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Abstract
Recently, many researchers have proposed deep neural network (DNN) watermarking technologies, DNN watermarking 
approaches can be divided into two categories: static watermarking and dynamic watermarking methods. A static water-
mark is embedded into the internal parameters of a DNN model, but a dynamic watermark relies on the specific training 
data of the DNN model and uses the associated neuron activation map or the output result by the DNN model to extract 
the watermark information. Dynamic watermarks mostly use DNN application programming interfaces(APIs) to remotely 
access DNN models and extract their watermarks to prove their copyright, so dynamic watermarking technology is more 
popular. According to the distribution inconsistency between a dynamic watermark and training data, an attacker can detect 
the dynamic watermark, so that the model owner cannot obtain the desired prediction results and then verify the copyright of 
the suspect model. To this end, we propose a dynamic watermarking approach based on a reversible image hiding network, 
which improved the undetectability of a DNN watermark, and it can perfectly reconstruct the secret image as the copyright 
logo of a DNN model. We perform our work on the MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and Caltech-101 
datasets. The experimental results show that our method has higher DNN watermarking accuracy and higher undetectability 
with no significant side effects on the main functions of the host DNN model.
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1  Introduction

Over the last few years, deep learning (DL) has been proven 
very successful in many different areas, including computer 
vision, speech recognition, natural language processing, and 
other critical fields of artificial intelligence. Many scientific 
and technological companies have deployed deep neural 
network(DNN) models in commercial products to achieve 
improved efficiency. Although these deep convolution neural 
network (DCNN) frameworks, such as LeNet, AlexNet, the 
Visual Geometry Group network(VGGNet), GooLeNet, and 
the residual network(ResNet), have made tasks more easy 
to complete, training a DNN model is still a difficult task 

because it requires large-scale datasets, massive comput-
ing resources and designers’ wisdom. As expensive digital 
assets, various DNN models are easily attacked or stolen. 
Although many researchers have proposed different defense 
methods against DNN attacks, attackers develop powerful 
attack methods. Therefore, how to protect the intellectual 
property rights of DNN models has become an urgent prob-
lem in academic and industrial circles. For multimedia 
information, digital watermarks are embedded in redundant 
multimedia information to protect this information [1–3]. 
Instead of embedding watermarks into multimedia informa-
tion, an ownership watermark is constructed for the model 
owners according to the feature of original images and the 
ownership statement to protect images [4], and the water-
mark key is generated by the interrelationships between 
contents of given Arabic text to protect Arabic text [5]. 
For DNN model, many parameters are contained in a DNN 
model, and the redundant parameters of such a DNN model 
are used to embed a deep model watermark. This approach 
uses the parameters of the neural network to carry the water-
mark; it does not affect the performance of the DNN model 
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due to overfitting, but it requires the watermark extractor to 
know the structure and the parameters of the DNN model. 
In fact, we usually remotely access models through their 
application programming interfaces(APIs). Therefore, many 
researchers have suggested that DNN watermarking tech-
nology does not need to master the internal mechanisms of 
DNN models to extract their watermarks. When the model 
owner finds a suspicious DNN model, he or she inputs the 
specific data into the API and outputs the prediction results 
that can represent the copyright of the DNN model. We call 
these specific data key samples. Normally, the distributions 
of the key samples and the training data are very different. 
An attacker observes the distribution of the input data of the 
DNN model and prevents the DNN model from reasoning 
about the data whose distribution is inconsistent with the 
training data. Inspired by the above observations, to prevent 
attackers from detecting the key samples and avoid copyright 
verification, we suggest inputting the key samples that are 
consistent with the distribution of the DNN model training 
set to perform a copyright check on the associated DNN 
model.

2 � Related work

2.1 � Static watermarking

A static watermark is embedded into the internal param-
eters of the given DNN model. The training process does 
not depend on the specific data of the DNN model [6]. This 
approach is generally divided into two stages: the watermark 
embedding stage and the watermark extraction stage. In 
2017, a digital watermark was first applied to a DNN model 
for copyright protection. Uchida Y et al. [7] proposed an 
algorithm to embed watermark information into the weights 
of a DNN model, and the watermark is embedded in the 
weights during the training process. Because the water-
mark is embedded in the regularizer, their approach does 
not impair the performance of networks and the embedded 
watermark does not disappear after fine-tuning or pruning; 
however, when extracting the watermark, the parameters of 
the model need to be accessed. This limits the applicability 
of this method in business. Wang T et al. [8] proved that 
Uchida Y’s DNN model watermarking technology modifies 
the statistical distribution of the DNN model parameters. A 
change in the parameter distribution can be used not only to 
detect the existence of a depth model watermark but also to 
calculate the length of the DNN model watermark. After an 
attacker obtains the DNN model watermark information, he/
she can design a DNN model watermark removal algorithm, 
and then the watermark information embedded by the model 
owner becomes invalid. Wang T et al. [9, 10] proposed a new 
solution. The training and detection processes for a DNN 

model watermark were designed as a generator and discrimi-
nator, respectively, to generate a countermeasure network. 
Their experiments showed that the weight parameter dis-
tribution of a DNN model hardly changes after embedding 
the watermark information. Different from the DNN model 
watermarking technology proposed by Uchida, Kuribayashi 
et al. [11] first embedded watermark information into the fre-
quency component of the sampling weight of a DNN model 
by using the quantization algorithm called dither modula-
tion-quantization index modulation(DM-QIM), and then dis-
persed the watermark information into the sampling weight 
of the DNN model by using the inverse discrete cosine 
transform(DCT). The key to the method is to ensure that the 
weight distribution change exhibited by the DNN model is 
as small as possible. A static watermark requires the water-
mark extractor to know the structure and the parameters of 
the associated DNN model. Therefore, static watermarks are 
not suitable for commercial applications.

