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Abstract
Systems for automatic facial expression recognition (FER) have an enormous need in advanced human-computer interac-
tion (HCI) and human-robot interaction (HRI) applications. Over the years, researchers developed many handcrafted feature 
descriptors for the FER task. These descriptors delivered good accuracy on publicly available FER benchmark datasets. 
However, these descriptors generate high dimensional features that increase the computational time of the classifiers. Also, 
a significant proportion of the features are irrelevant and do not provide additional information for facial expression analy-
sis. Adversely, these redundant features degrade the classification accuracy of the FER algorithm. This study presents an 
alternate, simple, and efficient scheme for FER in static images using the Boosted Histogram of Oriented Gradient (BHOG) 
descriptor. The proposed BHOG descriptor employs the AdaBoost feature selection algorithm to select important facial 
features from the original high-dimensional Histogram of Oriented Gradient (HOG) features. The BHOG descriptor with 
a reduced feature dimension decreases the computational cost without diminishing the recognition accuracy. The proposed 
FER pipeline tuned on the optimal values of different hyperparameters achieves competitive recognition accuracy on five 
benchmark FER datasets, namely CK+, JAFFE, RaFD, TFE, and RAF-DB. Also, the cross-dataset experiments confirm the 
superior generalization performance of the proposed FER pipeline. Finally, the comparative analysis results with existing 
FER techniques revealed the effectiveness of the pipeline. The proposed FER scheme is computationally efficient and clas-
sifies facial expressions in real time.

Keywords Facial expression recognition · Feature selection · Histogram of oriented gradient (HOG) · AdaBoost feature 
selection · Kernel extreme learning machine (K-ELM) classifier

1 Introduction

Systems for automatic FER provide crucial cues that can 
reveal an individual’s hidden intention and state of mind. 
Therefore, there has been a huge demand for robust and 
computationally efficient FER systems for numerous HCI-
based advanced assistive technologies. Besides, these 

systems can play a vital role in security and surveillance 
applications. Therefore, over the years, researchers devel-
oped several methods for emotion analysis using different 
input modalities. These include the use of visual sensors 
(RGB [1], thermal [2], and depth [3]), audio sensors [4], 
and sensors that capture physiological signals such as elec-
troencephalogram (EEG) [5], respiration (RSP), and heart 
rate variability (HRV). Techniques also exist for emotion 
recognition that uses combination of various physiological 
signals such as RSP and HRV [6], audio and visual [7], and 
EEG and visual signals [8, 9].

In the last few years, numerous works were proposed 
in the literature demonstrating the applicability of FER-
related technology in all spheres of human life. Alhussein 
[10] proposed a FER technique for the initial assessment of 
patients in an e-Healthcare platform. The work presented 
by Jeong and Ko [11] has demonstrated the usefulness 
of FER technology in the Advanced Driver-Assistance 
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System (ADAS). Using EEG signals, Mehdizadehfar et al. 
[5] demonstrated the impact of facial emotion recognition 
in the fathers of children with autism. Recently, Sini et al. 
[12] confirmed the applicability of an automatic emotion 
recognition system in the calibration of autonomous driv-
ing functions. Li et al. [13] proposed a technique for FER 
and integrated it with a societal robot to enhance human-
robot interaction (HRI). Finally, Yolcu et al. [14] proposed 
a FER-based system to detect facial expressions in people 
suffering from neurological disorders automatically.

Based on the learning scheme, the vision-based meth-
ods for FER can be divided broadly into two catego-
ries: the traditional machine learning-based approaches 
[15, 16], and deep learning-based approaches [17]. The 
machine learning-based approach for FER uses a combina-
tion of handcrafted feature extractors like the local binary 
pattern (LBP) and a machine learning classifier such as a 
support vector machine (SVM). Furthermore, since the 
dimensions of the handcrafted features are high, to over-
come the curse of dimensionality and to reduce the overall 
computational time of the system, an optional dimension-
ality reduction or feature selection schemes have also been 
utilized in the FER task [15, 16, 18, 19]. Although the 
convolutional neural networks (CNNs), being data-driven, 
have attained state-of-the-art accuracy on several bench-
mark FER datasets, the FER methods based on traditional 
machine learning have also reported achieving competitive 
performance [20].

The current research in traditional machine learning-
based FER domain has been towards designing discriminate 
and robust feature extractors [21], efficient feature selection 
algorithms [19], and powerful multi-class expression classi-
fier [22]. This work investigates the effectiveness of the Ada-
Boost feature selection (FS) algorithm, Histogram of Ori-
ented Gradient (HOG) feature extractor, and Kernel Extreme 
Learning Machine (K-ELM) classifier to implement a robust 
and computationally efficient system for FER. To this end, 
we proposed a FER pipeline that consists of four stages: 
input pre-processing, feature extraction, feature selection, 
and expression classification. For performance evaluation, 
the pipeline is validated on five FER benchmark datasets 
(CK+, JAFFE, RaFD, TFE, and RAF-DB) and compared 
with state-of-the-art FER methods. The main contributions 
of the proposed FER framework are as follows:

• Designed and implemented a computationally efficient 
and robust algorithmic pipeline for automatic FER using 
different HOG descriptors and AdaBoost feature selec-
tion (FS) algorithm.

• Deployment of the kernel extreme learning machine 
(K-ELM) classifier to classify several facial expres-
sions. K-ELM has not been utilized much in FER tasks. 
However, it is computationally efficient compared to the 

popular classifiers such as the Support Vector Machine 
(SVM) and Naive Bayes (NB).

• Devised a set of procedures to choose the best values of 
various hyperparameters in the proposed FER pipeline.

• Performance analysis of the proposed FER pipeline using 
three testing procedures, namely the tenfold cross-vali-
dation, train-test evaluation, and cross-dataset testing, on 
five benchmark FER datasets: CK+, JAFFE, RaFD, TFE, 
and RAF-DB.

We organize the remaining contents of this paper into the 
following sections: Section 2 provides the details of the 
related FER works available in the literature. In Sect. 3, 
we provide the overview of the proposed FER pipeline, 
along with details of its constituent units. Section 4 pro-
vides details of the experimental setup and FER datasets. It 
also includes performance evaluation results on the datasets 
along with necessary discussions. Discussion on the com-
putational performance analysis of the proposed and related 
FER methods makes the contents of Sect. 5. Finally, Sect. 6 
concludes the study with conclusive comments and future 
research directions.

2  Related works

Based on the feature type, available techniques for static 
image-based FER are categorized into appearance feature-
based methods, geometrical feature-based methods, and 
methods using the hybrid of the appearance and geometrical 
features [23]. Below, we briefly review the existing works on 
appearance feature-based methods for FER in static images.

2.1  Facial texture‑based methods for FER

Over the years, researchers developed several texture 
descriptors for image classification tasks. Among these 
descriptors, the Local Binary Pattern (LBP) and its vari-
ants have been utilized widely in the FER-related work [15, 
24–27]. Other advanced texture descriptors proposed for 
the FER task include the Gradient Local Ternary Pattern 
(GLTP) and its improved variant [16, 28], Improved Com-
pleted Local Ternary Patterns (ICLTP) [29], Neighborhood-
aware Edge Directional Pattern (NEDP) [30], Dynamic 
Local Ternary Pattern (DLTP) [31], Gradient Local Phase 
Quantization (GLPQ) [32], Local Directional Ternary Pat-
tern (LDTP) [33], and so on. Alhussein [10] introduced the 
multi-scale variant of the Weber Local Descriptor (MS-
WLD) for FER. Working on a similar line, other research-
ers developed improved variants of WLD, such as the Weber 
Local Binary Image Cosine Transform (WLBI-CT) [34] and 
DCT transformed WLD descriptor [35]. The FER method 
proposed by Siddiqi et al. [36] has used curvelet transform 
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to extract features from the facial images. The Elongated 
Quinary Pattern (EQP) with five-level encoding utilized by 
Al-Sumaidaee et al. [37] extracts highly discriminate facial 
features from Sobel convolved gradient magnitude and angu-
lar facial images.

Recently, Alphonse and Starvin [38] introduced two new 
directional patterns named the Maximum Response-based 
Directional Texture Pattern (MRDTP) and the Maximum 
Response-based Directional Number Pattern (MRDNP) 
for FER in constrained and unconstrained scenarios. Facial 
features extracted using MRDTP and MRDNP were first 
reduced using the Generalized Supervised Dimension reduc-
tion system (GSDRS) and eventually classified using the 
Extreme Learning Machine with Radial Basis Function 
(ELM-RBF) classifier. Gogić et al. [39] proposed a fast 
and efficient pipeline for FER that uses Local Binary Fea-
tures (LBF) descriptor to extract features from the facial 
images and a shallow neural network (NN) to classify the 
features into different expressions. Revina and Emmanuel 
[22] utilized the combination of the Scale-Invariant Feature 
Transform (SIFT) and a new texture descriptor called Scatter 
Local Directional Pattern (SLDP) for the FER task. The fea-
tures derived from the facial images were classified using the 
Multi-Support Vector Neural Network classifier optimized 
using the Whale-Grasshopper Optimization algorithm. In 
their other work [40], the authors employed the Support 
Vector Neural Network (SVNN) classifier to classify facial 
image features extracted using the Multi-Directional Trian-
gles Pattern (MDTP) descriptor.

