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Abstract
Pseudo-Jacobi–Fourier moments (PJFMs) are a set of orthogonal moments which have been successfully applied in the fields 
of image processing and pattern recognition. In this paper, we present a new set of quaternion fractional-order orthogonal 
moments for color images, named accurate quaternion fractional-order pseudo-Jacobi–Fourier moments (AQFPJFMs). We 
initially propose a fast and accurate algorithm for the PJFMs computation of an image using new recursive approach and 
polar pixel tiling scheme. Then, we define a new set of orthogonal moments, named accurate fractional-order pseudo-Jacobi–
Fourier moments, which is characterized by the generic nature and time–frequency analysis capability. We finally extend 
the gray-level fractional-order PJFMs to color images and present the quaternion fractional-order pseudo-Jacobi–Fourier 
moments. In addition, we develop a new color image representation for enhancing simultaneously the discriminability and 
robustness, called mixed low-order moments feature. We conduct extensive experiments to evaluate the performance of the 
proposed AQFPJFMs, in which the encouraging results demonstrate the efficacy and superiority of the proposed scheme.

Keywords Pseudo-Jacobi–Fourier moments · Recursive method · Fractional-order moments · Polar pixel tiling scheme · 
Quaternion · Zero-watermarking
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1 Introduction

How to effectively describe an image is a vital issue in 
image processing. It means that a small set of descriptions 
represents an image. However, compared with the original 
image, the recognized image will have a certain degree of 
distortion (for example, translation, and rotation). There-
fore, moments are proposed to solve this question which 
are not sensitive to various distortions or noises and have 
invariant characteristics. Because the invariant moments 
highly summarize the image features and have a variety of 
invariance, moments have been widely used in scene anal-
ysis, image classification, and image pattern recognition.

1.1  Brief review of moments

As early as 1962, Hu [1] proposed using geometric 
moments to describe images. However, with the deepen-
ing of research, scientists found that low-order geomet-
ric moments do not adequately describe the details of the 
image, while high-order geometric moments have lower 
robustness. Therefore, the geometric moments are not 
easy to reconstruct the original image. In 1980, Teague 
[2] proposed orthogonal moments (OMs) to solve the 
shortcomings of geometric moments. OMs have excellent 
image reconstruction ability and low sensitivity to noise 
invariance [3], so they are widely used in object recogni-
tion applications. The most common orthogonal moment 
is the Zernike moments (ZMs) proposed by Teague [2] in 
1980. Although ZMs have good performance in informa-
tion redundancy, noise sensitivity and image description 
ability [4], it is challenging to describe smaller images. 
In 1994, Sheng [5] proposed Orthogonal Fourier-Mellin 
moments (OFMMs). OFMMs are better than ZMs in 
describing smaller images, but the values of radial polyno-
mials of OFMMs are large at r = 0 , OFMMs did not solve 
the problem. Many experiments [5–7] have proved that the 
radial basis functions’ zeros are related to the moments’ 
descriptive ability. Subsequently, Ping [6] proposed Che-
byshev–Fourier moments (CHFMs), but CHFMs still 
failed to overcome the shortcomings of OFMMs. Lately, 
Ping [7] proposed Jacobi–Fourier moments (JFMs) based 
on Jacobi polynomials. This kind of moment is a gen-
eralized orthogonal moment; ZMs [8], pseudo-Zernike 
moments (PZMs) [9], pseudo-Jacobi–Fourier moments 
(PJFMs) [10], OFMMs, CHFMs, and Legendre–Fourier 
moments (LFMs) [11] are all special cases of JFMs. The 
almost radial basis functions of JFMs have n zeros in the 
interval (0, 1) , and the zeros’ distribution in this interval 
is practically uniform. However, PJFMs have (n + 2) zeros 
in the special cases of JFMs. Compared with the basis 

functions of other moments based on Jacobi polynomials, 
PJFMs added two zeros. The distribution of PJFMs’ zeros 
is more uniform, and the first zero is very close to the ori-
gin. Therefore, PJFMs are more suitable for describing and 
recognizing multi-distortion invariant images [12].

