
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2023) 26:861–874
https://doi.org/10.1007/s10044-023-01140-4

SHORT PAPER

Deep neural network watermarking based on a reversible image
hiding network

Linna Wang1 · Yunfei Song1 · Daoxun Xia1,2

Received: 5 March 2022 / Accepted: 24 January 2023 / Published online: 18 February 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract
Recently, many researchers have proposed deep neural network (DNN) watermarking technologies, DNN watermarking
approaches can be divided into two categories: static watermarking and dynamic watermarking methods. A static water-
mark is embedded into the internal parameters of a DNN model, but a dynamic watermark relies on the specific training
data of the DNN model and uses the associated neuron activation map or the output result by the DNN model to extract
the watermark information. Dynamic watermarks mostly use DNN application programming interfaces(APIs) to remotely
access DNN models and extract their watermarks to prove their copyright, so dynamic watermarking technology is more
popular. According to the distribution inconsistency between a dynamic watermark and training data, an attacker can detect
the dynamic watermark, so that the model owner cannot obtain the desired prediction results and then verify the copyright of
the suspect model. To this end, we propose a dynamic watermarking approach based on a reversible image hiding network,
which improved the undetectability of a DNN watermark, and it can perfectly reconstruct the secret image as the copyright
logo of a DNN model. We perform our work on the MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and Caltech-101
datasets. The experimental results show that our method has higher DNN watermarking accuracy and higher undetectability
with no significant side effects on the main functions of the host DNN model.

Keywords Digital watermarking · Deep neural network · Image hiding · Ownership verification · Undetectability

1 Introduction

Over the last few years, deep learning (DL) has been proven
very successful in many different areas, including computer
vision, speech recognition, natural language processing, and
other critical fields of artificial intelligence. Many scientific
and technological companies have deployed deep neural
network(DNN) models in commercial products to achieve
improved efficiency. Although these deep convolution neural
network (DCNN) frameworks, such as LeNet, AlexNet, the
Visual Geometry Group network(VGGNet), GooLeNet, and
the residual network(ResNet), have made tasks more easy
to complete, training a DNN model is still a difficult task

because it requires large-scale datasets, massive comput-
ing resources and designers’ wisdom. As expensive digital
assets, various DNN models are easily attacked or stolen.
Although many researchers have proposed different defense
methods against DNN attacks, attackers develop powerful
attack methods. Therefore, how to protect the intellectual
property rights of DNN models has become an urgent prob-
lem in academic and industrial circles. For multimedia
information, digital watermarks are embedded in redundant
multimedia information to protect this information [1–3].
Instead of embedding watermarks into multimedia informa-
tion, an ownership watermark is constructed for the model
owners according to the feature of original images and the
ownership statement to protect images [4], and the water-
mark key is generated by the interrelationships between
contents of given Arabic text to protect Arabic text [5].
For DNN model, many parameters are contained in a DNN
model, and the redundant parameters of such a DNN model
are used to embed a deep model watermark. This approach
uses the parameters of the neural network to carry the water-
mark; it does not affect the performance of the DNN model

 * Daoxun Xia
 dxxia@gznu.edu.cn

1 School of Big Data and Computer Science, Guizhou Normal
University, Guiyang 550025, China

2 Engineering Laboratory for Applied Technology of Big Data
in Education, Guizhou Normal University, Guiyang 550025,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-023-01140-4&domain=pdf
http://orcid.org/0000-0002-1715-3324

862 Pattern Analysis and Applications (2023) 26:861–874

1 3

due to overfitting, but it requires the watermark extractor to
know the structure and the parameters of the DNN model.
In fact, we usually remotely access models through their
application programming interfaces(APIs). Therefore, many
researchers have suggested that DNN watermarking tech-
nology does not need to master the internal mechanisms of
DNN models to extract their watermarks. When the model
owner finds a suspicious DNN model, he or she inputs the
specific data into the API and outputs the prediction results
that can represent the copyright of the DNN model. We call
these specific data key samples. Normally, the distributions
of the key samples and the training data are very different.
An attacker observes the distribution of the input data of the
DNN model and prevents the DNN model from reasoning
about the data whose distribution is inconsistent with the
training data. Inspired by the above observations, to prevent
attackers from detecting the key samples and avoid copyright
verification, we suggest inputting the key samples that are
consistent with the distribution of the DNN model training
set to perform a copyright check on the associated DNN
model.

2 Related work

2.1 Static watermarking

A static watermark is embedded into the internal param-
eters of the given DNN model. The training process does
not depend on the specific data of the DNN model [6]. This
approach is generally divided into two stages: the watermark
embedding stage and the watermark extraction stage. In
2017, a digital watermark was first applied to a DNN model
for copyright protection. Uchida Y et al. [7] proposed an
algorithm to embed watermark information into the weights
of a DNN model, and the watermark is embedded in the
weights during the training process. Because the water-
mark is embedded in the regularizer, their approach does
not impair the performance of networks and the embedded
watermark does not disappear after fine-tuning or pruning;
however, when extracting the watermark, the parameters of
the model need to be accessed. This limits the applicability
of this method in business. Wang T et al. [8] proved that
Uchida Y’s DNN model watermarking technology modifies
the statistical distribution of the DNN model parameters. A
change in the parameter distribution can be used not only to
detect the existence of a depth model watermark but also to
calculate the length of the DNN model watermark. After an
attacker obtains the DNN model watermark information, he/
she can design a DNN model watermark removal algorithm,
and then the watermark information embedded by the model
owner becomes invalid. Wang T et al. [9, 10] proposed a new
solution. The training and detection processes for a DNN

model watermark were designed as a generator and discrimi-
nator, respectively, to generate a countermeasure network.
Their experiments showed that the weight parameter dis-
tribution of a DNN model hardly changes after embedding
the watermark information. Different from the DNN model
watermarking technology proposed by Uchida, Kuribayashi
et al. [11] first embedded watermark information into the fre-
quency component of the sampling weight of a DNN model
by using the quantization algorithm called dither modula-
tion-quantization index modulation(DM-QIM), and then dis-
persed the watermark information into the sampling weight
of the DNN model by using the inverse discrete cosine
transform(DCT). The key to the method is to ensure that the
weight distribution change exhibited by the DNN model is
as small as possible. A static watermark requires the water-
mark extractor to know the structure and the parameters of
the associated DNN model. Therefore, static watermarks are
not suitable for commercial applications.