2.2  Facial shape‑based methods for FER

Facial expression changes the shape of facial muscles, and 
thus, descriptors that encode these changes in facial muscles 
may be useful in identifying the expressions. Subsequently, 
researchers developed several descriptors to extract shape-
based facial information corresponding to different facial 
expressions. Carcagnì et al. [1] conducted a detailed study to 
analyze the impact of the HOG hyperparameters (cell size, 
number of bins, and type of orientations) on the recognition 
accuracy of the FER system. In other work [41], instead of 
directly using the HOG extracted facial features, the authors 
suggested using the difference of the features derived from 
the neutral and peak expression images. Additionally, the 
authors utilized the genetic algorithm to determine the 
optimal values of the HOG parameters. The FER scheme 
introduced by Nazir et al. [42] has also utilized the HOG 
descriptor for FER in facial images of different resolutions 
(128 × 128, 64 × 64, 32 × 32). Nigam et al. [43], on the other 
hand, proposed an advanced variant of the HOG descriptor 
named W_HOG for the FER task. The W_HOG descriptor, 
as the name suggests, applies HOG on the discrete wavelet 
transformed (DWT) facial images.

2.3  Hybrid methods for FER

Several FER techniques in the literature have also applied 
the fusion of facial texture and shape information extracted 
using appearance and shape descriptors, respectively. For 
instance, the multiple kernel learning (MKL) based FER 
scheme proposed by Zhang et al. [44] has utilized a fusion 
of HOG and LBP extracted facial features. Working on a 
similar line, Liu et al. [20] suggested fusing LBP and HOG 
features extracted from silent facial regions. The work pre-
sented in [45] has analyzed the effectiveness of facial texture 
features, facial shape features, and a hybrid of facial texture 
and shape features for the FER task. Yang et al. [46] sug-
gested fusing the facial appearance features extracted using 
LBP and deep geometric features extracted using facial 
landmarks. Their proposed FER pipeline utilized the Ran-
dom Forest (RF) classifier to classify the fused features into 
six basic facial expressions. The FER scheme introduced 
by Ghimire et al. [47] has employed the hybrid of appear-
ance and geometrical features. Once extracted, the appear-
ance and geometric features extracted from domain-specific 
facial regions were concatenated and classified using the 
SVM classifier. In their recent work, Shanthi and Nickolas 
[48] proposed a fusion of features derived from the facial 
images using LBP and the newly introduced local neighbor-
hood encoded pattern (LNEP).

2.4  Feature selection techniques for FER

Besides feature descriptors, researchers employed/devel-
oped several feature selection (FS) algorithms for the FER 
task in the last decade. These algorithms aim to improve the 
computational efficiency of the FER system without much 
degradation in its classification accuracy. The FS algorithms, 
by reducing the dimension of the facial features, not only 
enhance the classification time but, in most cases, also leads 
to improvement in the classification accuracy. Lajevardi and 
Hussain [49] investigated the role of the minimum redun-
dancy–maximum relevance (mRMR) feature selection (FS) 
algorithm for the FER task. In their other work [50], the 
authors analyzed the effectiveness of the mutual information 
feature selection (MIFS) algorithm, the mutual information 
quotient (MIQ) algorithm, and the Genetic algorithm (GA) 
for facial feature selection. Siddiqi et al. [36] introduced 
a normalized mutual information-based FS technique for 
FER that normalizes the mutual information and reduces 
the dominance of relevance or redundancy. For information 
regarding recent FS techniques for the FER task, we refer 
the readers to some of the recent works [18, 19].

Based on the above review, one can find that despite tre-
mendous advancement, the existing algorithms for static 
image-based FER using traditional machine learning are 
not suitable for deployment in real-world conditions. There 



384 Pattern Analysis and Applications (2023) 26:381–402

1 3

is a huge requirement for robust and compute-efficient FER 
algorithms for real-world applications. This work is an 
attempt to improve the robustness and computational effi-
ciency of the FER algorithm.

3  Proposed FER pipeline

The proposed FER pipeline shown in Fig. 1 involves five 
units executed in the following sequence: (1) face detection 
& landmark localization, (2) facial alignment & registration, 
(3) feature extraction, (4) feature selection, and (5) feature 
classification. The face detection & landmark localization 
unit determines the locations of faces and facial landmarks 
in the input frame. Based on the locations of the faces and 
landmarks in the input image, the face alignment & reg-
istration unit provides aligned facial images of a standard 
size. The feature extraction unit using the HOG descrip-
tor extracts features from the registered facial images. The 
dimensions of the HOG extracted features are high, and 
they include many redundant features. Therefore, the HOG 
features are passed to the AdaBoost feature selection (FS) 
algorithm to reduce their dimension and select only the rel-
evant facial features. Intuitively, out of many, the feature 
selector selects the expression-specific active facial patches 
(see Fig. 1). Finally, the feature classification unit using the 
Kernel Extreme Learning Machine (K-ELM) classifier clas-
sifies the selected features into facial expressions. Below, we 
provide further details of these constituent units.

3.1  Face detection and landmark localization

The face detection & landmark localization unit utilizes 
the Viola & Jones face detector [51] and Intraface facial 
landmark detector [52] to obtain the x and y coordinates of 
the face and the 68-facial landmarks, respectively. The face 
detector uses the cascade classifier trained on Multi-block 
local binary pattern (MB-LBP) [53]. Once detected, the 
unit passes face coordinates to the facial landmark local-
izer. The localizer uses the Supervised Descent Method 
(SDM) to mark the location of 68-facial landmarks on the 
detected faces.

3.2  Face alignment and registration

The face alignment & registration unit utilize the face and 
facial landmarks coordinates for facial image registration. 
Essentially, the unit uses the landmark coordinates of the 
eyes to compute the inter-ocular distance (D) and inter-
angle between the eyes’ center. In the subsequent step, 
the unit affine transforms the facial images for rotation 
rectification and crops the face region using the predefined 
value of D , as shown in Fig. 2. The cropping scheme dis-
cards redundant face regions and ensures spatial symmetry 
of facial components [1, 16]. Finally, the face alignment 
& registration unit scale the cropped image to a standard 
resolution.

Fig. 1  Algorithmic pipeline of the proposed facial expression recognition system
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3.3  Feature extraction

This study has employed three variants of the popular His-
togram of Oriented Gradient (HOG) descriptor for feature 
extraction from the facial images. The first variant, named 
HOGu, uses unsigned orientations, while the second vari-
ant, referred to as HOGs, using signed orientations, helps 
differentiate light-to-dark versus dark-to-light transitions in 
the facial images. The final variant termed HOGv is more 
compact and efficient. It uses both signed and unsigned ori-
entations to extract enhanced expression details from the 
facial images [54]. The gradient orientation bins in HOGu 
are evenly spaced between 0◦ to +180◦ , whereas in the HOGs 
variant, the bins are evenly divided between −180◦ to +180◦ . 
The descriptor places theta values less than 0◦ into the theta 
+ 180◦ value bin.

The HOG descriptor has several hyperparameters (cell size, 
block size, number of orientation bins, and block overlapping). 
The optimal values of these hyperparameters make HOG one 
of the most efficient descriptors that can extract discriminative 
features from facial images. Figure 3 shows the systematic 
representation of the steps involved in the extraction of facial 
features by the HOG descriptor. These steps are divided into: 
(1) Gradient magnitude and angle computation, (2) Gradient 
voting, and (3) Histogram normalization.

3.3.1  Gradient magnitude and angle computation

As shown in Fig. 3, each pixel I(x, y ) of a cell is convolved 
with predefined horizontal and vertical filters to generate hori-
zontal gradient Gx(x, y ) and vertical gradient Gy(x, y ), respec-
tively. The gradient calculation can be expressed mathemati-
cally as in Eqs. (1) and (2).

In the subsequent step, using Gx(x, y ) and Gy(x, y ), the gradi-
ent magnitude G(x, y ) and orientation �(x, y ) is computed using 
Eqs. (3) and  (4), respectively.