1.2  State of the art and motivation

The research directions of traditional orthogonal moments 
mainly include the following five aspects: (1) accurate cal-
culation; (2) fast calculation; (3) robustness/ invariance opti-
mization; (4) definition extension; (5) application [13]. The 
ideal moments should have outstanding performance in all 
aspects. However, the existing moments can only be opti-
mized in a few aspects. There will always be shortcomings in 
some aspects compared with the ideal moments. Therefore, 
how to design the more ideal moments is still a problem to 
be solved.

The direct calculation method of traditional OMs will 
produce two kinds of errors: geometric errors and numerical 
integration errors [14]. These errors affect the accuracy of 
the image reconstruction ability. Wee [15] minimized geo-
metric errors by circular mapping. This method mapped the 
entire square image to the unit disk and calculated integrals 
separately like precise geometric moments. However, if the 
moment’s order is bigger than 50th, this method will appear 
a numerically unstable phenomenon. Also, the calculation 
time of the moments will increase with the order increase. 
To reduce the calculation time, many mathematicians have 
proposed some algorithms to accelerate the calculation of 
orthogonal moments [16–19]. The most common accelera-
tion method is the recursive method to calculate the radial 
basis functions’ coefficients, this method can not only reduce 
the time complexity, but also improve the numerical stabil-
ity. However, studies have found that using the recursive 
method [20] to calculate high-order polynomials can also 
cause errors. Xin [21] proposed a high-precision numerical 
calculation algorithm for ZMs, which significantly improved 
image reconstruction ability. First, this algorithm re-divides 
the pixels with a specific strategy; then, the image is gener-
ated through interpolation in the polar coordinates. After 
that, the integral is calculated directly on the image in polar 
coordinates. This method eliminates geometric errors and 
can calculate integrals better. Inspired by this, Camacho-
Bello [22] combined the polar pixel tiling scheme and recur-
sive methods, and the proposed method has an excellent per-
formance in terms of speed and accuracy.

In recent years, people have attached great importance 
to using more accurate orthogonal polynomials fractional 
differential equations [23–26]. They introduce a fractional-
order parameter 𝛼> 0 to extend the conception of inte-
ger-order N  to fractional-order �n ( n ∈ N  ). The classical 



733Pattern Analysis and Applications (2022) 25:731–755 

1 3

orthogonal polynomials can be acquired by setting � = 1 . 
This new kind of fractional orthogonal polynomials can 
control the zeros’ distribution by changing the fractional 
parameter and solve the problem of information suppres-
sion. Compared with traditional orthogonal moments that 
can only reflect global information, fractional orthogonal 
moments can better describe the image information of the 
region of interest. Therefore, it is also applied to the new 
radial basis functions to define the fractional orthogonal 
moments. Zhang [27] defined fractional-order orthogonal 
Fourier–Mellin moments (FOFMMs). Benouini [28] defined 
fractional-order Chebyshev moments (FCMs). Yang [29] 
defined fractional-order Jacobi–Fourier moments (FJFMs), 
Hosny [30] defined fractional-order polar Harmonic trans-
form (FPHT). Wang [31] defined fractional-order polar har-
monic Fourier moments (FPHFMs). To make the fractional 
orthogonal moments not only limited to grayscale images, 
Chen [32] proposed fractional-order orthogonal quater-
nion Zernike moments (FQZMs) to calculate color images. 
Wang [33] proposed fractional-order quaternion exponential 
moments (FQEMs), Yamni [34] proposed novel quaternion 
radial fractional Charlier moments (QRFCMs).

1.3  Contribution of this paper

In order to design an ideal moment descriptor, we propose 
a new algorithm called quaternion accurate fractional-order 
Pseudo-Jacobi–Fourier moments (AQFPJFMs) in this paper. 
Compared with PJFMs, AQFPJFMs have improved accu-
racy, numerical stability and applicability.

The contributions of this paper are as follows:

• We propose a new recursive method of PJFMs. This new 
recursive relationship can increase the calculation speed 
and reduce the numerical instability of high-order radial 
basis functions.

• Based on the recursive relationship and polar pixel til-
ing scheme between radial basis functions, accurate 
Pseudo-Jacobi–Fourier moments (APJFMs) are realized. 
The polar pixel tiling scheme can cancel geometric and 
numerical integration errors, so we can reconstruct high-
order images better.