2.2 Dynamic watermarking

A dynamic watermark depends on the specific training data
of the given DNN model, the associated neuron activation
maps, or output results are used to extract the watermark
information [6]. The dynamic watermark mainly uses the
DNN backdoor technology. During the training stage, the
backdoor watermark data is added to the training dataset.
In our paper, the backdoor watermark data is the key sam-
ple. During the prediction stage, the key sample triggers a
specific output result. The specific output result is the tar-
get label that we preset for the key sample before training
the model, The correspondence between key samples and
target labels is known only to the model owner. Rouhani
et al. [12] proposed a DNN model watermarking framework,
deepsigns, which works by learning the activation maps in
the different layers of a DNN model, DeepSigns is robust in
terms of fine-tuning, pruning, and watermark overwriting.
Adi et al. [13] proposed a simple and effective technique for
watermarking DNNs by backdooring. Zhang et al. [14] also
proposed three backdoor watermark generation algorithms
for DNN models. Meaningful content, unrelated content
and noise are embedded into a DNN model as watermarks
through the DNN model watermarking framework. Experi-
ments show that these algorithms are robust to parameter
pruning, fine-tuning and model inversion attacks on DNN
models. Chen et al. [15] also proposed a DNN model water-
marking framework called Deepmarks, which realizes fin-
gerprint insertion in the weight distribution through DNN
regularization. If an attacker removes this fingerprint, the
performance of the DNN model will be affected. This
approach is the first framework for use in a large model dis-
tribution system. On the one hand, it can provide ownership
verification; on the other hand, it can track users. If a DNN

863Pattern Analysis and Applications (2023) 26:861–874

1 3

model has been distributed before embedding watermarks
or the embedded watermarks are overwritten or deleted,
the copyright of the DNN model cannot be proven. Zhang
et al. [16] proposed embedding watermarks in the output
of a DNN model and marking the DNN model for complex
image processing tasks. If a thief attacks the DNN model by
using its API and obtains an alternative model with similar
performance, the model owner can extract the watermarks
of the DNN model from the output of the alternative model.
Then, these watermarks will be compared with the water-
marks embedded in the original DNN model, and it will be
judged whether the alternative model is the stolen according
to the comparison value. The use of the output prediction
results of a DNN model to prove its copyright is a kind of
dynamic watermarking technology, and it often encounters
evasion attacks. An evasion attack occurs when the attacker
evades the copyright verification of the DNN model owner
when the watermark cannot be removed [17]. At present,
DNN model watermarking technology for resisting evasion
attacks is vital and required. However, it is still severely
underresearched. Li et al. [18, 19] proposed the first DNN
copyright protection framework based on blind watermarks.
Blind watermarks aim to generate key samples with similar
distributions that are almost indistinguishable from ordinary
samples. Attackers cannot detect key samples and prevent
the use of key samples to verify the model copyright; this
method achieves good performance on the MNIST and
CIFAR-10 datasets. However, the range of applications of
this method has been restricted by its inherent constraint: it
uses an encoder to generate key samples, the hiding capacity
of the encoder is limited, and it cannot perfectly reconstruct
secret images. If high-capacity secret images are embedded
in datasets with high resolutions to generate key samples,
the quality of the key samples will decrease. This affects
the prediction results for key samples in the DNN model
and reduces the undetectability of key samples. To solve
the above problems, we propose a DNN model watermark-
ing method based on a reversible image hiding network. A
reversible image hiding network utilizes an inverse learning
mechanism to simultaneously learn the image hiding and
display processes. Our method can hide a full-size secret
image into a host image of the same size and perfectly recon-
struct the secret image as the identifier of the DNN model
copyright.

2.3 Image hiding technology

Image hiding is an important research direction of steganog-
raphy; it attempts to hide a whole image in another Image
hiding technology is mainly used for confidential communi-
cation. The purpose of image hiding is to conceal the secret
image into the cover image in an imperceptible way, and
then reveal the secret image perfectly at the receiver. Only

the informed receiver is allowed to reveal the secret image,
but not visible to others. DL can be used in practical end-
to-end image steganography [20]. Volkhonskiy D et al. [21]
proposed a new model for generating image-like containers
based on deep convolution GAN(DCGAN). This approach
enables the use of standard steganography algorithms to
generate more secure setganalysis message embeddings.
Experimental results show that the model can successfully
deceive a steganography analyzer. Shi et al. [22] proposed
secure steganography GAN (SSGAN) model. The model
can generate images with high visual quality. In most cases,
it can provide safer covers for steganography. The model
can be used for adaptive steganography algorithms. Zhang
et al. [23] proposed a high-capacity image steganography
network, SteganoGAN, by using GANs to solve steganogra-
phy tasks. Experiments show that their SteganoGAN model
obtains a higher relative payload than existing methods and
can avoid detection. Jing et al. [24] proposed a reversible
image hiding network called HiNet. This network not only
meets the high capacity needs of the image hiding task but
also models the image display task as the reverse process of
image hiding; that is, all the network parameters required for
hiding and displaying can be obtained by training the net-
work only once. Experimental results show that this method
achieves the most advanced image restoration accuracy,
hiding security, and invisibility performance. Hence, in this
work, we introduce a DNN watermarking method based on
a reversible image hiding network to generate key samples to
make the key samples of DNN models undetectable.

3 Methodology

As shown in Fig. 1, we propose a DNN watermarking frame-
work that consists of three parts: a reversible image hiding
network, a discriminator and an original host network. In
what follows, we describe the key sample generation pro-
cess that utilizes the reversible image hiding network and
the discriminator, the embedding process for key samples
in the host DNN model, and the verification process for key
samples in the host DNN model.

3.1 Overview

In the generation stage, we generate key samples through
the concealing blocks Rconceal of the reversible image hid-
ing network (Sect. 3.2). In the embedding stage, we embed
watermarks in the original host network (Sect. 3.3). In the
verification stage, we verify the copyright of the original host
network (Sect. 3.4). In Sect. 3.5, we introduce the objective
loss function of our method. Specifically, in Sect. 3.5.1, we
present the generation loss Lgen ; in Sect. 3.5.2, we present the
discrimination loss Ldis ; and in Sect. 3.5.3, we present the

864 Pattern Analysis and Applications (2023) 26:861–874

1 3

embedding loss Lemd . In Sect. 3.6, we summarize the steps of
the proposed DNN watermarking framework algorithm based
on a reversible image hiding network in detail.

3.2 Generation

The cover image Xcover is obtained from a subset training set,
and the secret image Xsecret hidden in Xcover by the concealing
blocks Rconceal of the reversible image hiding network to gener-
ate key samples Xkey , i.e.,

Rconceal aims to hide Xsecret in Xcover in an imperceptible way.
Here, we take the CIFAR-10 dataset as an example. First,
we take an image from CIFAR-10 as Xcover , where Xcover
is an ordinary sample labeled “airplane”; then, we use the
grayscale IEEE logo as the default target watermark. The
IEEE logo image is concealed in the ordinary sample labeled
“airplane” by Rconceal . Finally, the generated key sample Xkey
uses “truck” as the target label. The distribution of Xkey is
infinitely close to that of Xcover , i.e.,

(1)Xkey = Rconceal(Xcover,Xsecret).