(1)Gx(x, y) = I(x + 1, y) − I(x − 1, y)

(2)Gy(x, y) = I(x, y + 1) − I(x, y − 1)

(3)G(x, y) =

√
Gx(x, y)

2 + Gy(x, y)
2

Fig. 2  Scheme used to crop 
facial image

Fig. 3  Sequence of steps used for feature extraction by the HOG descriptor
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Once the gradient magnitude of all the cells in a block 
has been calculated, the combined block magnitude is then 
multiplied with a Gaussian matrix fg of kernel size equal to 
the size of the block to get Gaussian weighted magnitude Gg 
[55], as illustrated in Eq. (5). Finally, the weighted gradient 
magnitudes are used for gradient voting, as discussed below.

3.3.2  Gradient voting

Each pixel within a cell donates a weighted vote in favor of 
an orientation histogram based on its gradient magnitude. 
The gradient magnitude corresponding to each pixel in the 
cell, in turn, is multiplied by a weight factor denoted by � , 
as discussed in [56] and computed using Eq. (6).

In Eq. (6), n is the bin to which the gradient orientation 
�(x, y ) belongs, and b is the value of the orientation bins. 
To overcome the aliasing artifacts, the histogram values of 
neighborhood bins, Gn and Gnearest are multiplied by weight 
factors (1 - � ) and � , as illustrated in Eqs. (7) and (8), respec-
tively. It is worth mentioning that in Eqs. (7) and (8), the 
Gaussian weighted magnitude Gg is used only in the case of 
HOGu and HOGs variants. For the HOGv variant, the opera-
tions are performed on the gradient magnitude G.

3.3.3  Histogram normalization

As discussed in the previous step, in the gradient voting 
step, each pixel in the cell voted in favor of an orientation 
histogram bin based on its gradient magnitude. Let S(s, t) 
denote the histogram having semicircle orientation with b 
bins in the range from 0◦ to +180◦ . All three variants of the 
HOG descriptor have eventually utilized such a histogram. 
Besides, the HOGv variant uses an additional histogram 
denoted as C(s, t). It corresponds to circular gradient orien-
tations with b equally divided orientation bins ranging from 
0◦ to 360◦ . Thus, the HOGu and HOGs variants only use 
contrast-sensitive orientations, whereas the HOGv variant 
includes both contrast-sensitive and contrast-insensitive gra-
dient orientations. For each cell histogram, the normalization 

(4)�(x, y) = arctan
Gy(x, y)

Gx(x, y)

(5)Gg(x, y) = fg ∗ G(x, y)

(6)� = (n + 0.5) −
b ∗ �(x, y)

�

(7)Gn = (1 − �) ∗ Gg(x, y)

(8)Gnearest = � ∗ Gg(x, y)

operation proceeds in two steps [57]. In the first step, gradi-
ent energy is computed for the block containing the cells. 
For the histograms S(s, t) and C(s, t) of the cell indexed 
by (s, t), the gradient energy HS�,� (s, t) and HC�,� (s, t) are 
estimated using Eqs. (9) and  (10), respectively, where, the 
variables � , � ∈ {-1,1}.

The gradient energies are subsequently utilized in the 
second step to normalize the histogram of the cell, as dem-
onstrates in Eq. (11).

3.3.4  Feature extraction using HOGu and HOGs

Figure 4 shows feature extraction scheme using the HOGu 
and HOGs descriptors. The input facial image of dimension 
147 × 108 is divided into 70 cells of 13 × 13 pixels. The 
cells are grouped into several blocks, wherein each block 
consists of 2 × 2 cells, each from the horizontal and vertical 
directions, with an overlap of one in both directions. In the 
case of HOGu, the gradient orientations in the range from 
0◦ to +180◦ are divided evenly into 21 histogram bins. While 
in the case of HOGs, the gradient orientations in the range 
from −180◦ to +180◦ are first converted in the range from 
0◦ to +180◦ and then divided into 21 equally spaced histo-
gram bins. Thus, from each of the four cells of a block, the 
descriptors extract 1 × 21-dimensional cell histogram. His-
tograms from the four cells of a block are concatenated and 
normalized to obtain 1 × 84-dimensional block histogram. 
Finally, all block histograms are concatenated to obtain the 
final 1 × 5880(=70 × 84) dimensional facial feature x.

3.3.5  Feature extraction using HOGv

Figure 5 shows details of the feature extraction framework 
using the HOGv descriptor. The descriptor divides the input 
facial image into 88 equal-sized cells of 13 × 13 pixels. 
Four cells, two from horizontal and vertical directions, are 
grouped into blocks with an overlap of one in these direc-
tions. Also, except for the boundary cells, other cells of the 

(9)
HS�,� (s, t) =

�‖S(s, t)‖2 + ‖S(s + �, t)‖2

+‖S(s, t + �)‖2 + ‖S(s + �, t + �)‖2� 1

2

(10)
HC�,� (s, t) =

�‖C(s, t)‖2 + ‖C(s + �, t)‖2

+‖C(s, t + �)‖2 + ‖C(s + �, t + �)‖2� 1

2

(11)F(s,t)=

⎛⎜⎜⎜⎜⎜⎝

S(s, t)∕HS−1,−1(s, t),C(s, t)∕HC−1,−1(s, t)

S(s, t)∕HS+1,−1(s, t),C(s, t)∕HC+1,−1(s, t)

S(s, t)∕HS+1,+1(s, t),C(s, t)∕HC+1,+1(s, t)

S(s, t)∕HS−1,+1(s, t),C(s, t)∕HC−1,+1(s, t)

⎞⎟⎟⎟⎟⎟⎠
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image are shared by four neighborhood blocks. Therefore, 
for each cell shared by four blocks, a 1 × 252(=4 × 1 × 
63)) dimensional features are extracted in the form of histo-
gram bins corresponding to both semicircular and circular 
orientations.

In contrast to the HOGs and HOGu variant, the HOGv 
variant uses a principal component analysis-like scheme to 
reduce the dimensions of the features. As shown in Fig. 5, 

the dimensionality reduction scheme uses column-wise 
and row-wise summations of bins of the cell to help the 
descriptor capture the overall gradient energy from all the 
four neighborhood blocks. Since each cell has 21 bins for 
the semicircular orientations and 42 bins for the circular 
orientations, 63 column summations are performed, con-
tributing 1 × 63 features to the final cell features. Mean-
while, the row summation captures the gradient energy of 

Fig. 4  Feature extraction using HOGu and HOGs descriptors

Fig. 5  Feature extraction using HOGv descriptor
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the cell over 63 orientations for each of the four neighbor-
hood blocks, contributing an additional 1 × 4 features to the 
overall cell features. Therefore, the final cell-based feature 
vector has a dimension of 1 × 67 compared to the original 1 
× 252-dimensional feature vector. In the final step of com-
putation, the descriptor concatenates the histogram features 
extracted from all the cells in the image to obtain the final 
feature vector x of dimension 1 × 5896(=88 × 67).

3.4  Feature selection

In image classification tasks, features play a fundamental 
role in successful learning. Usually, the dimension of the 
features obtained after the feature extraction is high. There-
fore, researchers developed several feature selection (FS) 
techniques to reduce the dimensions of the features. The 
FS algorithms select a subset of features from the original 
feature set such that the performance of the classifier, when 
trained on the selected subset of features, is at least equal 
or better than the performance obtained with the classifier 
trained on the original feature set. Thus, the FS methods pro-
vide a way of reducing the computational complexity of the 
classifier besides improving the classification performance. 
Besides, these techniques provide a better understanding of 
the data in machine learning or pattern recognition applica-
tions [58].

Based on their operations, the available techniques for FS 
are classified broadly into three categories: filter methods, 
wrapper methods, and embedded methods [59]. This study 
has used the boosting-based wrapper method called Ada-
Boost to select vital features from the original high-dimen-
sional HOG features [60]. AdaBoost, an important meta-
algorithm originally proposed for the pattern classification 
task, has also been utilized for FS in the FER tasks [15]. The 
AdaBoost algorithm utilizes a simple decision stump, a kind 
of decision tree with only one node, as the base learner. Dur-
ing training, the algorithm learns to find a weighted com-
bination of decision stumps and use the combination as a 
strong and efficient classifier. The simple decision stump 
classifier used by AdaBoost for feature classification might 
not be very accurate. However, from the feature selection 
perspective, its performance is sufficient, as a trained deci-
sion stump corresponds to a selected feature.

Algorithm 1 illustrates computation steps employed by 
the AdaBoost FS algorithm. Input to the algorithm is facial 
features with corresponding expression labels, the number 
of iterations T  , and the minimum accepted error �min . The 
algorithm terminates once it reaches the specified �min or 
the iterations T  . Since the naive implementation of the Ada-
Boost algorithm is primarily binary, we used the one-versus-
rest (OVR) multi-class scheme to select features from seven 
basic facial expressions. Feature selection using the OVR 
runs the binary AdaBoost FS algorithm seven times (equal 

to the number of facial expressions), and each run uses fea-
tures from one of the facial expressions as positive class 
and the remaining expression as negative class. Finally, the 
FS scheme concatenates the features selected in each run to 
obtain the final subset of AdaBoost selected HOG features.