• To show more details, we extended APJFMs to accurate 
fractional-order pseudo-Jacobi–Fourier moments (AFP-
JFMs). Due to introducing the fractional-order param-
eter, we can adjust the distribution of radial basis func-
tions’ zeros by altering the fractional-order parameter 
according to different application backgrounds.

• We use quaternion to calculate color images, then we 
get AQFPJFMs. AQFPJFMs reflect the color information 

and the correlation between the color channels. There-
fore, AQFPJFMs have better image representation and 
distinguishing capabilities.

• To making full use of the time–frequency analysis capabili-
ties of AQFPJFMs, we propose a scheme that can simul-
taneously enhance the discriminability and robustness of 
global features, called mixed low-order moments feature 
(MLMF).

• We apply AQFPJFMs and MLMF to zero-watermarking. 
Comparing our proposed algorithm with other advanced 
algorithms, the test results prove that our advanced algo-
rithm has significant advantages in robustness and discrim-
inability.

The structure of this paper is as follows. In Sect. 2, first, we 
will propose the recursive method of PJFMs; second, we will 
use the polar pixel tilling scheme to eliminate error, then we 
will get APJFMs. In Sect. 3, we will define AFPJFMs and dis-
cuss AFPJFMs’ properties. In Sect. 4, we will use quaternion 
to calculate color images, this algorithm is called AQFPJFMs. 
In Sect. 5, we will define MLMF and discuss the time–fre-
quency analysis capabilities of MLMF. In Sect. 6, we will 
show a lot of experimental results of AQFPJFMs and apply 
MLMF to the zero-watermarking algorithm. Finally, Sect. 7 
will summarize our work and point out the direction of future 
work.

2  Accurate pseudo‑Jacobi–Fourier moments

In this section, first, we will review PJFMs; second, we will 
propose the recursive method of PJFMs; finally, we will define 
APJFMs.

2.1  Definition

The classical PJFMs’ radial basis functions Jn(r) in the polar 
coordinate system (r, �) are defined as:

where Gn(r) represents the Jacobi polynomials with param-
eters p = 4, q = 3 [21], w(r) is the weighting function and bn 
are normalization factors:

(1)

Jn(r) =

[
w(r)

rbn

] 1

2

Gn(r)

= (−1)t
[

(2n + 4)

(n + 3)(n + 1)
(1 − r)r

] 1

2

n∑
t=0

(−1)t
(n + t + 3)!

(n − t)!t!(t + 2)!
rt,
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The Jacobi polynomials Gn(r) satisfies the normalization 
condition:

� is the Kronecker delta. Similar:

Therefore, the classic PJFMs can be defined as [10] with 
order n ∈ N and repetition m ∈ Z:

f (r, �) can be approximated reconstruction by classical 
PJFMs and basis functions:

(2)
Gn(r) =

n∑
t=0

(−1)t
Γ(4 + n + t)

(n − t)!t!Γ(3 + t)
rt,

w(r) = (1 − r) ⋅ r2, bn =
(n + 3)(n + 1)

(2n + 4)
.

(3)

1

∫
0

Gn(r)Gn� (r)w(r)dr = bn�nn� ,

(4)

1

∫
0

Jn(r)Jn� (r)rdr = �nn� .

(5)

Cnm =
1

2�

1

∫
0

2�

∫
0

V∗
nm
(r, �)f (r, �)rdrd�

=
1

2�

1

∫
0

2�

∫
0

Jn(r) exp(−jm�)f (r, �)rdrd�.

(6)

f (r, �) =

+∞∑
n=0

+∞∑
m=−∞

Cnm ⋅ Vnm(r, �)

≈

K∑
n=0

K∑
m=−K

Cnm ⋅ Vnm(r, �).

Some visual illustrations of the kernels are given in 
Fig. 1.

2.2  Recursive computation

The Jacobi polynomials Gn(r) involve multiple factorials and 
gamma functions; therefore, the time complexity in the calcu-
lation process is relatively large, and numerical instability may 
overflow when calculating high-order images. To solve this 
problem, referring to [35, 36], we will put forward a recursive 
calculation method of the PJFMs’ radial basis functions Jn(r) . 
This method has the following two advantages:

2.2.1  The time complexity is low

PJFMs directly calculate K times Jn
(√

x2
i
+ y2

j

)
 with a size of 

N × N digital image requiring O(K2N2) additions; PJFMs 
recursively calculate K times Jn

(√
x2
i
+ y2

j

)
 with a size of 

N × N digital image requiring O(KN2) additions.