(2)Xkey → Xcover.

Here, we use the discriminator to ensure that the distor-
tion of Xcover is very small after Xsecret is hidden in Xcover .
As shown in Fig. 1, ordinary samples are used as the posi-
tive samples of the discriminator, and key samples are used
as the negative samples of the discriminator. The ordinary
samples and key samples are sent to train the discrimina-
tor, and the trained discriminator indicates whether the key
samples are generated by Rconceal . If the discriminator cannot
distinguish between ordinary samples and key samples, this
will indicate that the key images generated by Rconceal are
undetectable.

3.3 Embedding

After the key samples are obtained through the concealing
blocks Rconceal , the next step is to embed watermarks in the
original host network. As shown in Fig. 1, the target label
“truck” is used as the label of the key samples. The key
samples Xkey and ordinary samples X are spliced together
as the new training set of the original host network, and
they are sent to the original host network O to obtain a
watermarked network W, i.e.,

Fig. 1 The DNN watermarking
framework based on reversible
image hiding network

865Pattern Analysis and Applications (2023) 26:861–874

1 3

The Watermarked network not only has the function of clas-
sifying the ordinary samples, but also has function of clas-
sifying key samples, i.e.,

Because the parameters of the original host network are
redundant, the key samples will not affect the performance
of the original host network in classifying ordinary samples.

3.4 Verification

The last step is to verify the copyright of the original host
network. Consider a scenario in which a DNN model owner
suspects that a remotely deployed model violates its copyright
interest. To confirm the ownership of the remote model, in this
procedure, the model owner first prepares a set of key samples
Xkey{xkey1, xkey2, ...} via the concealing blocks Rconceal :

Then, the model owner issues a prediction query to the
remote DNN with these key samples and obtains the result-
ing predictions. As shown in Fig. 1, if the remote DNN clas-
sifies the key sample as the target label “truck”, it shows that
the remote DNN is the watermarked network. The revealing
blocks of the reversible image hiding network Rreveal aim to
perfectly recover Xsecret_rev at the receiver. Rreveal restores the
key samples Xkey in reverse to reconstruct secret images, i.e.,

Xsecret_rev can be used to identify the DNN model copyright.
Xsecret_rev and Xsecret are visually consistent, i.e.,

In addition, the threshold between the accuracy of the regu-
lar test set test_acc∗ in the watermarked network and the
benchmark accuracy test_acc in the watermark-free net-
work does not exceed T, and the accuracy of the key sam-
ples wm_acc∗ is greater than the minimum value Min in the
watermarked network, i.e.,

This means that the copyright of the host network can be
proven.

3.5 Loss function

The loss function includes three parts: the generation loss Lgen ,
the discrimination loss Ldis and the embedding loss Lemd.

(3)Train(O,X,Xkey) → W.

(4)Test(W,X) → Y , Test(W,Xkey) → Ykey.

(5)Xkey = Rconceal(Xcover,Xsecret).

(6)Xsecret_rev = Rreveal(Xkey).

(7)Xsecret_rev → Xsecret.

(8)wm_acc∗ ≥ Min, test_acc∗ − test_acc ≤ T .

3.5.1 Generation loss

When the secret images are embedded into the cover images,
six different types of losses are considered to ensure their
visual quality: the concealing loss �con , the revealing loss �rev ,
the low-frequency wavelet loss �low , the structural similarity
index measure(SSIM) loss �ssim , the adversarial loss �adv , and
the host DNN model loss �dnn , i.e.,

Here, the concealing loss �con guarantees the concealing per-
formance of the cover image, and �con is the mean squared
error(MSE) loss, i.e.,

The revealing loss �rev ensures the recovery performance of
the secret image, and �rev is the MSE loss, i.e.,

The low-frequency wavelet loss �low enhances the hiding
security, and �low is the MSE loss, i.e.,

The SSIM loss �ssim is defined as the error related to the
basic properties (texture, structure, etc.) of the image.

The adversarial loss �adv ensures that the Xkey generated by
Rreveal are judged as positive samples by the discriminator
as much as possible, and �rmadv is the binary cross-entropy
loss, i.e.,

The host DNN model loss �dnn ensures that the labels of the
key samples predicted by the watermarked network are as
close to the normal labels in the host model as possible, and
�dnn is the cross-entropy loss, i.e.,

(9)Lgen = �1 × �con + �2 × �rev + �3 × �low+

(10)�4 × (1 − �ssim) + �5 × �adv + �6 × �dnn.

(11)�con =
1

N

N�

i=1

‖Xkey − Xcover‖2.

(12)�rev =
1

N

N�

i=1

‖Xsecret_rev − Xsecret‖2.

(13)�low =
1

N

N�

i=1

‖Xkey_low − Xcover_low‖2.

(14)�ssim =
1

N

N∑

i=1

ssim(Xkey − Xcover).

(15)𝓁adv = −
1

N

N∑

i=1

[Dis(Xkey) ⋅ log(valid)+

(16)(1 − Dis(Xkey)) ⋅ log(1 − valid)].

866 Pattern Analysis and Applications (2023) 26:861–874

1 3

3.5.2 Discrimination loss

Ldis ensures that a false image has a value close to the 0,
while the real image has a value close to the 1; that is, Dis
(xkey) is close to fake, and the output Dis (xcover) is close to
valid. Otherwise, the value is punished. Ldis includes the key
sample identification loss function �key and the cover image
identification loss function �cover , i.e.,

Both �key and �cover are the binary cross-entropy losses,
i.e.,

(17)𝓁dnn = −
1

N

N∑

i=1

Dnn(Xkey) ⋅ log(wm_label).

(18)Ldis = �key + �cover.

(19)
𝓁key = −

1

N

N∑

i=1

[fake ⋅ log(Dis(Xkey))+

(1 − fake) ⋅ log(1 − Dis(Xkey))].

(20)
𝓁cover = −

1

N

N∑

i=1

[valid ⋅ log(Dis(Xcover))+

(1 − valid) ⋅ log(1 − Dis(Xcover))].

3.5.3 Embedding loss

We choose the cross-entropy loss as the embedding loss
Lemd . First, the training data X and the key samples Xkey
are spliced into inputs, while the labels of the training data
label and the target labels of the key samples wm_label are
spliced into labels, i.e.,

Then, the inputs are sent to the host DNN model, and the
output results of the host DNN model and their labels are
used to calculate Lemd , i.e.,

3.6 Global watermarking algorithm

Algorithm 1 summarizes the steps of the proposed DNN water-
marking framework. It takes a host DNN model M, training data
D, a secret image Xsecret , the minibatch size B of D, the mini-
batch size of the key samples B_key , the number of key samples
K, and the number of epoches E as inputs, and it outputs the
watermarked DNN model M∗ , the key samples (Xkey, Ykey) , and
the reconstructed secret image Xsecret_rev . Here, (Xkey, Ykey) and
Xsecret_rev are defined by the owner and protected by the certifica-
tion authority to indicate model ownership.