2.2 � Dynamic watermarking

A dynamic watermark depends on the specific training data 
of the given DNN model, the associated neuron activation 
maps, or output results are used to extract the watermark 
information [6]. The dynamic watermark mainly uses the 
DNN backdoor technology. During the training stage, the 
backdoor watermark data is added to the training dataset. 
In our paper, the backdoor watermark data is the key sam-
ple. During the prediction stage, the key sample triggers a 
specific output result. The specific output result is the tar-
get label that we preset for the key sample before training 
the model, The correspondence between key samples and 
target labels is known only to the model owner. Rouhani 
et al. [12] proposed a DNN model watermarking framework, 
deepsigns, which works by learning the activation maps in 
the different layers of a DNN model, DeepSigns is robust in 
terms of fine-tuning, pruning, and watermark overwriting. 
Adi et al. [13] proposed a simple and effective technique for 
watermarking DNNs by backdooring. Zhang et al. [14] also 
proposed three backdoor watermark generation algorithms 
for DNN models. Meaningful content, unrelated content 
and noise are embedded into a DNN model as watermarks 
through the DNN model watermarking framework. Experi-
ments show that these algorithms are robust to parameter 
pruning, fine-tuning and model inversion attacks on DNN 
models. Chen et al. [15] also proposed a DNN model water-
marking framework called Deepmarks, which realizes fin-
gerprint insertion in the weight distribution through DNN 
regularization. If an attacker removes this fingerprint, the 
performance of the DNN model will be affected. This 
approach is the first framework for use in a large model dis-
tribution system. On the one hand, it can provide ownership 
verification; on the other hand, it can track users. If a DNN 
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model has been distributed before embedding watermarks 
or the embedded watermarks are overwritten or deleted, 
the copyright of the DNN model cannot be proven. Zhang 
et al. [16] proposed embedding watermarks in the output 
of a DNN model and marking the DNN model for complex 
image processing tasks. If a thief attacks the DNN model by 
using its API and obtains an alternative model with similar 
performance, the model owner can extract the watermarks 
of the DNN model from the output of the alternative model. 
Then, these watermarks will be compared with the water-
marks embedded in the original DNN model, and it will be 
judged whether the alternative model is the stolen according 
to the comparison value. The use of the output prediction 
results of a DNN model to prove its copyright is a kind of 
dynamic watermarking technology, and it often encounters 
evasion attacks. An evasion attack occurs when the attacker 
evades the copyright verification of the DNN model owner 
when the watermark cannot be removed [17]. At present, 
DNN model watermarking technology for resisting evasion 
attacks is vital and required. However, it is still severely 
underresearched. Li et al. [18, 19] proposed the first DNN 
copyright protection framework based on blind watermarks. 
Blind watermarks aim to generate key samples with similar 
distributions that are almost indistinguishable from ordinary 
samples. Attackers cannot detect key samples and prevent 
the use of key samples to verify the model copyright; this 
method achieves good performance on the MNIST and 
CIFAR-10 datasets. However, the range of applications of 
this method has been restricted by its inherent constraint: it 
uses an encoder to generate key samples, the hiding capacity 
of the encoder is limited, and it cannot perfectly reconstruct 
secret images. If high-capacity secret images are embedded 
in datasets with high resolutions to generate key samples, 
the quality of the key samples will decrease. This affects 
the prediction results for key samples in the DNN model 
and reduces the undetectability of key samples. To solve 
the above problems, we propose a DNN model watermark-
ing method based on a reversible image hiding network. A 
reversible image hiding network utilizes an inverse learning 
mechanism to simultaneously learn the image hiding and 
display processes. Our method can hide a full-size secret 
image into a host image of the same size and perfectly recon-
struct the secret image as the identifier of the DNN model 
copyright.

2.3 � Image hiding technology

Image hiding is an important research direction of steganog-
raphy; it attempts to hide a whole image in another Image 
hiding technology is mainly used for confidential communi-
cation. The purpose of image hiding is to conceal the secret 
image into the cover image in an imperceptible way, and 
then reveal the secret image perfectly at the receiver. Only 

the informed receiver is allowed to reveal the secret image, 
but not visible to others. DL can be used in practical end-
to-end image steganography [20]. Volkhonskiy D et al. [21] 
proposed a new model for generating image-like containers 
based on deep convolution GAN(DCGAN). This approach 
enables the use of standard steganography algorithms to 
generate more secure setganalysis message embeddings. 
Experimental results show that the model can successfully 
deceive a steganography analyzer. Shi et al. [22] proposed 
secure steganography GAN (SSGAN) model. The model 
can generate images with high visual quality. In most cases, 
it can provide safer covers for steganography. The model 
can be used for adaptive steganography algorithms. Zhang 
et al. [23] proposed a high-capacity image steganography 
network, SteganoGAN, by using GANs to solve steganogra-
phy tasks. Experiments show that their SteganoGAN model 
obtains a higher relative payload than existing methods and 
can avoid detection. Jing et al. [24] proposed a reversible 
image hiding network called HiNet. This network not only 
meets the high capacity needs of the image hiding task but 
also models the image display task as the reverse process of 
image hiding; that is, all the network parameters required for 
hiding and displaying can be obtained by training the net-
work only once. Experimental results show that this method 
achieves the most advanced image restoration accuracy, 
hiding security, and invisibility performance. Hence, in this 
work, we introduce a DNN watermarking method based on 
a reversible image hiding network to generate key samples to 
make the key samples of DNN models undetectable.