3.5  Kernel extreme learning machine (K‑ELM) 
classifier

The proposed FER pipeline has utilized the kernelized ver-
sion of the Extreme Learning Machine (ELM) [61] classifier 
named the Kernel ELM (K-ELM) for the classification of 
facial expressions. Although the ELM classifier works very 
well in most pattern classification applications, the K-ELM 
classifier is optimal in situations where the feature transfor-
mation function is unknown [57]. Also, the classical ELM 
classifier requires many hidden nodes to achieve better per-
formance. A large number of hidden nodes increases the 
computational cost of the classifier and its training time. 
It also increases the sensitiveness in the classifiers’ perfor-
mance due to the randomness of the parameters [62]. While 
the kernels in the K-ELM classifier directly map the features 
into higher dimensional space. Thus, apart from enhanc-
ing intra-class separability among the facial expressions, it 
also attains stable performance. For a detailed discussion on 
the ELM and the K-ELM classifier, we refer the readers to 
recent work on FER [31].

4  Experimental results and discussions

This section discusses the experimental details performed to 
obtain the best values of the facial image & the cell size, the 
number of the AdaBoost selected features, and the values of 
the parameters of the K-ELM classifier. We conducted these 
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experiments in the MATLAB 2015a environment running 
on a Windows 10 machine with 16 GB RAM. For feature 
extraction using the HOGs and HOGu descriptor, we used 
the HOG implementation that comes with MATLAB. For 
feature extraction using the HOGv descriptor, on the other 
hand, the experiments used the MATLAB executable code 
of the descriptor that comes with the open-source VLFeat 
computer vision library [63].

4.1  Database details

In this section, we provide details of the CK+, JAFFE, 
RaFD, TFE, and RAF-DB datasets used in this study to 
investigate the effectiveness of the proposed FER pipeline.

4.1.1  CK+

The CK+ dataset is an extended variant of the Cohn-Kanade 
dataset and has expression sequences of both male and 
female participants [64]. The expression sequences contain 
images that start with the neutral expression and end at the 
peak expression. For a fair comparison, we prepared the 
dataset following the standard protocol used in the static 
image-based FER [39]. The final dataset contains 1236 facial 
images belonging to seven expressions having distribution as 
adopted by Saurav et al. [31] in their work on FER.

4.1.2  JAFFE

The Japanese female facial Expression (JAFFE) dataset is 
another in-the-lab FER dataset collected with the participa-
tion of ten Japanese female actresses [65]. The dataset con-
tains 213 expressive facial images belonging to seven facial 
expressions: anger, disgust, fear, happiness, neutrality, sad-
ness, and surprise.

4.1.3  RaFD

The Radboud Faces Database (RaFD) is a new FER data-
set introduced to validate the performance of FER algo-
rithms in static images [66]. Sixty-seven participants 
posed for the expressions with three gaze directions and 
five facial orientations during the dataset preparation. In 
this study, for a fair comparison with the existing works, 
we created five sub-categories (RaFD Category-1, RaFD 
Category-2, RaFD Category-3, RaFD Category-4, and 
RaFD Category-5) from the original RaFD dataset. All the 
five sub-categories of the dataset contain only the frontal 
facial images with different gaze directions. The RaFD 
Category-1 dataset consists of 469 (=67× 7) frontal gaze 
facial images belonging to anger, contempt, disgust, fear, 
happiness, sadness, and surprise expressions. The second 
category of the dataset, named RaFD Category-2, consists 

of seven prototypical facial expressions (anger, disgust, 
fear, happiness, neutral, sadness, and surprise) having a 
distribution similar to the RaFD Category-1. The RaFD 
Category-3 dataset has 536 (=67× 8) frontal gaze facial 
images from anger, contempt, disgust, fear, happiness, 
neutral, sad, and surprise expressions. While the fourth 
category of the dataset, named the RaFD Category-4, is 
the extended version of the Category-2 dataset and has 
facial images from all three gaze directions (left look-
ing, right looking, and frontal), making a total of 1407 
(=201× 7) images in the dataset. Similarly, the RaFD Cat-
egory-5 dataset is the extended variant of the Category-3 
dataset, and it contains 1608 (=201× 8) facial images from 
all three gaze directions (left looking, right looking, and 
frontal).

4.1.4  TFE

The Tsinghua facial expression (TFE) dataset is a recently 
introduced FER dataset that consists of facial images 
belonging to eight facial expressions: anger, contemptu-
ous, disgust, fear, happiness, neutral, sadness, and sur-
prise [67]. The dataset is the first of its kind introduced 
to study age-associated changes in facial expressions in 
the lab conditions and has images captured by 110 (63 
young and 47 old) Chinese male and female adults. In this 
study, on the TFE dataset, we conducted three experiments 
to analyze the efficiency of the proposed FER pipeline. 
The age-independent FER experiment splits the complete 
dataset into train and test set in the 2:1 ratio. Out of the 63 
young and 47 old subjects, the train set contains 583 facial 
images belonging to 42 young and 31 old subjects, while 
the test set contains 295 facial images belonging to the rest 
of the subjects. In the first age-dependent experiment, the 
train set consists of 376 facial images of the old subjects, 
and the test set contains 502 facial images of young sub-
jects. In contrast, the age-dependent second experiment 
uses 502 facial images of the young and 376 facial images 
of the old subjects as the train and test set, respectively.

4.1.5  RAF‑DB

RAF-DB is a real-world FER dataset that contains 30,000 
facial images labeled with six basic expressions (anger, 
disgust, fear, happy, sad, and surprise) plus neutral and 
twelve compound expressions [68]. Forty trained inde-
pendent labelers annotated each of the facial images in 
the dataset. Our experiment used only facial images with 
basic expressions, including 12,271 facial images as the 
training set and 3,068 facial images as the test set.
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4.2  Determination of optimal values 
of hyperparameters

As discussed in Sections 3.3, 3.4, and 3.5 , the proposed 
FER pipeline has several hyperparameters. Therefore, the 
initial experiments were conducted on the CK+ dataset to 
determine the cell size, the number of histogram bins, and 
AdaBoost weak learners (number of AdaBoost selected fea-
tures). The rest of the four FER datasets use the same opti-
mal values of these hyperparameters. However, to determine 
the regularization coefficient ( C ) and kernel parameter ( � ) 
of the K-ELM classifier, experiments were performed sepa-
rately for all the five FER datasets.

4.2.1  Cell size and the number of histogram bins

The initial set of experiments conducted to determine the 
optimal value of the cell size and histogram orientation bins 
divides the facial images into multiple fixed-size cells (7 × 
7, 9 × 9, 11 × 11, and 13 × 13) and use different orienta-
tion bins (7, 9, 11, and 21). From the facial images of the 
CK+ dataset, the proposed FER pipeline extracts block-wise 
HOGs features using all possible combinations of the cell 
sizes and orientation bins. The extracted features are classi-
fied by the K-ELM classifier using the fixed value of regu-
larization parameter C=100 and kernel parameter �=200.

Examining the recognition accuracy curves of Fig. 6, 
one can find that using the cell size of 13 × 13-pixels with 
the number of orientation bins set equal to 21, the HOGs 
extracted facial features achieved the best performance. The 
remaining experiments using the other two HOG variants on 
the rest of the FER datasets employed the same cell size and 
orientation bin values. Figure 7 shows HOG processed facial 
images obtained using the optimal value of the two hyper-
parameters on sample facial images from the CK+ dataset. 
Different variants of the HOG descriptor, using the values 
of cell size set to 13 × 13-pixels and orientation bins equal 

to 21, can efficiently extract the expression-related shape 
information from the facial images.

4.2.2  Optimal number of selected features

Figures 8, 9, and 10 show the accuracy curves of experi-
ments conducted to determine the optimal number of Ada-
Boost weak learners or features per expressions. These 
experiments have used the original high-dimensional HOGs, 
HOGu, and HOGv features and the multi-class variant of 
the AdaBoost FS algorithm to select features from the seven 
facial expressions.