(21)[inputs, labels] = [(X,Xkey), (label, wm_label)].

(22)Lemd = −
1

N

N∑

i=1

Dnn(inputs) ⋅ log(labels).

867Pattern Analysis and Applications (2023) 26:861–874

1 3

4 Experiments

We use 5 different datasets and 11 different DNN models
to perform image classification tasks in this paper. We first
introduce the datasets in Sect. 4.1, and then introduce the
training details in Sect. 4.2. Next, before we analyze the
experimental results, we first present the evaluation criteria
in Sect. 4.3. Furthermore, we will demonstrate the experi-
mental results obtained by the proposed DNN watermarking
framework with different datasets and different DNN models
in Sect. 4.4. Finally, we compare our method with other
SOTA methods, and perform some extension experiments
in Sect. 4.5.

4.1 Dataset

We perform the evaluations on benchmark image datasets
including MNIST [25], Fashion-MNIST [26], CIFAR-10
[27], CIFAR-100 [27], and Caltech-101 [28]. Table 1 shows
the details the datasets.

MNIST. The MNIST dataset is a large handwritten digi-
tal dataset containing 70,000 gray images at resolutions of
28×28, and its class labels range from 0 to 9. The training
set has 60,000 images and the test set has 10,000 images.

Fashion-MNIST. The Fashion-MNIST dataset consists
of 70,000 gray images of fashion products at resolutions of
28×28. The training set has 60,000 images, and the test set
has 10,000 images. The whole set has 10 classes.

Table 1 Details of datasets used in the experiment. DNN models are trained with five datasets: MNIST, Fashion-MNIST, CIFAR-10, CIFAR-
100, and Caltech-101

 Bold values represent the number of classes for the datasets

Dataset Class Sizes Total Train Test Samples

MNIST 10 (Number 0-9) 28×28 70,000 60,000 10,000

Fashion-MNIST 10 (t-shirt, trou-

ser,..., bag, ankle
boot)

28×28 70,000 60,000 10,000

CIFAR-10 10 (airplane, bird,

cat,..., ship,
truck)

32×32 60,000 50,000 10,000

CIFAR-100 100 (aquatic mam-

mals, fish,...,)
32×32 60,000 50,000 10,000

Caltech-101 10 (airplane,

bonsai, car, chan-
delier, face,...,
turtle, watch)

300×200 2,400 1,800 600

868 Pattern Analysis and Applications (2023) 26:861–874

1 3

CIFAR-10. The CIFAR-10 dataset consists of 60,000
color images at resolutions of 32×32. The training set has
50,000 images, and the test set has 10,000 images. The
whole set has 10 classes.

CIFAR-100. The CIFAR-100 dataset consists of 60,000
color images at resolutions of 32×32. The training set has
50,000 images, and the test set has 10,000 images. CIFAR-
100 has 100 classes. These 100 classes are grouped into 20
superclasses.

Caltech-101. The Caltech-101 dataset contains 101
classes of object images, with approximately 40 to 800 sam-
ples in each class. The size of each image is approximately
300×200. We select 10 classes from the 101 total classes in
our experiment. The dataset includes 1,800 training samples
and 600 test samples.

4.2 Training details

The experiments are performed on Ubuntu 18.04 with an
Intel Xeon Gold 5218 CPU @ 2.30GHz and an NVIDIA
QUADRO RTX 8000 GPU. Our DNN watermarking algo-
rithm based on a reversible image hiding network is imple-
mented in Python 3.9.2 and PyTorch 1.9.0. We divide our
DNN watermarking framework into three parts: the revers-
ible image hiding network, the discriminator, and the host
DNN model. Next, we introduce the training parameter set-
tings of these three parts.

4.2.1 Reversible image hiding network

We incorporate a novel reversible image hiding network
named HiNet into our watermark solution due to its sim-
plicity and efficiency. HiNet was proposed in [24]. HiNet
includes revealing blocks and concealing blocks, revealing
blocks are the reverse process of concealing blocks. Reveal-
ing blocks and concealing blocks share the same parameters
of HiNet, revealing blocks and concealing blocks used the
dense block [29]. The details of its use are as follows: the
number of concealing blocks Rconceal and revealing blocks
Rreveal is set to 16. For the MNIST, Fashion-MNIST, CIFAR-
10, and CIFAR-100 datasets, we use 1% of the total train-
ing samples as cover images to generate the key samples,
i.e., we use 600 cover images to generate the key samples
for the MNIST and Fashion-MNIST datasets, and use 500
cover images to generate the key samples for the CIFAR-
10 and CIFAR-100 datasets. However, for the Caltech-101
dataset, we use 36 cover images to generate the key samples.
For each key sample, we randomly select a target label as
wm_label. The minibatch size for key samples is set to 20.
The Adam optimizer [30] (�1 =0.5, �2 = 0.999, eps=1× 10−6 ,
weight_decay=1× 10−5) is adopted with standard parame-
ters and an initial learning rate of 1 × 10−4.5 . We update the
learning rate by 0.5 every 150 iterations for MNIST and

Fashion-MNIST and every 600 iterations for CIFAR-10 and
CIFAR-100.

4.2.2 Discriminator

The discriminator is essentially a binary classifier, which
judges whether the key samples are generated through
revealing blocks. The discriminator is composed of several
linear layers and LReLU. The discriminator is trained in an
iterative manner by using the Adam algorithm [30] (�1 =0.5,
�2 = 0.999) and an initial learning rate of 0.001. When the
learning rate remains unchanged after 8 epochs, the learn-
ing rate is decayed by 0.2. For the MNIST, Fashion-MNIST,
CIFAR-10, and CIFAR-100 datasets, the minibatch size for
key samples is set to 20, and for the Caltech-101 dataset, the
minibatch size of key samples is set to 4.

4.2.3 Host DNN model

The host DNN model is the DNN model we want to protect.
For example, we use LeNet-3 [31] and LeNet-5 [31] to train
MNIST and Fashion-MNIST datasets, VGG-11 [32], VGG-
13 [32], VGG-16 [32], and VGG-19 [32] to train CIFAR-10
dataset, ResNet-18 [33], ResNet-34 [33], and ResNet-101
[33] to train CIFAR-100 dataset, PreActResNet-18 [34]
and PreActResNet-34 [34] to train Caltech-101 dataset. For
the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100
datasets, the host DNN model is simultaneously trained
by using the stochastic gradient descent(SGD) algorithm
[35] (momentum=0.9, weight_decay=5× 10−4) with an
initial learning rate of 0.1, which is decayed by 0.1 every
40 epochs. For the Caltech-101 dataset, because the images
have large sizes, the host DNN model is simultaneously
trained using SGD [35] with a batch size of 24 (20 origi-
nal samples and 4 key samples) and an initial learning
rate of 0.001, which is decayed by 0.1 per 40 epochs. For
the MNIST, and Fashion-MNIST datasets, we train for 30
epochs, and for the CIFAR-10, CIFAR-100, and Caltech-101
datasets, we train for 100 epochs.