3 � Methodology

As shown in Fig. 1, we propose a DNN watermarking frame-
work that consists of three parts: a reversible image hiding 
network, a discriminator and an original host network. In 
what follows, we describe the key sample generation pro-
cess that utilizes the reversible image hiding network and 
the discriminator, the embedding process for key samples 
in the host DNN model, and the verification process for key 
samples in the host DNN model.

3.1 � Overview

In the generation stage, we generate key samples through 
the concealing blocks Rconceal of the reversible image hid-
ing network (Sect.  3.2). In the embedding stage, we embed 
watermarks in the original host network (Sect.  3.3). In the 
verification stage, we verify the copyright of the original host 
network (Sect.  3.4). In Sect.  3.5, we introduce the objective 
loss function of our method. Specifically, in Sect.  3.5.1, we 
present the generation loss Lgen ; in Sect.  3.5.2, we present the 
discrimination loss Ldis ; and in Sect.  3.5.3, we present the 
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embedding loss Lemd . In Sect.  3.6, we summarize the steps of 
the proposed DNN watermarking framework algorithm based 
on a reversible image hiding network in detail.

3.2 � Generation

The cover image Xcover is obtained from a subset training set, 
and the secret image Xsecret hidden in Xcover by the concealing 
blocks Rconceal of the reversible image hiding network to gener-
ate key samples Xkey , i.e.,

Rconceal aims to hide Xsecret in Xcover in an imperceptible way. 
Here, we take the CIFAR-10 dataset as an example. First, 
we take an image from CIFAR-10 as Xcover , where Xcover 
is an ordinary sample labeled “airplane”; then, we use the 
grayscale IEEE logo as the default target watermark. The 
IEEE logo image is concealed in the ordinary sample labeled 
“airplane” by Rconceal . Finally, the generated key sample Xkey 
uses “truck” as the target label. The distribution of Xkey is 
infinitely close to that of Xcover , i.e.,

(1)Xkey = Rconceal(Xcover,Xsecret).

(2)Xkey → Xcover.

Here, we use the discriminator to ensure that the distor-
tion of Xcover is very small after Xsecret is hidden in Xcover . 
As shown in Fig. 1, ordinary samples are used as the posi-
tive samples of the discriminator, and key samples are used 
as the negative samples of the discriminator. The ordinary 
samples and key samples are sent to train the discrimina-
tor, and the trained discriminator indicates whether the key 
samples are generated by Rconceal . If the discriminator cannot 
distinguish between ordinary samples and key samples, this 
will indicate that the key images generated by Rconceal are 
undetectable.

3.3 � Embedding

After the key samples are obtained through the concealing 
blocks Rconceal , the next step is to embed watermarks in the 
original host network. As shown in Fig. 1, the target label 
“truck” is used as the label of the key samples. The key 
samples Xkey and ordinary samples X are spliced together 
as the new training set of the original host network, and 
they are sent to the original host network O to obtain a 
watermarked network W, i.e.,

Fig. 1   The DNN watermarking 
framework based on reversible 
image hiding network
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The Watermarked network not only has the function of clas-
sifying the ordinary samples, but also has function of clas-
sifying key samples, i.e.,

Because the parameters of the original host network are 
redundant, the key samples will not affect the performance 
of the original host network in classifying ordinary samples.

3.4 � Verification

The last step is to verify the copyright of the original host 
network. Consider a scenario in which a DNN model owner 
suspects that a remotely deployed model violates its copyright 
interest. To confirm the ownership of the remote model, in this 
procedure, the model owner first prepares a set of key samples 
Xkey{xkey1, xkey2, ...} via the concealing blocks Rconceal :

Then, the model owner issues a prediction query to the 
remote DNN with these key samples and obtains the result-
ing predictions. As shown in Fig. 1, if the remote DNN clas-
sifies the key sample as the target label “truck”, it shows that 
the remote DNN is the watermarked network. The revealing 
blocks of the reversible image hiding network Rreveal aim to 
perfectly recover Xsecret_rev at the receiver. Rreveal restores the 
key samples Xkey in reverse to reconstruct secret images, i.e.,

Xsecret_rev can be used to identify the DNN model copyright. 
Xsecret_rev and Xsecret are visually consistent, i.e.,

In addition, the threshold between the accuracy of the regu-
lar test set test_acc∗ in the watermarked network and the 
benchmark accuracy test_acc in the watermark-free net-
work does not exceed T, and the accuracy of the key sam-
ples wm_acc∗ is greater than the minimum value Min in the 
watermarked network, i.e.,

This means that the copyright of the host network can be 
proven.

3.5 � Loss function

The loss function includes three parts: the generation loss Lgen , 
the discrimination loss Ldis and the embedding loss Lemd.

(3)Train(O,X,Xkey) → W.

(4)Test(W,X) → Y , Test(W,Xkey) → Ykey.