2.2.2  Numerical stability is better

When PJFMs directly calculate double-precision numbers, 
the factorial term a! is accurate while a ≤ 21. When a > 21 , 
the direct calculation method of PJFMs will be numerically 
unstable. [10] However, the recursive calculation method of 
PJFMs we proposed does not involve the factorial (or gamma 
function) of large numbers, so it has better numerical stability.

Based on Eq. (2), let:

Using the proper ty that  a! = a ⋅ (a − 1)! and 
Γ(a) = a ⋅ Γ(a − 1) , Pn(r) can be computed recursively:

(7)Pn(r) =

n∑
t=0

(−1)t
(n + t + 3)!

(n − t)!t!(t + 2)!
rt.

Fig. 1  Some examples of the PJFMs’ kernels. a PJFMs’ 
radial kernels, b the 2D view of PJFMs’ phase angle 
∠V

nm
(r, �) = arctan(Im(V

nm
(r, �))∕Re(V

nm
(r, �))) (The 

color from blue to yellow indicates that the phase angle is 

from small to large), c The 3D view of PJFMs’ phase angle 
∠V

nm
(r, �) = arctan(Im(V

nm
(r, �))∕Re(V

nm
(r, �))) . ( n = 3,m = 3 , X 

and Y  are the horizontal and vertical coordinates of the image)
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where

and the initial values of Pn(r) are:

2.3  Accurate pseudo‑Jacobi–Fourier moments

2.3.1  Error analysis in Cartesian coordinates

In the traditional moment calculation method, the direct cal-
culation method in the Cartesian coordinate system is based 
on the zero-order approximation (ZOA) discrete calculation 
method. We define the discrete digital image which size is 
N × N as f [i, j], (i, j) ∈ [1, 2,… ,N]2 . This method defines 
the Cartesian coordinate system (x, y) by the integral vari-
able in Eq. (5):

The discrete digital image cannot be used directly; 
therefore, we need to map the domain [1, 2, … , N]2 of 
the discrete digital image to the unit circle [−1, 1]2 , where 
(xi, yj) ∈ [−1, 1]2:

PJFMs’ discrete calculation method according to 
Eqs. (11) and (12) can be defined as:

xi and yj meet the condition x2
i
+ y2

j
≤ 1 , then:

The width of the integral unit area is Δ = 2∕N  . In the 
Cartesian coordinate system, the exact value of Eq. (14) 

(8)Pn(r) = (L1r + L2)Pn−1(r) + L3Pn−2(r), n ≥ 2.

(9)

L1 =
−(2n + 3)(2n + 2)

n(2 + n)
,

L2 = (2n + 2) +
(n − 1)(1 + n)

2n + 1
L1,

L3 =
(2n)(2n + 1)

2
+

(n)(n − 2)

2
L1 − (2n)L2.

(10)P0(r) =
Γ(4)

Γ(3)
, P1(r) =

Γ(5)

Γ(3)

(
1 −

5

3
r
)
.

(11)

Cnm =
1

2� �
x2+y2≤1

V∗
nm

�√
x2 + y2, arctan

�y
x

��
f (x, y)dxdy.

(12)
{

xi = (i − N∕2) ⋅ (2∕N)

yj = (j − N∕2) ⋅ (2∕N)
,

{
Δx = 2∕N

Δy = 2∕N
.

(13)Cnm =
1

2�

N−1∑
i=0

N−1∑
j=0

�nm(xi, yj)f (xi, yj).

(14)

�nm(xi, yj) ≈ ∫
xi+

Δ

2

xi−
Δ

2

∫
yj+

Δ

2

yj−
Δ

2

Vnm

(√
x2
i
+ y2

j
, arctan

(
yj

xi

))
.

cannot be obtained, but the estimated value can only be 
obtained from Eq. (15), so it will result in a numerical inte-
gration error:

Substituting the estimated value into Eq. (13), the dis-
crete form of PJFMs are obtained:

As shown in Fig. 2, only when the total points are in the 
unit circle can they be substituted. Therefore, when using 
Eq. (20) to perform the discrete calculation of PJFMs in 
the Cartesian coordinate system, numerical integration 
errors will occur from the above derivation process.