4.3 Performance evaluation criteria

We compare and analyze the results by using fidelity, effec-
tiveness, and undetectability as the performance evalua-
tion criteria. Fidelity, effectiveness, and undetectability
are important reference standards for evaluating the per-
formance of the DNN watermarking framework. Fidelity,
effectiveness, and undetectability are mutually restricted, so
DNN watermarking technology needs to balance the rela-
tionship between the three. A good DNN model watermark-
ing framework should have good fidelity, good validity, and
good undetectability at the same time.

869Pattern Analysis and Applications (2023) 26:861–874

1 3

Fidelity, which determines whether the target DNN
reduces the accuracy of the host DNN model due to water-
marking; effectiveness, which determines whether the model
can reach the threshold and verify the ownership of the host
DNN model successfully; and undetectability, which deter-
mines whether the key samples are visually consistent with
the ordinary samples (to evaluate undetectability, we use the
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) to measure the distortion rate of xkey). Larger PSNR
and SSIM values indicate higher image quality.

4.4 Results

The accuracy, PSNR, and SSIM achieved before and after
watermarking are compared to verify the fidelity, effective-
ness, and undetectability of our DNN watermarking frame-
work on the DNN models. All the evaluated models are
trained in two different environments: without watermarks
and with watermarks. We first train the DNN models with-
out watermarks and evaluate them on the regular test set.
Then, we train DNN models with watermark embeddings
and evaluate them on the key samples.

4.4.1 Accuracies for the watermark‑free networks

As shown in Table 2, when the LeNet-3 and LeNet-5 mod-
els are trained without key samples, the baseline tested on
MNIST yields test accuracies of 98.52% and 98.37% and
watermark accuracies of 8.60% and 8.60%, respectively.

When the LeNet-3 and LeNet-5 models are trained with-
out key samples, the baseline tested on Fashion-MNIST
yields test accuracies of 87.87% and 87.35% and watermark
accuracies of 9.20% and 9.75%, respectively.

When the VGG-11, VGG-13, VGG-16, and VGG-19
models are trained without key samples, the baseline tested
on CIFAR-10 yields test accuracies of 91.15%, 93.01%,
92.51%, and 92.33% and watermark accuracies of 9.20%,
9.20%, 9.20%, and 9.20%, respectively.

When the ResNet-18, ResNet-34, and ResNet-101 mod-
els are trained without key samples, the baseline tested on
CIFAR-100 yields test accuracies of 76.18%, 76.93% and
77.76% and watermark accuracies of 1.00%, 1.00%, 1.00%
and 1.00%, respectively.

When the PreActResNet-18 and PreActResNet-34 mod-
els are trained without key samples, the baseline tested on
Caltech-101 yields test accuracies of 96.33% and 97.17%,
and watermark accuracies of 0.00% and 0.00%, respectively.

The accuracy across all key samples wm_acc in each
watermark-free network does not exceed 10.00%, which
represents a totally random guess.

4.4.2 Accuracies for the watermarked networks

When the DNN models are trained with key samples,
the threshold between the accuracy of the regular test set
test_acc∗ and the benchmark accuracy test_acc does not
exceed T, and the accuracy of the key samples wm_acc∗ is
greater than the minimum value Min. The copyright of each
DNN model can be effectively proven.

As shown in Table 2, all watermarked DNN models
achieve wm_acc∗ values that are greater than 90% on the
key samples, and VGG-13, PreActResNet-18, and PreAc-
tResNet-34 even achieve accuracies of 100%. A compari-
son with the wm_acc achieved with the same DNN, mod-
els shows that the watermarked DNN models learn the key
samples very successfully, and we set Min to 90%. That is,

Table 2 Accuracy of different DNN models on regular test set and
key samples: test_acc is the benchmark accuracy in watermark-free
network, test_acc∗ is the accuracy of the regular test set in water-
marked network, wm_acc is the accuracy of the key samples in

watermark-free network, and wm_acc∗ is the accuracy of the key
samples in watermarked network. Quantitative results of the proposed
DNN watermarking algorithm: psnr_s is calculated between xsecret
and xsecret_rev , psnr_c and ssim are calculated between xkey and xcover

Datasets DNN models test_acc test_acc * wm_acc wm_acc * psnr_s psnr_c ssim

MNIST LeNet-3 [31] 98.52% 97.55% (↓ �.��) 8.60% 99.20% 23.98 19.01 0.9254
LeNet-5 [31] 98.37% 97.52% (↓ 0.85) 8.60% 94.00% 27.68 21.15 0.9556

Fashion-MNIST LeNet-3 [31] 87.87% 86.10%(↓ 1.77) 9.20% 94.40% 21.86 15.42 0.8650
LeNet-5 [31] 87.35% 84.32%(↓ �.��) 9.75% 96.15% 22.17 15.70 0.8755

CIFAR-10 VGG-11 [32] 91.15% 90.62%(↓ 0.53) 9.20% 98.60% 39.57 34.43 0.9891
VGG-13 [32] 93.01% 92.14%(↓ �.��) 9.20% 100.00% 39.70 32.52 0.9824
VGG-16 [32] 92.51% 92.14%(↓ 0.37) 9.20% 94.80% 40.67 34.43 0.9897
VGG-19 [32] 92.33% 91.49%(↓ 0.84) 9.20% 99.20% 42.67 34.51 0.9893

CIFAR-100 ResNet-18 [33] 76.18% 75.29% (↓ 0.89) 1.00% 95.00% 42.83 34.48 0.9896
ResNet-34 [33] 76.93% 72.63%(↓ �.��) 1.00% 98.80% 43.10 35.96 0.9932
ResNet-101 [33] 77.76% 74.78% (↓ 2.98) 1.00% 92.40% 43.03 33.83 0.9879

Caltech-101 PreActResNet-18 [34] 96.33% 95.83% (↓ �.��) 0.00% 100.00% 34.59 30.51 0.8823
PreActResNet-34 [34] 97.17% 96.83%(↓ 0.34) 0.00% 100.00% 35.12 29.56 0.8535

870 Pattern Analysis and Applications (2023) 26:861–874

1 3

It is found that the performance of the DNN models does
not decrease significantly after embedding watermarks.
The experimental results show that the accuracy degrada-
tion does not exceed 0.97% on the MNIST dataset, 3.03 %
on the Fashion-MNIST dataset, 0.87% on the CIFAR-10
dataset, 4.30% on the CIFAR-100 dataset, and 0.50% on the
Caltech-101 dataset. The average rates of decline for differ-
ent datasets with different DNN models is 3.99%, and the
embedding of watermarks has little impact on the perfor-
mance of the DNN models. We set T to 5%, i.e.,

4.4.3 PSNR and SSIM values

As shown in Table 2, when the CIFAR-100 dataset is used
to train ResNet-34, psnr_s reaches a maximum of 43.10,
psnr_c reaches a maximum of 35.96, and ssim reaches a
maximum of 0.9932. However, we can see that the psnr and
ssim values are relatively low for the MNIST and Fashion-
MNIST datasets. When the Fashion-MNIST dataset is

(23)wm_acc∗ ≥ 90%.