(5)Xkey = Rconceal(Xcover,Xsecret).

(6)Xsecret_rev = Rreveal(Xkey).

(7)Xsecret_rev → Xsecret.

(8)wm_acc∗ ≥ Min, test_acc∗ − test_acc ≤ T .

3.5.1 � Generation loss

When the secret images are embedded into the cover images, 
six different types of losses are considered to ensure their 
visual quality: the concealing loss �con , the revealing loss �rev , 
the low-frequency wavelet loss �low , the structural similarity 
index measure(SSIM) loss �ssim , the adversarial loss �adv , and 
the host DNN model loss �dnn , i.e.,

Here, the concealing loss �con guarantees the concealing per-
formance of the cover image, and �con is the mean squared 
error(MSE) loss, i.e.,

The revealing loss �rev ensures the recovery performance of 
the secret image, and �rev is the MSE loss, i.e.,

The low-frequency wavelet loss �low enhances the hiding 
security, and �low is the MSE loss, i.e.,

The SSIM loss �ssim is defined as the error related to the 
basic properties (texture, structure, etc.) of the image.

The adversarial loss �adv ensures that the Xkey generated by 
Rreveal are judged as positive samples by the discriminator 
as much as possible, and �rmadv is the binary cross-entropy 
loss, i.e.,

The host DNN model loss �dnn ensures that the labels of the 
key samples predicted by the watermarked network are as 
close to the normal labels in the host model as possible, and 
�dnn is the cross-entropy loss, i.e.,

(9)Lgen = �1 × �con + �2 × �rev + �3 × �low+

(10)�4 × (1 − �ssim) + �5 × �adv + �6 × �dnn.

(11)�con =
1

N

N�

i=1

‖Xkey − Xcover‖2.

(12)�rev =
1

N

N�

i=1

‖Xsecret_rev − Xsecret‖2.

(13)�low =
1

N

N�

i=1

‖Xkey_low − Xcover_low‖2.

(14)�ssim =
1

N

N∑

i=1

ssim(Xkey − Xcover).

(15)𝓁adv = −
1

N

N∑

i=1

[Dis(Xkey) ⋅ log(valid)+

(16)(1 − Dis(Xkey)) ⋅ log(1 − valid)].
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3.5.2 � Discrimination loss

Ldis ensures that a false image has a value close to the 0, 
while the real image has a value close to the 1; that is, Dis 
( xkey ) is close to fake, and the output Dis ( xcover ) is close to 
valid. Otherwise, the value is punished. Ldis includes the key 
sample identification loss function �key and the cover image 
identification loss function �cover , i.e.,

Both �key and �cover are the binary cross-entropy losses, 
i.e.,

(17)𝓁dnn = −
1

N

N∑

i=1

Dnn(Xkey) ⋅ log(wm_label).

(18)Ldis = �key + �cover.

(19)
𝓁key = −

1

N

N∑

i=1

[fake ⋅ log(Dis(Xkey))+

(1 − fake) ⋅ log(1 − Dis(Xkey))].

(20)
𝓁cover = −

1

N

N∑

i=1

[valid ⋅ log(Dis(Xcover))+

(1 − valid) ⋅ log(1 − Dis(Xcover))].

3.5.3 � Embedding loss

We choose the cross-entropy loss as the embedding loss 
Lemd . First, the training data X and the key samples Xkey 
are spliced into inputs, while the labels of the training data 
label and the target labels of the key samples wm_label are 
spliced into labels, i.e.,

Then, the inputs are sent to the host DNN model, and the 
output results of the host DNN model and their labels are 
used to calculate Lemd , i.e.,

3.6 � Global watermarking algorithm

Algorithm 1 summarizes the steps of the proposed DNN water-
marking framework. It takes a host DNN model M, training data 
D, a secret image Xsecret , the minibatch size B of D, the mini-
batch size of the key samples B_key , the number of key samples 
K, and the number of epoches E as inputs, and it outputs the 
watermarked DNN model M∗ , the key samples (Xkey, Ykey) , and 
the reconstructed secret image Xsecret_rev . Here, (Xkey, Ykey) and 
Xsecret_rev are defined by the owner and protected by the certifica-
tion authority to indicate model ownership.

(21)[inputs, labels] = [(X,Xkey), (label, wm_label)].

(22)Lemd = −
1

N

N∑

i=1

Dnn(inputs) ⋅ log(labels).
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4 � Experiments

We use 5 different datasets and 11 different DNN models 
to perform image classification tasks in this paper. We first 
introduce the datasets in Sect.  4.1, and then introduce the 
training details in Sect.  4.2. Next, before we analyze the 
experimental results, we first present the evaluation criteria 
in Sect.  4.3. Furthermore, we will demonstrate the experi-
mental results obtained by the proposed DNN watermarking 
framework with different datasets and different DNN models 
in Sect.  4.4. Finally, we compare our method with other 
SOTA methods, and perform some extension experiments 
in Sect.  4.5.

4.1 � Dataset

We perform the evaluations on benchmark image datasets 
including MNIST [25], Fashion-MNIST [26], CIFAR-10 
[27], CIFAR-100 [27], and Caltech-101 [28]. Table 1 shows 
the details the datasets.

MNIST. The MNIST dataset is a large handwritten digi-
tal dataset containing 70,000 gray images at resolutions of 
28×28, and its class labels range from 0 to 9. The training 
set has 60,000 images and the test set has 10,000 images.