These experiments were performed on the CK+ dataset, 
varying the number of weak learners or features per expres-
sion from 25 to 150 at a regular interval of 25. We fixed 
the values of the rest of the hyperparameters ( �min = 0.01, 
C = 100, and � = 200) during the experiments. Analyzing 
the results of the experiments (see Figs. 8, 9, and 10 ), one 
can find that the number of weak learners or features per 
expression that resulted in the optimal performance was 
125 for all three variants of the HOG descriptor. Also, the 
cumulative sum of the features selected from all the seven 
expressions were 276, 303, and 294 for the HOGs, HOGu, 
and HOGv descriptor, respectively. As expected, there were 
many features common for all the expressions. Also, on the 
CK+ dataset, the ten runs of 10-fold CV using the Ada-
Boost selected HOGs, HOGu, and HOGv feature achieved 
competitive mean recognition accuracy of 98.49%, 98.52%, 
and 98.49%, respectively. Figure 11 shows that the Ada-
Boost FS algorithm successfully selected the relevant action 
units (AUs) for each of the seven facial expressions: anger, 

Fig. 6  Accuracy curves using different combinations of cell size and 
the number of histogram bins using the HOGu features extracted 
from the CK+ dataset

Fig. 7  HOG processed images obtained using optimal values of cell 
size and orientation bins on the CK+ dataset (top to bottom): Origi-
nal facial images, HOGs processed facial images, HOGu processed 
facial images, and HOGv processed facial images (left to right): 
Anger, disgust, fear, happy, neutral, sad, and surprise
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disgust, fear, happy, neutral, sad, and surprise, using all the 
three variants of the HOG descriptor. Also, as anticipated, 
the algorithm selected a comparatively larger number of 
cells for the neutral expression than other facial expres-
sions. Thus, in the BHOG features, a large fraction of fea-
tures are from the neutral class compared to other six basic 
expressions.

4.2.3  K‑ELM classifier parameters

This study has utilized the grid-search scheme to determine 
the optimal value of the regularization coefficient ( C ) and 
kernel parameter ( � ) of the K-ELM classifier. The grid-
search experiments train and test the classifier for different 
values of C and � in the natural logarithmic scale from 1 to 
10 at an interval of 1. Subsequently, the scheme selects the 
values of C and � corresponding to the best mean accuracy 
of ten runs of 10-fold CV as the optimal values. We con-
ducted the gird-search experiments separately on all the five 
FER datasets using HOG and BHOG features.

4.3  Evaluation results on the CK+ dataset

Table 1 reports the performance evaluation results of the pro-
posed FER pipeline using the HOG and BHOG features on 
the CK+ dataset. The BHOG features with a much smaller 
feature dimension have achieved performance comparable 
to the original high-dimensional HOG features. Among the 
different variants, the HOGv variant using both directed 
and undirected orientation bins and the HOGs variant with 
only signed orientation bins achieved the best performance. 
Figure 12 shows the classification results of the proposed 
FER pipeline using AdaBoost selected HOGs features in 
terms of confusion matrix on the CK+ dataset. The pipeline 
correctly classified all the sample images belonging to the 
anger, disgust, fear, happiness, neutral, and sadness expres-
sion, while it wrongly classified one facial image from the 
surprise expression into neutral.

Upon examining the performance comparison results of 
Table 2, one can find that the proposed FER scheme using 
the BHOG features with K-ELM classifier achieved com-
petitive accuracy compared to several state-of-the-art FER 
methods based on combinations of texture, shape, and hybrid 
texture & shape features [1, 10, 16, 20, 37, 45]. On the CK+ 
dataset, with 10-fold CV accuracy of 99.84%, the proposed 
FER pipeline has also performed better than the previous 
best recognition accuracy of 99.68% attained by the LBF-
NN method [39]. Thus, using BHOG features, the proposed 
FER scheme significantly boosted the recognition accuracy 
of the proposed FER pipeline. Moreover, different variants 
of the BHOG features have also achieved performance better 
than existing deep-learning-based FER methods [46, 69–72].

4.4  Evaluation results on the JAFFE dataset

Table 3 reports the performance evaluation results of the 
proposed FER pipeline on the JAFFE dataset using fea-
tures extracted by all three HOG and BHOG variants. On 

Fig. 8  Accuracy curves obtained by varying the number of weak 
learners or features per expression using AdaBoost FS algorithm and 
HOGs features extracted from the CK+ dataset

Fig. 9  Accuracy curves obtained by varying the number of weak 
learners or features per expression using AdaBoost FS algorithm and 
HOGu features extracted from the CK+ dataset

Fig. 10  Accuracy curves obtained by varying the number of weak 
learners or features per expression using AdaBoost FS algorithm and 
HOGv features extracted from the CK+ dataset
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this dataset, the 168-dimensional BHOGs descriptor and 
5896-dimensional HOGv descriptor achieved recognition 
accuracy of 98.63% and 98.61%, respectively. Thus, on the 
JAFFE dataset, too, the BHOG features with reduced dimen-
sions achieved competing performance compared to the 
original high-dimensional HOG features. The results dem-
onstrate the usefulness of the HOG features, AdaBoost FS 
algorithm, and K-ELM classifier in the FER task. Figure 13 
shows the classification results of the proposed FER pipeline 
in terms of the confusion matrix on the JAFFE dataset using 
the BHOGs descriptor. The FER pipeline correctly classified 
all the facial images of disgust, fear, happiness, and neutral 
expression. Also, the proposed FER pipeline wrongly clas-
sifies one sample facial image from the anger, sadness, and 
surprise facial expressions.

The comparison results of Table 4 reveal that the pro-
posed FER pipeline achieved competitive accuracy as 

compared to several related machine-learning-based FER 
methods [10, 16, 25, 32]. Using the 256-dimensional PCA-
reduced IGLTP feature, the FER pipeline proposed by 
Holder and Tapamo [16] has achieved recognition accuracy 
of 81.70% on the JAFFE dataset. Also, the FER method 
using the combination of local binary features (LBF) and the 
neural network has reported achieving recognition accuracy 
of 98.10% [39]. In contrast, the proposed FER pipeline with 

Fig. 11  AdaBoost selected 
facial cells on the CK+ sample 
facial images (top to bottom 
and left to right): Original 
facial expression images, HOGs 
selected cells, HOGu selected 
cells, and HOGv selected cells 
corresponding to anger, disgust, 
fear, happiness, neutral, sadness, 
and surprise expression

Table 1  Performance of proposed FER scheme on the CK+ dataset 
using 10-fold CV setting

Bold values represent the best result of the experiments

Method No FS AdaBoost FS

Feature 
dimension

Accuracy (%) Feature 
dimension

Accuracy (%)

HOGs 5880 99.76 276 99.84
HOGu 5880 99.76 303 99.76
HOGv 5896 99.84 294 99.84

Fig. 12  Confusion matrix on the CK+ dataset using BHOGs descrip-
tor
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just 168 BHOGs features has achieved superior recognition 
accuracy of 98.63% on the JAFFE dataset. Similar to the 
CK+ dataset, on the JAFFE dataset, too, the proposed FER 
pipeline achieved better accuracy than the state-of-the-art 
deep-learning-based FER techniques [29, 34, 46, 69, 72].

4.5  Evaluation results on RaFD

Table 5 reports the performance evaluation results of the 
proposed FER scheme on the RaFD Category-1, RaFD 
Category-2, RaFD Category-3, and RaFD Category-4 
datasets, using the 10-fold CV setting. These experiments 
have used original high-dimensional HOG features, and 
AdaBoost selected BHOG features. Upon examining the 

results of Table 5, one can find that on the RaFD Cat-
egory-1 dataset, the 146-dimensional BHOGs feature per-
formed well and achieved recognition accuracy of 100%. 
Similarly, on the RaFD Category-2 dataset, the BHOGv 
descriptor with a recognition accuracy of 99.58% delivered 

Table 2  Performance 
comparison with other state-
of-the-art FER methods on the 
CK+ dataset

Bold value represent the best result of the experiment

References Technique Feature 
dimensions

Accuracy (%) Testing Protocol

2015 [1] HOG + SVM – 98.50 10-fold CV
2016 [10] WLD + SVM – 98.82 7-fold CV
2017 [37] Multi-gradient EQP + SVM – 99.36 10-fold CV
2017 [20] LBP + HOG + SVM 11,636 98.30 10-fold CV
2017 [16] GLTP + SVM – 96.90 10-fold CV
2017 [16] IGLTP + SVM 256 97.60 10-fold CV
2017 [45] LTP + HOG + SVM – 96.06 10-fold CV
2018 [46] WMDNN – 97.02 10-fold CV
2018 [69] CNN Ensemble – 95.36 10-fold CV
2018 [39] LBF-NN – 99.68 10-fold CV
2019 [32] Gradient LPQ + SVM – 97.05 10-fold CV
2019 [29] ICLTP + K-NN + SRC – 97.80 10-fold CV
2019 [70] Deep learning technique – 98.38 10-fold CV
2019 [71] DAM-CNN – 95.88 10-fold CV
2020 [72] Deep Learning – 97.38 10-fold CV
Proposed HOGs + K-ELM 5880 99.76 10-fold CV
Proposed HOGu + K-ELM 5880 99.76 10-fold CV
Proposed HOGv + K-ELM 5896 99.84 10-fold CV
Proposed BHOGs + K-ELM 276 99.84 10-fold CV
Proposed BHOGu + K-ELM 303 99.76 10-fold CV
Proposed BHOGv + K-ELM 294 99.84 10-fold CV