(24)test_acc∗ − test_acc ≤ 5%.

used to train LeNet-3, psnr_s reaches a minimum of 21.86,
psnr_c reaches a minimum of 15.42, and ssim reaches a
minimum of 0.8650. The proposed DNN watermarking
algorithm generates images with very high quality for the
CIFAR-10, CIFAR-100, and Caltech-101 datasets and gener-
ates images with very poor quality for the MNIST and Fash-
ion-MNIST datasets. This is because the DNN watermarking
algorithm is based on a reversible image hiding network, and
this network makes it easier to complete the task of when
utilizing a colorful image dataset with a large size. As shown
in Fig. 2, for Caltech-101, we use the grayscale ”IEEE” logo
with a size of 300×200. We demonstrate the hiding ability
of our DNN watermarking framework for PreActResNet-18,
and we can see that the visual presentations of the key sam-
ple and the cover image are almost the same.

4.4.4 Comparison with other methods

To verify the effectiveness of our approach, we compare
our DNN watermarking method with an undetectable
dynamic watermarking method (Blind-Watermark, devel-
oped in [18]) in Table 3. Table 3 reports the comparison
results obtained after testing on ResNet-18, ResNet-34,
and ResNet-101 with the CIFAR-100 dataset. For the same

Fig. 2 Some visual examples to
show the capability of the pro-
posed DNN watermarking algo-
rithm: the cover image (Row 1),
the key sample (Row 2), and the
secret images(Row 3). Almost
no difference between the cover
image and the key sample can
be observed

871Pattern Analysis and Applications (2023) 26:861–874

1 3

DNN model, the Blind-Watermark method performs worse
than our DNN watermarking method mainly because our
method is based on a reversible image hiding network; thus,
it has a greater ability to evaluate undetectability. It is worth
mentioning that our method achieves improvements over
the Blind-Watermark method of 1.35%, 5.80%, 5.67%, and
0.0089 in terms of test_acc∗ , wm_acc∗ , psnr_c , and ssim,
respectively, on ResNet-18. Our method achieves improve-
ments over the Blind-Watermark method of 6.60%, 6.48%
and 0.0108 in terms of wm_acc∗ , psnr_c , and ssim, respec-
tively, on ResNet-34. Our method achieves improvements
over the Blind-Watermark method of 11.00%, 2.58%, and
0.0014 in terms of wm_acc∗ , psnr_c , and ssim, respectively,
on ResNet-101. Additionally, our three DNN models achieve
surprising psnr_s results of 42.83, 43.10, and 43.03 by using
our DNN watermarking method, because the Blind-Water-
mark method does not extract secret images, and psnr_s can-
not be calculated.

4.5 Extensions

In this subsection, we examine the efficacy of expansion
factors for our proposed DNN watermarking method, for
instance, the sizes of secret images, the choice of secret
images, and the number of key samples. A strong baseline
DNN model(VGG-16) is exploited for training on CIAFR-
10 to evaluate the efficacy of these expansion factors, and
the training details maintain the same setting as those in the
above experiments.

4.5.1 The sizes of secret images

In this work, we set the sizes of secret images S to be an
expansion factor, which represents the ability of the DNN
model watermarking framework to hide secret images with
different capacities. We analyze the contributions of S on
the CIFAR-10 dataset. We use the color ”Flower” image as
the default secret image for in this work and then vary its
size from 32× 32 to 64× 64 and to 128×128 to evaluate the
resulting performance. As shown in Table 4, as the expan-
sion factor S increases, test_acc∗ , psnr_s , psnr_c , and ssim
decrease, but wm_acc∗ increases, even reaching 100%. Fur-
thermore, we demonstrate the effectiveness of our method on
the large-capacity colorful image hiding task. Some visual Ta

bl
e

3
 C

om
pa

ris
on

 w
ith

 th
e

B
lin

d-
W

at
er

m
ar

k
m

et
ho

d
un

de
r t

hr
ee

 D
N

N
 m

od
el

s o
n

th
e

C
IF

A
R-

10
0

da
ta

se
t

M
et

ho
d

Re
sN

et
-1

8
[3

3]
Re

sN
et

-3
4

[3
3]

Re
sN

et
-1

01
 [3

3]

te
st_

ac
c*

w
m

_a
cc

*
ps

nr
_s

ps
nr

_c
ss

im
te

st_
ac

c*
w

m
_a

cc
*

ps
nr

_s
ps

nr
_c

ss
im

te
st_

ac
c*

w
m

_a
cc

*
ps

nr
_s

ps
nr

_c
ss

im

B
lin

d-
W

at
er

-
m

ar
k

[1
8]

73
.9

4%
89

.2
0%

–
28

.8
1

0.
98

07
74

.3
1%

92
.2

0%
–

29
.4

8
0.

98
24

74
.1

7%
81

.4
0%

–
31

.2
5

0.
98

65

O
ur

s
75

.2
9%

95
.0

0%
42

.8
3

34
.4

8
0.

98
96

72
.6

3%
98

.8
0%

43
.1

0
35

.9
6

0.
99

32
74

.7
8%

92
.4

0%
43

.0
3

33
.8

3
0.