Fashion-MNIST. The Fashion-MNIST dataset consists 
of 70,000 gray images of fashion products at resolutions of 
28×28. The training set has 60,000 images, and the test set 
has 10,000 images. The whole set has 10 classes.

Table 1   Details of datasets used in the experiment. DNN models are trained with five datasets: MNIST, Fashion-MNIST, CIFAR-10, CIFAR-
100, and Caltech-101

 Bold values represent the number of classes for the datasets

Dataset Class Sizes Total Train Test Samples

MNIST 10 (Number 0-9) 28×28 70,000 60,000 10,000

 
Fashion-MNIST 10 (t-shirt, trou-

ser,..., bag, ankle 
boot)

28×28 70,000 60,000 10,000

 
CIFAR-10 10 (airplane, bird, 

cat,..., ship, 
truck)

32×32 60,000 50,000 10,000

 
CIFAR-100 100 (aquatic mam-

mals, fish,..., )
32×32 60,000 50,000 10,000

 
Caltech-101 10 (airplane, 

bonsai, car, chan-
delier, face,..., 
turtle, watch)

300×200 2,400 1,800 600
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CIFAR-10. The CIFAR-10 dataset consists of 60,000 
color images at resolutions of 32×32. The training set has 
50,000 images, and the test set has 10,000 images. The 
whole set has 10 classes.

CIFAR-100. The CIFAR-100 dataset consists of 60,000 
color images at resolutions of 32×32. The training set has 
50,000 images, and the test set has 10,000 images. CIFAR-
100 has 100 classes. These 100 classes are grouped into 20 
superclasses.

Caltech-101. The Caltech-101 dataset contains 101 
classes of object images, with approximately 40 to 800 sam-
ples in each class. The size of each image is approximately 
300×200. We select 10 classes from the 101 total classes in 
our experiment. The dataset includes 1,800 training samples 
and 600 test samples.

4.2 �  Training details

The experiments are performed on Ubuntu 18.04 with an 
Intel Xeon Gold 5218 CPU @ 2.30GHz and an NVIDIA 
QUADRO RTX 8000 GPU. Our DNN watermarking algo-
rithm based on a reversible image hiding network is imple-
mented in Python 3.9.2 and PyTorch 1.9.0. We divide our 
DNN watermarking framework into three parts: the revers-
ible image hiding network, the discriminator, and the host 
DNN model. Next, we introduce the training parameter set-
tings of these three parts.

4.2.1 � Reversible image hiding network

We incorporate a novel reversible image hiding network 
named HiNet into our watermark solution due to its sim-
plicity and efficiency. HiNet was proposed in [24]. HiNet 
includes revealing blocks and concealing blocks, revealing 
blocks are the reverse process of concealing blocks. Reveal-
ing blocks and concealing blocks share the same parameters 
of HiNet, revealing blocks and concealing blocks used the 
dense block [29]. The details of its use are as follows: the 
number of concealing blocks Rconceal and revealing blocks 
Rreveal is set to 16. For the MNIST, Fashion-MNIST, CIFAR-
10, and CIFAR-100 datasets, we use 1% of the total train-
ing samples as cover images to generate the key samples, 
i.e., we use 600 cover images to generate the key samples 
for the MNIST and Fashion-MNIST datasets, and use 500 
cover images to generate the key samples for the CIFAR-
10 and CIFAR-100 datasets. However, for the Caltech-101 
dataset, we use 36 cover images to generate the key samples. 
For each key sample, we randomly select a target label as 
wm_label. The minibatch size for key samples is set to 20. 
The Adam optimizer [30] ( �1 =0.5, �2 = 0.999, eps=1× 10−6 , 
weight_decay=1× 10−5 ) is adopted with standard parame-
ters and an initial learning rate of 1 × 10−4.5 . We update the 
learning rate by 0.5 every 150 iterations for MNIST and 

Fashion-MNIST and every 600 iterations for CIFAR-10 and 
CIFAR-100.

4.2.2 � Discriminator

The discriminator is essentially a binary classifier, which 
judges whether the key samples are generated through 
revealing blocks. The discriminator is composed of several 
linear layers and LReLU. The discriminator is trained in an 
iterative manner by using the Adam algorithm [30] ( �1 =0.5, 
�2 = 0.999) and an initial learning rate of 0.001. When the 
learning rate remains unchanged after 8 epochs, the learn-
ing rate is decayed by 0.2. For the MNIST, Fashion-MNIST, 
CIFAR-10, and CIFAR-100 datasets, the minibatch size for 
key samples is set to 20, and for the Caltech-101 dataset, the 
minibatch size of key samples is set to 4.

4.2.3 � Host DNN model

The host DNN model is the DNN model we want to protect. 
For example, we use LeNet-3 [31] and LeNet-5 [31] to train 
MNIST and Fashion-MNIST datasets, VGG-11 [32], VGG-
13 [32], VGG-16 [32], and VGG-19 [32] to train CIFAR-10 
dataset, ResNet-18 [33], ResNet-34 [33], and ResNet-101 
[33] to train CIFAR-100 dataset, PreActResNet-18 [34] 
and PreActResNet-34 [34] to train Caltech-101 dataset. For 
the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 
datasets, the host DNN model is simultaneously trained 
by using the stochastic gradient descent(SGD) algorithm 
[35] (momentum=0.9, weight_decay=5× 10−4 ) with an 
initial learning rate of 0.1, which is decayed by 0.1 every 
40 epochs. For the Caltech-101 dataset, because the images 
have large sizes, the host DNN model is simultaneously 
trained using SGD [35] with a batch size of 24 (20 origi-
nal samples and 4 key samples) and an initial learning 
rate of 0.001, which is decayed by 0.1 per 40 epochs. For 
the MNIST, and Fashion-MNIST datasets, we train for 30 
epochs, and for the CIFAR-10, CIFAR-100, and Caltech-101 
datasets, we train for 100 epochs.