2.3.2  Polar coordinate division and pixel interpolation

To eliminate geometric errors, the method we proposed 
should satisfy: All pixels together exactly cover the unit 
circle, and the pixel areas do not intersect. It can be 
expressed as the following equation, where each pixel can 
be represented by Ωu,v , and D represented the unit circle:

The problem of eliminating geometric errors and 
integration errors now comes down to rearranging the 
polar coordinates in the calculation process. The follow-
ing segmentation method can satisfy Eqs. (17) and (18) 
well. Figure 3a shows the result of the division method. 

(15)�nm(xi, yj) ≈ Δ2Vnm

(√
x2
i
+ y2

j
, arctan

(
yj

xi

))
.

(16)

Cnm =
2

�N2

N−1∑
i=0

N−1∑
j=0

Vnm

(√
x2
i
+ y2

j
, arctan

(
yj

xi

))
f (xi, yj).

(17)
⋃
(u,v)

Ωuv = D,

(18)Ωuv ∩ Ωu�v� = Φ ,∀(u, v) ≠ (u�, v�).

Fig. 2  Pixels in the Cartesian coordinate
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Assuming that the area size of PJFMs needs to be calcu-
lated as N × N  , the radius of the circular area of PJFMs 
is defined by PJFMs as N∕2 , the division method will be 
presented as follows:

• The unit circle is equally divided into U layer ring regions 
with equidistant concentric circles along the radial direc-
tion. The ring closest to the center of the circle is marked 
as the first layer, which increases outward in sequence.

• The unit circle is equally divided into V  sectors. This 
process divides all the circles into V  regions equally.

• Divide all the circles from the inside to the out-
side in sequence, and divide the u th ring equally into 
Su = (2u − 1) V  pixel areas.

We can get the original image through the mentioned 
above division method to obtain the pixel division in polar 
coordinates. The unit circle image after division is divided 
into VU2 sectors, the size of each sector is �∕VU2 . The value 
of U and V  will affect the amount of calculation and calcula-
tion accuracy; therefore, the number of pixels and calcula-
tion amount will increase with the increase of VU2 . Then 
more accurate image moments can be obtained. However, 
when the number of divided pixels exceeds the pixels in the 
original image, increasing the pixels’ number will signifi-
cantly increase the time and amount of calculation and thus 
lose meaning. We take U = N∕2 , V = 4 , so that we can get 
roughly the same number of pixels as the original image. 
We define the divided pixel label as Ωu,v ( u = 1, 2, 3,… ,U

;v = 1, 2, 3,… ,V(2u − 1) ). Figure 3b shows the schematic 
diagram of Ωu,v . The pixel point Ωu,v under the polar coordi-
nate division represents the pixel area converted to the polar 
coordinate (�uv, �uv) , the start and end radius of Ωu,v are �(s)

uv
 

and �(e)
uv

 . The start and end angles of the pixel area of Ωu,v are 
�(s)
uv  and �

(e)
uv  , so (�uv, �uv) can be defined as:

The digital image is usually defined in Cartesian coordi-
nates, and this pixel position cannot directly correspond to 
the gray value of the original image. Therefore, we use the 
pixel sampling method to solve this question, then the gray 
value of the new pixel can be estimated through the points 
in the original image. The sampling method we use in this 
article is the nearest neighbor interpolation. It is also sug-
gested to choose other more complex nonlinear interpolation 
methods [14] to improve accuracy.

2.3.3  Accurate computation of fractional‑order 
pseudo‑Jacobi–Fourier moments

After completing the polar coordinate pixel sampling 
method, the image f ′ in polar coordinates is obtained. The 
discrete PJFMs calculation method in polar coordinates can 
be obtained as follows:

f �(ru, �uv) is the approximate interpolation of f (ri,j, �i,j) in 
the pixel block Ωu,v . Therefore, the new complete orthogonal 
basis functions can be defined as:

(19)�uv =
(
�(s)
uv

+ �(e)
uv

)
∕2, �uv =

(
�(s)
uv

+ �(e)
uv

)
∕2.