98
79 Table 4 Quantitative results of our method with different size secret

images. We take CIFAR-10 task for example

Size test_acc* wm_acc* psnr_s psnr_c ssim

Baseline (32×32) 92.14% 94.80% 40.67 34.43 0.9897
64×64 90.95% 100.00% 36.79 29.43 0.9211
128×128 90.83% 100.00% 30.79 25.37 0.7685

872 Pattern Analysis and Applications (2023) 26:861–874

1 3

Fig. 3 Some visual examples to show the capability of the proposed DNN watermarking algorithm: the cover image (Row 1, 4), the key sample
(Row 2, 5), and the secret image(Row 3, 6), almost no difference between cover image and key sample can be observed

Fig. 4 Some visual examples to show the capability of the proposed DNN watermarking algorithm: the cover image (Row 1, 4, 7), the key sam-
ple (Row 2, 5, 8), and the secret image (Row 3, 6, 9), almost no difference between cover image and key sample can be observed

4.5.2 The choice of secret images

In this work, we set the choice of secret images to be an
expansion factor, which represents the ability of the DNN
model watermarking framework to hide different secret
images. We change the secret image from the grayscale
”IEEE” image logo with a size of 32× 32 to color ”Flower”
image with a size of 32× 32 and to the colorful noise image
with a size of 32× 32 to evaluate the resulting performance.
As shown in Table 5, when the secret image is the gen-
erated color noise image at random, psnr_s and psnr_c
decrease significantly. When the secret images are the
grayscale ”IEEE” and color ”Flower” images, each value
is high in Table 5. The experimental results show that for
gray and color secret images, the host DNN model can eas-
ily learn the key samples, and the key samples are highly
undetectable. Some visual results are shown in Fig. 4. For

Table 5 Quantitative results of our method with different secret
images. We take CIFAR-10 task for example

Secret images Test_acc* wm_acc* psnr_s psnr_c ssim

Baseline(IEEE) 92.14% 94.80% 40.67 34.43 0.9897
Flower 92.10% 98.40% 40.57 33.88 0.9880
Noise 91.87% 99.20% 30.85 23.24 0.9046

results are shown in Fig. 3. For the CIFAR-10 dataset, we
use the ”Flower” image with different sizes as secret images.
We demonstrate the hiding ability of our DNN watermarking
framework for secret images of different sizes, and we can
see that the visual representations of key samples and cover
images are almost the same.

873Pattern Analysis and Applications (2023) 26:861–874

1 3

CIFAR-10, we use the ”IEEE” logo, ”Flower” image, and
color noise as secret images. We demonstrate the hiding
ability of our DNN watermarking framework for different
secret images, and we can see that the visual represen-
tations of key samples and cover images are almost the
same.

4.5.3 The number of key samples

In this work, we set the number of key samples to be an
expansion factor. We change the number of key samples
from 1% of the training set to 0.5% of the training set and
to 2% of the training set to evaluate the resulting perfor-
mance. If too many key samples are selected, the perfor-
mance of the host DNN model will be affected, but the
host DNN model can learn key samples easily, and the
key samples are highly undetectable. As shown in Table 6,
when the numbers of key samples are 1% and 2% of the
training set, psnr_s exceeds 40, psnr_c exceeds 33, and
ssim exceeds 0.98. When the number of key samples is
2% of the training set, wm_acc∗ even reaches 100%. If
the number of key samples is too small, it will provide an
opportunity for an attacker to attack the host DNN model
more easily. It can be seen that psnr_c , psnr_c , and ssim
decrease when the number of key samples is 0.5% of the
training set in Table 6.

5 Conclusion

In this paper, we present a DNN model watermarking
framework based on a reversible image hiding network
to protect the copyrights of DNN models. This is a novel
dynamic watermarking approach to defense evasion
attacks and complements the undetectable dynamic water-
marking method. With our proposed method, DNN model
copyrights can be protected successfully without affecting
the main functions of the host DNN models. Taking advan-
tage of hiding security and high capacity ability on large-
capacity colorful image hiding task of the reversible image
hiding network, our DNN watermarking framework has
better performance in colorful image datasets with a large

size. We implement it on 5 datasets and 11 popular DNN
models, the experimental results demonstrate that our pro-
posed DNN model watermarking framework can ensure
fidelity, effectiveness, and undetectability of the DNN
model watermark. And then we compare our DNN water-
marking method with an undetectable dynamic watermark-
ing method (Blind-Watermark). Finally, we examine the
efficacy of the expansion factors of our proposed DNN
watermarking method, e.g., the sizes of secret images, the
choice of secret images, and the number of key samples.

Acknowledgement This work is supported by the National Natural
Science Foundation of China(no.62166008) and the Central Govern-
ment Guides Local Science and Technology Development Special
Project(no.QKZYD[2022]4054).

Data Availability Statement The data used to support the findings of
this study are available from the corresponding author upon request.

Declaration

Conflict of interest This manuscript has not been published or pre-
sented elsewhere in part or in entirety and is not under consideration
by another journal. We have read and understood your journal’s poli-
cies, and we believe that neither the manuscript nor the study violates
any of these. I would like to declare on behalf of my co-authors that
the work described was original research that has not been published
previously, and not under consideration for publication elsewhere, in
whole or in part. All the authors listed have approved the manuscript
that is enclosed.

References

 1. Wolfgang RB, Delp EJ (1996) A watermark for digital images. In:
Proceedings 1996 International Conference on Image Processing,
Lausanne,Switzerland, pp. 219–222

 2. Namuduri VR, Pandit SNN (2007) Multimedia digital rights
protection using watermarking techniques. Inf Secur J A Glob
Perspect 16(2):93–99

 3. Sharma S, Zou JJ, Fang G (2020) A novel signature watermark-
ing scheme for identity protection. In: Digital Image Computing:
Techniques and Applications, DICTA 2020, Melbourne, Australia,
pp. 1–5

 4. Tu S-F, Hsu C-S (2006) A dct-based ownership identification
method with gray-level and colorful signatures. Pattern Anal Appl
9(2):229–242

 5. Hilal AM, Al-Wesabi FN, Hamza MA, Medani M, Mahmood K,
Mahzari M (2022) Content authentication and tampering detec-
tion of arabic text: an approach based on zero-watermarking and
natural language processing. Pattern Anal Appl 25(1):47–62

 6. Li Y, Wang H, Barni M (2021) A survey of deep neural network
watermarking techniques. Neurocomputing 461:171–193

 7. Uchida Y, Nagai Y, Sakazawa S, Satoh S (2017) Embedding
watermarks into deep neural networks. In: Proceedings of the
2017 ACM on International Conference on Multimedia Retrieval,
ICMR 2017, Bucharest, Romania, pp. 269–277

 8. Wang T, Kerschbaum F (2019) Attacks on digital watermarks
for deep neural networks. In: IEEE International Conference on
Acoustics, Speech and Signal Processing,ICASSP 2019, Brighton,
United Kingdom, pp. 2622–2626

Table 6 Quantitative results of our method with different number of
key samples. We take CIFAR-10 task for example

Number of key
samples

test_acc* wm_acc* psnr_s psnr_c ssim

0.5% 91.59% 99.15% 32.75 26.21 0.9263
Baseline(1%) 92.14% 94.80% 40.67 34.43 0.9897
2% 91.61% 100.00% 40.92 33.74 0.9895