Table 3  Performance of the proposed FER scheme on the JAFFE 
dataset using 10-fold CV setting

Bold value represent the best result of the experiment

Method No FS AdaBoost FS

Feature 
dimension

Accuracy (%) Feature 
dimension

Accuracy (%)

HOGs 5880 97.62 168 98.63
HOGu 5880 97.62 166 97.68
HOGv 5896 98.61 159 96.71

Fig. 13  Confusion matrix on the JAFFE dataset using BHOGs 
descriptor
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the best performance among all descriptors. On the RaFD 
Category-3 dataset, the BHOGv features with a recogni-
tion accuracy of 99.62% achieved better performance than 
the original HOGv feature that has achieved a recogni-
tion accuracy of 98.51%. Finally, on the RaFD Category-4 
dataset, all three variants of the HOG and BHOG descrip-
tors achieved a recognition accuracy of 99.93%.

On the RaFD Category-5 dataset, following the standard 
procedure [18, 19], instead of the 10-fold CV, the proposed 
FER pipeline is trained and tested on the subject-inde-
pendent train and test splits. Consequently, we divided the 
dataset into a 2:1 ratio. Out of the 67 subjects, the training 
set includes the facial images of 45 subjects, and the test 
set contains the rest of the 22 subjects’ facial images. We 
ensured that the same subject did not fall in both training and 
test sets during the distribution. Table 6 reports the evalua-
tion results of the different HOG variants with and without 
feature selection on the RaFD Category-5 dataset. On this 
dataset, the BHOG descriptors performed better than the 
HOG descriptors. Also, in contrast to the standalone BHOGs 
and BHOGu features, their fused variant with a recognition 
accuracy of 99.43% attained the best performance. Figure 14 
shows the classification result of the proposed FER pipeline 

Table 4  Performance 
comparison with other state-
of-the-art FER methods on the 
JAFFE dataset

Bold value represent the best result of the experiment

References Technique Feature dimen-
sions

Accuracy (%) Testing protocol

2016 [10] WLD + SVM – 97.00 7-fold CV
2017 [25] K-ELBP + SVM – 93.30 train-test split
2017 [16] GLTP + SVM 256 74.40 10-fold CV
2017 [16] IGLTP + SVM 256 81.70 10-fold CV
2018 [46] WMDNN – 92.21 10-fold CV
2018 [34] LBI-CT 192 94.50 10-fold CV
2018 [69] CNN Ensemble – 96.57 10-fold CV
2018 [39] LBF-NN – 98.10 10-fold CV
2019 [32] Gradient LPQ + SVM – 92.19 10-fold CV
2019 [29] ICLTP + K-NN + SRC – 92.10 10-fold CV
2020 [72] Deep Learning – 97.18 10-fold CV
Proposed HOGs + K-ELM 5880 97.62 10-fold CV
Proposed HOGu + K-ELM 5880 97.62 10-fold CV
Proposed HOGv + K-ELM 5896 98.61 10-fold CV
Proposed BHOGs + K-ELM 168 98.63 10-fold CV
Proposed BHOGu + K-ELM 166 97.68 10-fold CV
Proposed BHOGv + K-ELM 159 96.71 10-fold CV

Table 5  Performance of the proposed FER scheme on RaFD using 
10-fold CV setting

Bold values represent the best result of the experiments

Category Method No FS AdaBoost FS

Feature 
dimen-
sion

Accuracy 
(%)

Feature 
dimen-
sion

Accuracy 
(%)

Category-1 HOGs 5880 99.37 146 100.00
HOGu 5880 98.72 162 99.36
HOGv 5896 99.57 159 99.37

Category-2 HOGs 5880 98.94 152 99.37
HOGu 5880 98.54 173 98.75
HOGv 5896 98.92 163 99.58

Category-3 HOGs 5880 97.78 242 98.69
HOGu 5880 97.78 242 98.69
HOGv 5896 98.51 239 99.62

Category-4 HOGs 5880 99.93 252 99.93
HOGu 5880 99.93 294 99.93
HOGv 5896 99.93 274 99.93

Table 6  Performance of proposed FER scheme using validation set-
ting of [18, 19] on RaFD Category-5 dataset

Bold value represent the best result of the experiment

Method No FS AdaBoost FS

Feature 
dimen-
sion

Accuracy (%) Feature 
dimen-
sion

Accuracy (%)

HOGs 5880 97.92 246 99.24
HOGu 5880 96.78 333 98.30
HOGv 5896 98.67 309 98.30
HOGs+HOGu – – 579 99.43
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using the fusion of the BHOGs and BHOGu features in 
terms of the confusion matrix on the test set of the RaFD 
Category-5 dataset. The pipeline correctly classified all the 
facial images of contempt, disgust, happiness, neutral, sad-
ness, and surprise. However, the pipeline wrongly classified 
one facial image from the anger class as neutral and two 
facial images from the fearful class as a surprise.

Based on the performance comparison results of Table 7, 
one can notice that on the RaFD Category-1, RaFD Cat-
egory-3, and RaFD Category-4 datasets, the proposed FER 
scheme using the 10-fold CV setting achieved superior rec-
ognition accuracy compared to the available state-of-the-
art FER methods based on the traditional machine-learning 
[1] and deep-learning [70]. Moreover, the performance 
comparison results of Table 8 show that on the RaFD Cat-
egory-5 dataset, adopting the subject-independent evaluation 
protocol, the proposed FER pipeline using BHOG features 
attained superior classification performance. Also, on the 
RaFD Category-5 dataset, the FER framework proposed 
by Ghosh et al. [19] has delivered a classification score of 
99.25% using the combination of Gabor feature extractor, 
Late Hill Climbing-based Memetic Algorithm (LHCMA) 
based feature selection algorithm, and the Sequential Mini-
mal Optimization (SMO) classifier. The FER pipeline pro-
posed by Saha et al. [18], on the other hand, using Gabor fea-
ture extractor, Supervised Filter Harmony Search Algorithm 
(SFHSA) based feature selection algorithm, and SMO clas-
sifier has attained a recognition accuracy of 97.79%. Nev-
ertheless, using the fusion of BHOGs and BHOGu features, 
the proposed FER pipeline with a recognition accuracy of 
99.43% has surpassed the accuracy reported by both Ghosh 
et al. [19] and Saha et al. [18]. These results confirm the 

effectiveness of the proposed FER pipeline using the HOG 
Fig. 14  Confusion matrix on RaFD Category-5 dataset using fusion 
of BHOGs and BHOGu descriptor

Table 7  Performance comparison with other state-of-the-art FER 
methods on RaFD using 10-fold CV setting

Bold values represent the best result of the experiments

References Technique Feature 
dimension

Accuracy (%) RaFD 
category

2015 [1] HOG + SVM – 94.90 Category-1
2015 [1] HOG + SVM – 92.90 Category-3
2019 [70] Deep learning – 99.17 Category-4
Proposed BHOGs+K-

ELM
146 100.00 Category-1

Proposed BHOGv+K-
ELM

163 99.58 Category-2

Proposed BHOGv+K-
ELM

239 99.62 Category-3

Proposed BHOGv+K-
ELM

274 99.93 Category-4

Table 8  Performance comparison with other state-of-the-art FER 
methods on RaFD Category-5 dataset using the validation setting of 
[18, 19]

Bold values represent the best result of the experiments

References Technique Feature 
dimen-
sion

Accuracy (%)

2019 [19] Gabor + SA + SMO 1333 95.90
2019 [19] Gabor + GA + SMO 1613 98.32
2019 [19] Gabor + MA + SMO 894 98.88
2019 [19] Gabor + ME-BPSO + 

SMO
1300 98.13

2019 [19] Gabor + WOA-CM + 
SMO

1186 97.01

2019 [19] Gabor + LHCMA + 
SMO

1271 99.25

2019 [18] Gabor + SFHSA + 
SMO

462 97.79

2019 [19] HOG + SA + SMO 816 92.66
2019 [19] HOG + GA + SMO 480 97.01
2019 [19] HOG + MA + SMO 390 97.01
2019 [19] HOG + ME-BPSO + 

SMO
1039 95.15

2019 [19] HOG + WOA-CM + 
SMO

1041 94.96

2019 [19] HOG + LHCMA + 
SMO

800 97.57

2019 [18] HOG + SFHSA + SMO 544 96.32
Proposed (Ours) BHOGs + K-ELM 246 99.24
Proposed (Ours) BHOGu + K-ELM 333 98.30
Proposed (Ours) BHOGv + K-ELM 309 98.30
Proposed (Ours) BHOGs + BHOGu + 

K-ELM
579 99.43



396 Pattern Analysis and Applications (2023) 26:381–402

1 3

descriptor, AdaBoost FS algorithm, and K-ELM classifier.