4.3 � Performance evaluation criteria

We compare and analyze the results by using fidelity, effec-
tiveness, and undetectability as the performance evalua-
tion criteria. Fidelity, effectiveness, and undetectability 
are important reference standards for evaluating the per-
formance of the DNN watermarking framework. Fidelity, 
effectiveness, and undetectability are mutually restricted, so 
DNN watermarking technology needs to balance the rela-
tionship between the three. A good DNN model watermark-
ing framework should have good fidelity, good validity, and 
good undetectability at the same time.
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Fidelity, which determines whether the target DNN 
reduces the accuracy of the host DNN model due to water-
marking; effectiveness, which determines whether the model 
can reach the threshold and verify the ownership of the host 
DNN model successfully; and undetectability, which deter-
mines whether the key samples are visually consistent with 
the ordinary samples (to evaluate undetectability, we use the 
peak signal-to-noise ratio (PSNR) and structural similarity 
(SSIM) to measure the distortion rate of xkey ). Larger PSNR 
and SSIM values indicate higher image quality.

4.4 � Results

The accuracy, PSNR, and SSIM achieved before and after 
watermarking are compared to verify the fidelity, effective-
ness, and undetectability of our DNN watermarking frame-
work on the DNN models. All the evaluated models are 
trained in two different environments: without watermarks 
and with watermarks. We first train the DNN models with-
out watermarks and evaluate them on the regular test set. 
Then, we train DNN models with watermark embeddings 
and evaluate them on the key samples.

4.4.1 � Accuracies for the watermark‑free networks

As shown in Table 2, when the LeNet-3 and LeNet-5 mod-
els are trained without key samples, the baseline tested on 
MNIST yields test accuracies of 98.52% and 98.37% and 
watermark accuracies of 8.60% and 8.60%, respectively.

When the LeNet-3 and LeNet-5 models are trained with-
out key samples, the baseline tested on Fashion-MNIST 
yields test accuracies of 87.87% and 87.35% and watermark 
accuracies of 9.20% and 9.75%, respectively.

When the VGG-11, VGG-13, VGG-16, and VGG-19 
models are trained without key samples, the baseline tested 
on CIFAR-10 yields test accuracies of 91.15%, 93.01%, 
92.51%, and 92.33% and watermark accuracies of 9.20%, 
9.20%, 9.20%, and 9.20%, respectively.

When the ResNet-18, ResNet-34, and ResNet-101 mod-
els are trained without key samples, the baseline tested on 
CIFAR-100 yields test accuracies of 76.18%, 76.93% and 
77.76% and watermark accuracies of 1.00%, 1.00%, 1.00% 
and 1.00%, respectively.

When the PreActResNet-18 and PreActResNet-34 mod-
els are trained without key samples, the baseline tested on 
Caltech-101 yields test accuracies of 96.33% and 97.17%, 
and watermark accuracies of 0.00% and 0.00%, respectively.

The accuracy across all key samples wm_acc in each 
watermark-free network does not exceed 10.00%, which 
represents a totally random guess.

4.4.2 � Accuracies for the watermarked networks

When the DNN models are trained with key samples, 
the threshold between the accuracy of the regular test set 
test_acc∗ and the benchmark accuracy test_acc does not 
exceed T, and the accuracy of the key samples wm_acc∗ is 
greater than the minimum value Min. The copyright of each 
DNN model can be effectively proven.

As shown in Table  2, all watermarked DNN models 
achieve wm_acc∗ values that are greater than 90% on the 
key samples, and VGG-13, PreActResNet-18, and PreAc-
tResNet-34 even achieve accuracies of 100%. A compari-
son with the wm_acc achieved with the same DNN, mod-
els shows that the watermarked DNN models learn the key 
samples very successfully, and we set Min to 90%. That is,

Table 2   Accuracy of different DNN models on regular test set and 
key samples: test_acc is the benchmark accuracy in watermark-free 
network, test_acc∗ is the accuracy of the regular test set in water-
marked network, wm_acc is the accuracy of the key samples in 

watermark-free network, and wm_acc∗ is the accuracy of the key 
samples in watermarked network. Quantitative results of the proposed 
DNN watermarking algorithm: psnr_s is calculated between xsecret 
and xsecret_rev , psnr_c and ssim are calculated between xkey and xcover

Datasets DNN models test_acc test_acc * wm_acc wm_acc * psnr_s psnr_c ssim

MNIST LeNet-3 [31] 98.52% 97.55% (↓ �.��) 8.60% 99.20% 23.98 19.01 0.9254
LeNet-5 [31] 98.37% 97.52% (↓ 0.85) 8.60% 94.00% 27.68 21.15 0.9556

Fashion-MNIST LeNet-3 [31] 87.87% 86.10%(↓ 1.77) 9.20% 94.40% 21.86 15.42 0.8650
LeNet-5 [31] 87.35% 84.32%(↓ �.��) 9.75% 96.15% 22.17 15.70 0.8755