874 Pattern Analysis and Applications (2023) 26:861–874

1 3

 9. Wang T, Florian K (2019) Robust and undetectable white-box
watermarks for deep neural networks. CoRR arXiv: abs/ 1910.
14268

 10. Wang T, Florian K (2021) Riga: covert and robust white-box
watermarking of deep neural networks. In: Proceedings of the
Web Conference, pp. 993–1004

 11. Kuribayashi M, Tanaka T, Funabiki N (2020) Deepwatermark:
Embedding watermark into DNN model. In: Asia-Pacific Signal
and Information Processing Association Annual Summit and Con-
ference, APSIPA 2020, Auckland, New Zealand, pp. 1340–1346

 12. Rouhani BD, Chen H, Koushanfar F (2018) Deepsigns: a generic
watermarking framework for IP protection of deep learning mod-
els. CoRR arXiv: abs/ 1804. 00750

 13. Adi Y, Baum C, Cissé M, Pinkas B, Keshet J (2018) Turning your
weakness into a strength: watermarking deep neural networks by
backdooring. In: 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, pp. 1615–1631

 14. Zhang J, Gu Z, Jang J, Wu H, Stoecklin MP, Huang H, Molloy IM
(2018) Protecting intellectual property of deep neural networks
with watermarking. In: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, AsiaCCS 2018,
Incheon, Republic of Korea, pp. 159–172

 15. Chen H, Rouhani BD, Fu C, Zhao J, Koushanfar F (2019) Deep-
marks: A secure fingerprinting framework for digital rights man-
agement of deep learning models. In: Proceedings of the 2019 on
International Conference on Multimedia Retrieval, ICMR 2019,
Ottawa, ON, Canada, pp. 105–113

 16. Zhang J, Chen D, Liao J, Zhang W, Feng H, Hua G, Yu N (2021)
Deep model intellectual property protection via deep watermark-
ing. CoRR arXiv: abs/ 2103. 04980

 17. Hitaj D, Hitaj B, Mancini LV (2019) Evasion attacks against
watermarking techniques found in mlaas systems. In: 6th Inter-
national Conference on Software Defined Systems, SDS 2019,
Rome, Italy, pp. 55–63

 18. Li Z, Hu C, Zhang Y, Guo S (2019) How to prove your model
belongs to you: a blind-watermark based framework to protect
intellectual property of DNN. In: Proceedings of the 35th Annual
Computer Security Applications Conference,ACSAC 2019, San
Juan, PR, USA, pp. 126–137

 19. Li Z (2019) Deepstego: Protecting intellectual property of deep
neural networks by steganography. CoRR arXiv: abs/ 1903. 01743
Withdrawn

 20. Pevný T, Filler T, Bas P (2010) Using high-dimensional image
models to perform highly undetectable steganography. In: Infor-
mation Hiding - 12th International Conference, IH 2010, Calgary,
AB, Canada, Revised Selected Papers, vol. 6387, pp. 161–177

 21. Volkhonskiy D, Borisenko B (2016) Generative adversarial net-
works for image steganography. ICLR 2016 Open Review

 22. Shi H, Dong J, Wang W, Qian Y, Zhang X (2017) SSGAN:
secure steganography based on generative adversarial networks.
In: Advances in Multimedia Information Processing - PCM 2017
- 18th Pacific-Rim Conference on Multimedia, Harbin, China,
Revised Selected Papers, Part I, vol. 10735, pp. 534–544

 23. Zhang KA, Cuesta-Infante A, Xu L, Veeramachaneni K (2019)
Steganogan: high capacity image steganography with gans. CoRR
arXiv: abs/ 1901. 03892

 24. Jing J, Deng X, Xu M, Wang J, Guan Z (2021) Hinet: deep
image hiding by invertible network. In: Proceedings of the IEEE/
CVF International Conference on Computer Vision (ICCV), pp.
4733–4742

 25. Cortes C, LeCun Y, Burges CJ (1998) The mnist database of hand-
written digits. http:// yann. lecun. com/ exdb/ mnist/

 26. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. CoRR
arXiv: abs/ 1708. 07747

 27. Krizhevsky A (2009) Learning multiple layers of features from
tiny images. J Comput Sci Dep, 32–33

 28. Kinnunen T, Kamarainen J, Lensu L, Lankinen J, Kälviäinen H
(2010) Making visual object categorization more challenging:
Randomized caltech-101 data set. In: 20th International Confer-
ence on Pattern Recognition, ICPR 2010, Istanbul, Turkey, pp.
476–479

 29. Wang X, Yu K, Wu S (2018) ESRGAN: enhanced super-resolution
generative adversarial networks. In: Computer Vision - ECCV
2018 Workshops - Munich, Germany, Proceedings, Part V, vol.
11133, pp. 63–79

 30. Kingma DP (2015) Ba J (2015) Adam: A method for stochastic
optimization. In: Bengio Y, LeCun Y (eds) 3rd International Con-
ference on Learning Representations, ICLR 2015. CA, USA, May,
San Diego, pp 7–9

 31. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

 32. Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In: 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA,
USA, Conference Track Proceedings

 33. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning
for image recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, pp. 770–778

 34. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep
residual networks. In: Computer Vision - ECCV 2016 - 14th Euro-
pean Conference, Amsterdam, The Netherlands, Proceedings, Part
IV, vol. 9908, pp. 630–645

 35. Robbins H, Monro S (1951) A stochastic approximation method.
Ann Math Stat 22(3):400–407

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/1910.14268
http://arxiv.org/1910.14268
http://arxiv.org/1804.00750
http://arxiv.org/2103.04980
http://arxiv.org/1903.01743
http://arxiv.org/1901.03892
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/abs/1708.07747

	Deep neural network watermarking based on a reversible image hiding network
	Abstract
	1 Introduction
	2 Related work
	2.1 Static watermarking
	2.2 Dynamic watermarking
	2.3 Image hiding technology

	3 Methodology
	3.1 Overview
	3.2 Generation
	3.3 Embedding
	3.4 Verification
	3.5 Loss function
	3.5.1 Generation loss
	3.5.2 Discrimination loss
	3.5.3 Embedding loss

	3.6 Global watermarking algorithm

	4 Experiments
	4.1 Dataset
	4.2 Training details
	4.2.1 Reversible image hiding network
	4.2.2 Discriminator
	4.2.3 Host DNN model

	4.3 Performance evaluation criteria
	4.4 Results
	4.4.1 Accuracies for the watermark-free networks
	4.4.2 Accuracies for the watermarked networks
	4.4.3 PSNR and SSIM values
	4.4.4 Comparison with other methods

	4.5 Extensions
	4.5.1 The sizes of secret images
	4.5.2 The choice of secret images
	4.5.3 The number of key samples

	5 Conclusion
	Acknowledgement
	References