4.6  Evaluation results on the TFE dataset

Table 9 shows the results of the age-independent expression 
analysis of the proposed FER pipeline on the TFE dataset. 
On the age-independent test set of the TFE dataset, among 
different variants of HOG and BHOG descriptors, the fusion 
of the BHOGv and BHOGs with a test accuracy of 87.46% 
achieved the best performance. Figure 15 shows the confu-
sion matrix on the test set of the TFE dataset. Among the 
eight prototypical facial expressions, happiness (95% accu-
racy), fear (92% accuracy), and surprise (97% accuracy) 
were the most accurately classified expressions. The fused 
BHOG features also achieved satisfactory performance in 
classifying facial images belonging to neutral (89%), sad 
(84%), disgust (83%), and contempt (89%). Out of the eight 
classes, anger, with a classification accuracy of 70%, was 
the least correctly recognized expression. A major fraction 
(14%) of the misclassified images from the anger expression 
got classified as sadness.

The age-dependent analysis results reported in Table 10 
show that the proposed FER pipeline trained on the BHOGs 
features extracted from the facial images of older adults 
achieved 84.86% recognition accuracy on the facial test 

images of young adults. Meanwhile, the pipeline trained on 
HOGs features extracted from the facial images of young 
adults attained recognition of 76.33% on the facial test 
images of older adults. Thus, the age-dependent analysis 
results reveal that the facial expressions of older adults are 
more prominent than the young adults.

4.7  Evaluation results on RAF‑DB

RAF-DB has widely been used to validate the performance 
of the deep learning and traditional machine learning FER 
techniques [17, 31, 73–78].

Table 11 reports the performance evaluation results of the 
proposed FER pipeline on RAF-DB using features extracted 
by all three HOG (HOGs, HOGu, and HOGv) and BHOG 
(BHOGs, BHOGu, BHOGv) variants. On the validation 
set of RAF-DB, 5880-dimensional HOGs descriptor with a 
recognition accuracy of 80.51% attained the highest accu-
racy. Besides, the BHOGs descriptor with just 786-dimen-
sion attained the second-highest recognition accuracy of 
80.15% on the validation set of RAF-DB. Thus, on the FER 
in-the-wild RAF-DB dataset, too, the BHOG descriptors 
with reduced dimensions achieved competing performance 
compared to the original high-dimensional HOG descrip-
tors. Figure 16 shows the confusion matrix on the validation 
set of RAF-DB using HOGs descriptor. The proposed FER 
pipeline correctly classified 95%, 84%, 73%, 77%, and 65% 
of the facial image samples belonging to happiness, neutral, 
sadness, surprise, and anger. The proposed pipeline with a 
classification accuracy of 29% and 38% on the disgust and 

Table 9  Age-independent analysis results on the TFE dataset

Bold value represent the best result of the experiment

Method No FS AdaBoost FS

Feature 
dimen-
sion

Accuracy (%) Feature 
dimen-
sion

Accuracy (%)

HOGs 5880 86.10 352 84.41
HOGu 5880 86.10 376 84.07
HOGv 5896 87.12 357 85.42
HOGv + HOGs – – 709 87.46

Table 10  Age-dependent analysis results on the TFE dataset

Bold values represent the best result of the experiments

Scenario Method No FS AdaBoost FS

Feature 
dimen-
sion

Accuracy 
(%)

Feature 
dimen-
sion

Accuracy 
(%)

Scenario-1 HOGs 5880 83.47 316 84.86
HOGu 5880 79.68 334 78.69
HOGv 5896 81.27 298 77.09

Scenario-2 HOGs 5880 76.33 260 74.20
HOGu 5880 69.68 281 69.95
HOGv 5896 75.80 270 73.94

Fig. 15  Confusion matrix result of age-independent expression analy-
sis on the TFE dataset using fusion of BHOGs and BHOGv descrip-
tor
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fearful expression, respectively, performed poorly on these 
two facial expressions.

Table 12 reports the performance comparison results of 
the proposed FER pipeline using BHOG features with the 
other state-of-the-art FER methods on RAF-DB. It is not 
surprising that on the large-scale FER in the wild dataset like 
RAF-DB, the existing deep learning-based techniques [17, 
74–79] performed much better than the traditional machine 
learning methods [31, 73, 76]. The results are consistent with 
the fact that the classification accuracy of the deep learning 
classification algorithms is directly proportional to the size 
of the dataset, while the classification accuracy of the image 
classification pipeline based on traditional machine learning 
gets saturated after training on a certain size of the dataset 
and does not improve if we further increase the size of the 
dataset. This might be the reason why the vast majority of 
works related to FER based on traditional machine learning 
use the FER in the lab datasets such as CK+ [64], JAFFE 
[65], RaFD [66], KDEF [80], and TFE [67] to validate the 
performance of the FER pipeline. Only a small fraction of 
the works on FER using traditional machine learning [31, 

73, 76] have used large-scale FER in the wild dataset like 
RAF-DB [73] to validate their performance.

On the validation set of RAF-DB, the traditional machine 
learning-based FER pipeline proposed by Li and Deng [68] 
has attained classification accuracy of 72.71%, 74.35%, and 
77.28% using LBP, HOG, and Gabor descriptor, respec-
tively. Also, the FER pipeline proposed by Greco et al. 
[76] has attained a recognition accuracy of 75.08% using 
the combination of LBP descriptor and SVM classifier. 
Besides, on the validation set of RAF-DB, the traditional 
machine learning-based FER pipeline introduced by Saurav 
et al. [31] has achieved recognition accuracy of 78.75% and 
78.46% using the DLTP descriptor and the uniform DLTP 
descriptor, respectively. Among the existing deep learning-
based FER techniques, on the validation set of RAF-DB, 
the Amending Representation Module (ARM) introduced 
by Shi et al. [79] has attained the highest recognition accu-
racy of 90.42%. Besides, evaluated on the facial images in 
the the validation set of RAF-DB, Distract your Attention 
Network (DAN) [74], deep locality-preserving convolu-
tional neural network (DLP-CNN) [68], FER-VT [75], 
EmNet [17], and DICNN [77] has reported achieving clas-
sification accuracy of 89.70%, 84.13%, 88.26%, 87.16%, and 

Table 11  Performance of the proposed FER scheme on RAF-DB

Bold value represent the best result of the experiment

Method No FS AdaBoost FS

Feature 
dimension

Accuracy (%) Feature 
dimension

Accuracy (%)

HOGs 5880 80.51 786 80.15
HOGu 5880 77.74 793 77.48
HOGv 5896 79.24 767 78.75

Fig. 16  Confusion matrix on RAF-DB using HOGs descriptor

Table 12  Performance comparison with other state-of-the-art FER 
methods on RAF-DB

References Technique Feature 
dimensions

Accuracy (%)

2018 [68] LBP + SVM – 72.71
2018 [68] Gabor + SVM – 74.35
2018 [68] HOG + SVM – 77.28
2021 [31] DLTP + K-ELM 45056 78.75
2021 [31] uDLTP + K-ELM 10384 78.46
2018 [68] DLP-CNN – 84.13
2021 [74] DAN – 89.70
2021 [75] FER-VT – 88.26
2021 [17] EmNet – 87.16
2022 [79] ARM – 90.42
2022 [76] VGG – 85.72
2022 [76] SENet – 86.31
2022 [76] DenseNet – 84.09
2022 [76] Xception – 82.65
2022 [76] LBP + SVM – 75.08
2022 [78] CNN – 87.35
2022 [77] DICNN – 86.07
Proposed HOGs + K-ELM 5880 80.51
Proposed HOGu + K-ELM 5880 77.74
Proposed HOGv + K-ELM 5896 79.24
Proposed BHOGs + K-ELM 786 80.15
Proposed BHOGu + K-ELM 793 77.48
Proposed BHOGv + K-ELM 767 78.75
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86.07%, respectively. Trained and tested on RAF-DB, the 
proposed FER pipeline using HOGs + K-ELM and BHOGs 
+ K-ELM has attained a competitive recognition accuracy 
of 80.51% and 80.15%, respectively. Thus, on RAF-DB, the 
performance of the proposed FER pipeline has surpassed 
the performance reported by the exiting FER methods based 
on traditional machine learning. Also, the proposed frame-
work is computationally more efficient than the exiting FER 
methods based on deep learning. In summary, as compared 
to the existing FER methods, the proposed FER pipeline is 
compute-efficient and robust and thus suitable for real-time 
recognition of facial expressions running on a resource-
constrained embedded platform.