CIFAR-10 VGG-11 [32] 91.15% 90.62%(↓ 0.53) 9.20% 98.60% 39.57 34.43 0.9891
VGG-13 [32] 93.01% 92.14%(↓ �.��) 9.20% 100.00% 39.70 32.52 0.9824
VGG-16 [32] 92.51% 92.14%(↓ 0.37) 9.20% 94.80% 40.67 34.43 0.9897
VGG-19 [32] 92.33% 91.49%(↓ 0.84) 9.20% 99.20% 42.67 34.51 0.9893

CIFAR-100 ResNet-18 [33] 76.18% 75.29% (↓ 0.89) 1.00% 95.00% 42.83 34.48 0.9896
ResNet-34 [33] 76.93% 72.63%(↓ �.��) 1.00% 98.80% 43.10 35.96 0.9932
ResNet-101 [33] 77.76% 74.78% (↓ 2.98) 1.00% 92.40% 43.03 33.83 0.9879

Caltech-101 PreActResNet-18 [34] 96.33% 95.83% (↓ �.��) 0.00% 100.00% 34.59 30.51 0.8823
PreActResNet-34 [34] 97.17% 96.83%(↓ 0.34) 0.00% 100.00% 35.12 29.56 0.8535
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It is found that the performance of the DNN models does 
not decrease significantly after embedding watermarks. 
The experimental results show that the accuracy degrada-
tion does not exceed 0.97% on the MNIST dataset, 3.03 % 
on the Fashion-MNIST dataset, 0.87% on the CIFAR-10 
dataset, 4.30% on the CIFAR-100 dataset, and 0.50% on the 
Caltech-101 dataset. The average rates of decline for differ-
ent datasets with different DNN models is 3.99%, and the 
embedding of watermarks has little impact on the perfor-
mance of the DNN models. We set T to 5%, i.e.,

4.4.3 � PSNR and SSIM values

As shown in Table 2, when the CIFAR-100 dataset is used 
to train ResNet-34, psnr_s reaches a maximum of 43.10, 
psnr_c reaches a maximum of 35.96, and ssim reaches a 
maximum of 0.9932. However, we can see that the psnr and 
ssim values are relatively low for the MNIST and Fashion-
MNIST datasets. When the Fashion-MNIST dataset is 

(23)wm_acc∗ ≥ 90%.

(24)test_acc∗ − test_acc ≤ 5%.

used to train LeNet-3, psnr_s reaches a minimum of 21.86, 
psnr_c reaches a minimum of 15.42, and ssim reaches a 
minimum of 0.8650. The proposed DNN watermarking 
algorithm generates images with very high quality for the 
CIFAR-10, CIFAR-100, and Caltech-101 datasets and gener-
ates images with very poor quality for the MNIST and Fash-
ion-MNIST datasets. This is because the DNN watermarking 
algorithm is based on a reversible image hiding network, and 
this network makes it easier to complete the task of when 
utilizing a colorful image dataset with a large size. As shown 
in Fig. 2, for Caltech-101, we use the grayscale ”IEEE” logo 
with a size of 300×200. We demonstrate the hiding ability 
of our DNN watermarking framework for PreActResNet-18, 
and we can see that the visual presentations of the key sam-
ple and the cover image are almost the same.

4.4.4 � Comparison with other methods

To verify the effectiveness of our approach, we compare 
our DNN watermarking method with an undetectable 
dynamic watermarking method (Blind-Watermark, devel-
oped in [18]) in Table 3. Table 3 reports the comparison 
results obtained after testing on ResNet-18, ResNet-34, 
and ResNet-101 with the CIFAR-100 dataset. For the same 

Fig. 2   Some visual examples to 
show the capability of the pro-
posed DNN watermarking algo-
rithm: the cover image (Row 1), 
the key sample (Row 2), and the 
secret images(Row 3). Almost 
no difference between the cover 
image and the key sample can 
be observed
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DNN model, the Blind-Watermark method performs worse 
than our DNN watermarking method mainly because our 
method is based on a reversible image hiding network; thus, 
it has a greater ability to evaluate undetectability. It is worth 
mentioning that our method achieves improvements over 
the Blind-Watermark method of 1.35%, 5.80%, 5.67%, and 
0.0089 in terms of test_acc∗ , wm_acc∗ , psnr_c , and ssim, 
respectively, on ResNet-18. Our method achieves improve-
ments over the Blind-Watermark method of 6.60%, 6.48% 
and 0.0108 in terms of wm_acc∗ , psnr_c , and ssim, respec-
tively, on ResNet-34. Our method achieves improvements 
over the Blind-Watermark method of 11.00%, 2.58%, and 
0.0014 in terms of wm_acc∗ , psnr_c , and ssim, respectively, 
on ResNet-101. Additionally, our three DNN models achieve 
surprising psnr_s results of 42.83, 43.10, and 43.03 by using 
our DNN watermarking method, because the Blind-Water-
mark method does not extract secret images, and psnr_s can-
not be calculated.

4.5 � Extensions

In this subsection, we examine the efficacy of expansion 
factors for our proposed DNN watermarking method, for 
instance, the sizes of secret images, the choice of secret 
images, and the number of key samples. A strong baseline 
DNN model(VGG-16) is exploited for training on CIAFR-
10 to evaluate the efficacy of these expansion factors, and 
the training details maintain the same setting as those in the 
above experiments.

