2021) An improved small
object detection method based on Yolo V3. Pattern Anal Appl
24(3):1347–1355

	29.	 Kuehne H, Gall J, Serre T (2016) An end-to-end generative frame-
work for video segmentation and recognition. In: Processing of
the IEEE/CVF Winter conference on applications of computer
vision (WACV), IEEE, pp 1–8

	30.	 Arnab A, Dehghani M, Heigold G, Sun C, Lucic M, Schmid C
(2021) Vivit: A video vision transformer. In: Proceedings of the
IEEE/CVF International conference on computer Vision (ICCV),
IEEE, pp 6836–6846

	31.	 Zheng S, Lu J, Zhao H, Zhu X, Luo Z, Wang Y, Fu Y, Feng
J, Xiang T, Torr PHS (2021) Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In:
Proceedings of the IEEE/CVF Conference on computer vision and
pattern recognition (CVPR), IEEE, pp 6881–6890

	32.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Adv
Neural Inf Process Syst 30:5998–6008

	33.	 He L, Wen S, Wang L, Li F (2021) Vehicle theft recognition from
surveillance video based on spatiotemporal attention. Appl Intell
51(4):2128–2143

	34.	 Wang J, Xiong H, Wang H, Nian X (2020) ADSCNet: asymmet-
ric depthwise separable convolution for semantic segmentation in
real-time. Appl Intell 50(4):1045–1056

	35.	 Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), IEEE, pp 7132–7141

	36.	 Woo S, Park J, Lee JY, Kweon IS (2018) Cbam: Convolutional
block attention module. In: Proceedings of the European confer-
ence on computer vision (ECCV), Springer, pp 3–19

http://arxiv.org/abs/1705.07818
http://arxiv.org/abs/1406.2199
http://arxiv.org/abs/1406.2199
https://doi.org/10.1109/TPAMI.2020.3021756
https://doi.org/10.1109/TPAMI.2020.3021756
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1812.11760
http://arxiv.org/abs/1812.11760

1393Pattern Analysis and Applications (2023) 26:1375–1393	

1 3

	37.	 Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S
(2017) Feature pyramid networks for object detection. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), IEEE, pp 2117–2125

	38.	 Lin TY, Goyal P, Girshick R, He K, Dollar P (2017) Focal loss for
dense object detection. In: Proceedings of the IEEE international
conference on computer vision (ICCV), IEEE, pp 2980–2988

	39.	 He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in
deep convolutional networks for visual recognition. IEEE Trans
Pattern Anal Mach Intell 37(9):1904–1916

	40.	 Tang K, Li FF, Koller D (2012) Learning latent temporal structure
for complex event detection. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (CVPR), IEEE,
pp 1250–1257

	41.	 Levenshtein VI (1966) Binary codes capable of correcting
deletions, insertions, and reversals. Soviet physics doklady
10(8):707–710

	42.	 Carreira J, Zisserman A (2017) Quo vadis, action recognition? a
new model and the kinetics dataset. In: Proceedings of the IEEE
Conference on computer vision and pattern recognition (CVPR),
IEEE, pp 6299–6308

	43.	 Donahue J, Anne Hendricks L, Guadarrama S et al (2015) Long-
term recurrent convolutional networks for visual recognition and
description. In: Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), IEEE, pp 2625–2634

	44.	 Vinyals O, Toshev A, Bengio S et al (2015) Show and tell: A neu-
ral image caption generator. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (CVPR), IEEE,
pp 3156–3164

	45.	 Tao L, Zappella L, Hager GD et al (2013) Surgical gesture seg-
mentation and recognition. In: 2013 International conference on
medical image computing and computer-assisted intervention
(MICCAI), Springer, pp 339–346

	46.	 Rohrbach M, Amin S, Andriluka M et al (2012) A database for
fine grained activity detection of cooking activities. In: Proceed-
ings of the IEEE conference on computer vision and pattern rec-
ognition (CVPR), IEEE, pp 1194–1201

	47.	 Cheng Y, Fan Q, Pankanti S et al (2014) Temporal sequence
modeling for video event detection. In: Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR),
IEEE, pp 2227–2234

	48.	 Lea C, Reiter A, Vidal R, et al (2016) Segmental spatiotemporal
cnns for fine-grained action segmentation. In: Proceedings of the
European Conference on Computer Vision (ECCV), Springer, pp
36–52

	49.	 Zhang Y, Muandet K, Ma Q (2019) Frontal low-rank random ten-
sors for fine-grained action segmentation. arXiv preprint arXiv:​
1906.​01004.

	50.	 Mac KNC, Joshi D, Yeh RA, Xiong J, Feris RS, Do MN (2019)
Learning motion in feature space: locally-consistent deformable
convolution networks for fine-grained action detection. In: Pro-
ceedings of the IEEE/CVF International conference on computer
vision (ICCV), IEEE, pp 6282–6291

	51.	 Richard A, Kuehne H, Gall J (2017) Weakly supervised action
learning with rnn based fine-to-coarse modeling. In: Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion (CVPR), IEEE, pp 754–763

	52.	 Li Z, Sun Y, Zhang L et al (2021) CTNet: context-based tandem
network for semantic segmentation. IEEE Trans Pattern Anal
Mach Intell 44(12):9904–9917

	53.	 Zhou H, Li Z, Ning C, et al (2017) Cad: Scale invariant framework
for real-time object detection. In: Proceedings of the IEEE inter-
national conference on computer vision workshops, pp 760–768

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1906.01004
http://arxiv.org/abs/1906.01004

	TSRN: two-stage refinement network for temporal action segmentation
	Abstract
	1 Introduction
	2 Related work
	2.1 Action segmentation
	2.2 Transformer
	2.3 Attention mechanism

	3 Approach
	3.1 Transformer TCN
	3.2 DASPP
	3.3 Joint loss
	3.3.1 Classification loss
	3.3.2 Regularization loss
	3.3.3 Focal loss
	3.3.4 Auxiliary self-supervised loss

	3.4 Experimental setup

	4 Experiments
	4.1 Datasets and metrics
	4.2 Evaluation of the two-stage architecture
	4.3 Effectiveness of the multi-head self-attention mechanism
	4.4 Effectiveness of the DASPP
	4.5 Effectiveness of the joint loss
	4.6 Effectiveness of the number of refinement blocks
	4.7 Comparison with state-of-the-art methods and results

	5 Conclusion
	Acknowledgements
	References