4.8  Cross‑dataset performance evaluation

Apart from the 10-fold CV and subject-independent train-
test evaluation procedure, this study also conducted the 
cross-dataset evaluation to assess the generalization of the 
FER pipeline introduced in this work. The cross-dataset 
evaluation, as shown in Fig. 17 uses one FER dataset as 
the train set and the other as the test set. In cross-dataset 
testing, once the train and test FER datasets are decided, 
in the subsequent step, features are extracted using all the 
three variants of the HOG descriptor from both the train and 
test datasets. Subsequently, the training set features are fed 
to the AdaBoost FS algorithm to discover optimal features 
from the original high-dimensional features. Once trained, 

based on the indices of the AdaBoost selected features, the 
FS scheme extracts BHOG features from the pre-computed 
train and test features. Finally, the cross-dataset scheme train 
and test the K-ELM classifier on the train and test BHOG 
features using the optimal values of the kernel parameter 
and regularization factor determined using the grid-search 
scheme.

Table 13 summarizes the results of cross-dataset experi-
ments. The proposed FER scheme using the HOG and 
BHOG descriptor achieved competitive cross-dataset test 
accuracy. Utilizing the CK+ dataset as the train set and the 
RaFD Category-2 dataset as the test set, the proposed FER 
scheme using HOGs and BHOGs features achieved test 
accuracy better than the deep learning-based FER technique 
[70]. The deep-learning-based FER technique introduced 
by Sun et al. [70] has achieved a test accuracy of 86.80%, 
whereas the proposed FER method with a test accuracy of 
90.83% has registered a boost of 4.03%. Similarly, using 
the CK+ dataset as a train set and the JAFFE dataset as the 

Fig. 17  Flowchart representing the cross-dataset evaluation scheme

Table 13  Cross-dataset performance evaluation results of the pro-
posed FER scheme

Bold values represent the best result of the experiments

Train Test Method Expressions Accuracy ( %)

CK+ RaFD BHOGs (HOGs) 7 90.41 (90.83)
BHOGu (HOGu) 7 84.43 (89.13)
BHOGv (HOGv) 7 89.34 (90.41)
Deep Learning [70] 7 86.80

CK+ JAFFE BHOGs (HOGs) 7 33.80 (36.15)
BHOGu (HOGu) 7 41.31 (43.66)
BHOGv (HOGv) 7 43.19 (35.31)
Deep Learning [72] 6 39.01
DAM-CNN [71] 6 43.38
LBP-SVM [15] 7 41.30
CCEC [81] 6 42.30

RaFD CK+ BHOGs (HOGs) 7 86.89 (89.48)
BHOGu (HOGu) 7 84.39 (89.24)
BHOGv (HOGv) 7 86.08 (86.73)
Deep Learning [70] 7 75.13

RaFD JAFFE BHOGs (HOGs) 7 42.72 (40.38)
BHOGu (HOGu) 7 49.77 (41.31)
BHOGv (HOGv) 7 42.25 (41.31)

JAFFE CK+ BHOGs (HOGs) 7 41.75 (51.05)
BHOGu (HOGu) 7 49.27 (57.04)
BHOGv (HOGv) 7 44.66 (55.50)
DAM-CNN [71] 6 49.10
CCEC [81] 6 48.20
DCMA-CNNs [82] 6 46.28

JAFFE RaFD BHOGs (HOGs) 7 49.47 (55.86)
BHOGu (HOGu) 7 51.60 (55.22)
BHOGv (HOGv) 7 50.53 (53.30)
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test set, the BHOGv features achieved the highest recogni-
tion accuracy of 43.19%. However, on this train and test 
combination of the FER datasets, the deep learning-based 
FER technique of Xie et al. [71] has registered the best test 
accuracy of 43.38%. The low cross-dataset accuracy of the 
proposed method may be due to cultural bias in the train and 
test combination of the FER datasets.

Besides, on the train and test combinations of RaFD Cat-
egory-2 and CK+ dataset, the proposed FER pipeline with 
a recognition accuracy of 89.48% has attained a boost in 
recognition accuracy of 14.35%, over the previous best test 
accuracy of 75.13% reported by the deep-learning-based 
FER method [70]. Using the JAFFE dataset as a train set 
and CK+ dataset as the test set, the HOGu features attained 
a test accuracy of 57.04%, better than several existing FER 
methods [71, 81, 82]. Finally, the train and test combina-
tion of JAFFE and RaFD using HOGs feature attained the 
best cross-dataset test accuracy of 55.86%. In summary, in 
addition to 10-fold CV accuracy, the proposed FER pipeline 
has also achieved better cross-dataset accuracy on differ-
ent combinations of the FER datasets. Thus, the proposed 
pipeline shows better generalization performance than the 
state-of-the-art FER methods.

5  Computational performance analysis

Table 14 demonstrates the comparison of computation time 
for feature extraction using the HOG/BHOG descriptors 
and classification by the K-ELM classifier. We conducted 
the feature selection experiment offline using the AdaBoost 
FS algorithm and used the selected features to calculate the 
classification time.

The K-ELM classifier, as expected, takes less time to 
classify the AdaBoost-selected HOG features than the 
original high-dimensional HOG features. It attains a four 

times boost in the execution speed using BHOG features. 
Besides, feature extraction by different HOG variants is also 
more efficient than the previously reported feature extrac-
tion schemes using the LBP, LDP, LTP, LDN, and LNEP 
descriptors [15, 27, 48]. Among the reported methods, the 
FER scheme using LBF-NN with total feature extraction and 
classification time of 1.00 ms is computationally the most 
efficient [39]. Nevertheless, using BHOG features and the 
K-ELM classifier, the proposed FER pipeline takes 1.40 ms 
to classify an input facial image. Thus, the proposed FER 
pipeline using boosted features is computationally efficient 
and thus suitable for real-time applications.

6  Conclusions

This study presented a reliable and computationally effi-
cient method for FER utilizing the Boosted Histogram of 
oriented Gradient (BHOG) features. The proposed FER 
pipeline has utilized a face alignment & registration unit to 
get a well-aligned and registered facial image of standard 
size. Subsequently, it extracted facial features using different 
HOG descriptors from the registered facial images. Feature 
selection using the AdaBoost FS algorithm helped the pipe-
line eliminate irrelevant features from the high-dimensional 
HOG features. Finally, using the K-ELM classifier, the pro-
posed FER scheme classified the features into facial expres-
sions. We evaluated the performance of the proposed FER 
pipeline on five FER datasets, namely the CK+, JAFFE, 
RaFD, TFE, and RAF-DB, using three different testing 
procedures, namely the 10-fold CV, subject-independent 
train-test split, and cross-dataset evaluation. Performance 
comparison results with existing FER techniques exhibited 
the effectiveness of the proposed FER pipeline. The BHOG 
features helped the pipeline achieve competitive recogni-
tion accuracy with a multi-fold improvement in the overall 

Table 14  Computation time 
comparison in milliseconds 
(ms) (DR: Dimensionality 
reduction and FS: Feature 
selection)

Bold value represent the best result of the experiment

Method CPU Feature 
extraction

Classification Classification Total
without DR/FS with DR/FS

LBP [48] Octa-core 3.50 GHz 28.9 76.7 34.5 111.20
LDP [48] Octa-core 3.50 GHz 106.9 81.4 37.2 225.50
LTP [48] Octa-core 3.50 GHz 51.4 146.5 36.5 234.40
LDN [48] Octa-core 3.50 GHz 132.9 73.2 33.8 239.90
LNEP [48] Octa-core 3.50 GHz 22.9 76.7 34.6 134.40
LBP [27] Intel i5 3.2 GHz – – – 295.50
LBF-NN [39] Intel i7-7500U 2.70 GHz – – – 1.00
LBP [15] – – – – 30.00
HOGu (Ours) Intel i9-8950HK 2.90 GHz 1.1 1.05 0.32 1.42
HOGs (Ours) Intel i9-8950HK 2.90 GHz 1.1 1.18 0.33 1.43
HOGv (Ours) Intel i9-8950HK 2.90 GHz 1.1 1.11 0.30 1.40
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computational time. Thus, the proposed FER pipeline is a 
suitable candidate for the real-time classification of facial 
expressions. The extended version of the work will deal with 
the fusion of BHOG features with other facial textures and 
geometric features. Further, the method can be tested on the 
other FER in the wild datasets to evaluate their robustness 
in complex real-world conditions.
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