4.5.1 � The sizes of secret images

In this work, we set the sizes of secret images S to be an 
expansion factor, which represents the ability of the DNN 
model watermarking framework to hide secret images with 
different capacities. We analyze the contributions of S on 
the CIFAR-10 dataset. We use the color ”Flower” image as 
the default secret image for in this work and then vary its 
size from 32× 32 to 64× 64 and to 128×128 to evaluate the 
resulting performance. As shown in Table 4, as the expan-
sion factor S increases, test_acc∗ , psnr_s , psnr_c , and ssim 
decrease, but wm_acc∗ increases, even reaching 100%. Fur-
thermore, we demonstrate the effectiveness of our method on 
the large-capacity colorful image hiding task. Some visual Ta
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images. We take CIFAR-10 task for example

Size test_acc* wm_acc* psnr_s psnr_c ssim

Baseline (32×32) 92.14% 94.80% 40.67 34.43 0.9897
64×64 90.95% 100.00% 36.79 29.43 0.9211
128×128 90.83% 100.00% 30.79 25.37 0.7685
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Fig. 3   Some visual examples to show the capability of the proposed DNN watermarking algorithm: the cover image (Row 1, 4), the key sample 
(Row 2, 5), and the secret image(Row 3, 6), almost no difference between cover image and key sample can be observed

Fig. 4   Some visual examples to show the capability of the proposed DNN watermarking algorithm: the cover image (Row 1, 4, 7), the key sam-
ple (Row 2, 5, 8), and the secret image (Row 3, 6, 9), almost no difference between cover image and key sample can be observed

4.5.2 � The choice of secret images

In this work, we set the choice of secret images to be an 
expansion factor, which represents the ability of the DNN 
model watermarking framework to hide different secret 
images. We change the secret image from the grayscale 
”IEEE” image logo with a size of 32× 32 to color ”Flower” 
image with a size of 32× 32 and to the colorful noise image 
with a size of 32× 32 to evaluate the resulting performance. 
As shown in Table 5, when the secret image is the gen-
erated color noise image at random, psnr_s and psnr_c 
decrease significantly. When the secret images are the 
grayscale ”IEEE” and color ”Flower” images, each value 
is high in Table 5. The experimental results show that for 
gray and color secret images, the host DNN model can eas-
ily learn the key samples, and the key samples are highly 
undetectable. Some visual results are shown in Fig. 4. For 

Table 5   Quantitative results of our method with different secret 
images. We take CIFAR-10 task for example

Secret images Test_acc* wm_acc* psnr_s psnr_c ssim

Baseline(IEEE) 92.14% 94.80% 40.67 34.43 0.9897
Flower 92.10% 98.40% 40.57 33.88 0.9880
Noise 91.87% 99.20% 30.85 23.24 0.9046

results are shown in Fig. 3. For the CIFAR-10 dataset, we 
use the ”Flower” image with different sizes as secret images. 
We demonstrate the hiding ability of our DNN watermarking 
framework for secret images of different sizes, and we can 
see that the visual representations of key samples and cover 
images are almost the same.
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CIFAR-10, we use the ”IEEE” logo, ”Flower” image, and 
color noise as secret images. We demonstrate the hiding 
ability of our DNN watermarking framework for different 
secret images, and we can see that the visual represen-
tations of key samples and cover images are almost the 
same.

4.5.3 � The number of key samples

In this work, we set the number of key samples to be an 
expansion factor. We change the number of key samples 
from 1% of the training set to 0.5% of the training set and 
to 2% of the training set to evaluate the resulting perfor-
mance. If too many key samples are selected, the perfor-
mance of the host DNN model will be affected, but the 
host DNN model can learn key samples easily, and the 
key samples are highly undetectable. As shown in Table 6, 
when the numbers of key samples are 1% and 2% of the 
training set, psnr_s exceeds 40, psnr_c exceeds 33, and 
ssim exceeds 0.98. When the number of key samples is 
2% of the training set, wm_acc∗ even reaches 100%. If 
the number of key samples is too small, it will provide an 
opportunity for an attacker to attack the host DNN model 
more easily. It can be seen that psnr_c , psnr_c , and ssim 
decrease when the number of key samples is 0.5% of the 
training set in Table 6.

5 � Conclusion

In this paper, we present a DNN model watermarking 
framework based on a reversible image hiding network 
to protect the copyrights of DNN models. This is a novel 
dynamic watermarking approach to defense evasion 
attacks and complements the undetectable dynamic water-
marking method. With our proposed method, DNN model 
copyrights can be protected successfully without affecting 
the main functions of the host DNN models. Taking advan-
tage of hiding security and high capacity ability on large-
capacity colorful image hiding task of the reversible image 
hiding network, our DNN watermarking framework has 
better performance in colorful image datasets with a large 

size. We implement it on 5 datasets and 11 popular DNN 
models, the experimental results demonstrate that our pro-
posed DNN model watermarking framework can ensure 
fidelity, effectiveness, and undetectability of the DNN 
model watermark. And then we compare our DNN water-
marking method with an undetectable dynamic watermark-
ing method (Blind-Watermark). Finally, we examine the 
efficacy of the expansion factors of our proposed DNN 
watermarking method, e.g., the sizes of secret images, the 
choice of secret images, and the number of key samples.
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