(20)Ĉnm =
1

2𝜋

∑
u

∑
v

f �(𝜌uv, 𝜃uv)𝜔n,m(𝜌uv, 𝜃uv).

(21)

�n,m(�uv, �uv) = ∬Ωu,v

V∗
n,m

(�, �)�d�d�

= ∫
�
(e)
uv

�
(s)
uv

Jn(�)�d�∫
�
(e)
uv

�
(s)
uv

e−jm�d�,

Fig. 3  a PJFMs’ pixel distribu-
tion in the polar coordinates, b a 
pixel Ω

u,v of PJFMs in the polar 
coordinate

(a) (b)
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Studies have found that recursive methods [20] to cal-
culate high-order polynomials can also produce numerical 
instability. Many scholars have used Gaussian integration 
for the accurate calculation of orthogonal moments [37, 38]. 
Therefore, on the basis of the recursive calculation, we use 
the ten-point integration [39] to calculate the integral. This 
method can maintain numerical stability when calculating 
the integral of high-order polynomials.

The compound Gauss quadrature rule of radial basis func-
tions integration can be expressed as:

�k is the weight and zk is the sampling point. Next, Table 1 
will give the ten-point Gaussian integral node table. As 
described above, in conjunction with Eqs. (20)–(23), we 
obtained the accurate fractional-order Pseudo-Jacobi–Fou-
rier moments (APJFMs) and do not introduce any geometric 
errors or numerical integration errors during calculation.

3  Accurate fractional‑order pseudo‑Jacobi–
Fourier moments

To analyze APJFMs’ characteristics in the fractional order, 
we give a general definition of AFPJFMs and discuss orthog-
onality, recursion, and invariance. Also, we investigate the 
influence of the fractional-order parameter on the zeros’ dis-
tribution and the ROI feature extraction ability.

(22)�
�
(e)
uv

�
(s)
uv

e−jm�d� =

{
j

m

[
e−jm�

(e)
uv − e−jm�

(s)
uv

]
, m ≠ 0

�(e)
uv

− �(s)
uv
, m = 0

.

(23)
∫

�
(e)
uv

�
(s)
uv

Jn(�, �)�d�

=
�(e)
uv

− �(s)
uv

2

10∑
k=1

�kJn

(
�(e)
uv

− �(s)
uv

2
zk +

�(e)
uv

+ �(s)
uv

2

)
,

3.1  Definition

Let the fractional-order parameter � be a positive rational 
number � ∈ R+ . Let the variable r = r� ( r ∈ [0, 1] ), accurate 
fractional-order recursive Pseudo-Jacobi radial basis func-
tions can be obtained (refer to “Appendix A”):

here

L1, L2, L3 are the same as Eq. (9).
The recursive initial values of Pn(�, r) are:

The radial basis functions satisfies the orthogonal 
condition:

Based on the above, we define AFPJFMs with repetition 
of m ∈ Z and order of n ∈ N as:

Similarly, the image can be reconstructed by AFPJFMs 
and basis functions as:

3.2  Zeros of radial kernels

The position and number of the radial basis functions’ 
zeros are related to the moments’ ability to capture high-
frequency information [5–7]. The zeros distribution is also 
a fundamental property because it is related to information 

(24)

Jn(�, r) = Jn(r
�)

= (−1)n
[

(2n + 4)

(n + 3)(n + 1)
(1 − r�)�r3�−2

] 1

2

× Pn(�, r),

(25)Pn(�, r) = (L1t + L2)Pn−1(�, r) + L3Pn−2(�, r), n ≥ 2,

(26)P0(�, r) =
Γ(4)

Γ(3)
, P1(�, r) =

Γ(5)

Γ(3)

(
1 −

5

3
r�
)
.

(27)

1

∫
0

Jn(�, r)Jn� (�, r)rdr = �nn� .

(28)

C̃nm =
1

2𝜋

1

∫
0

2𝜋

∫
0

V∗
nm
(𝛼, r, 𝜃)f (r, 𝜃)rdrd𝜃

=
1

2𝜋

1

∫
0

2𝜋

∫
0

Jn(𝛼, r) exp(−jm𝜃)f (r, 𝜃)rdrd𝜃.

(29)

f (r, 𝜃) =

+∞∑
n=0

+∞∑
m=−∞

C̃nm ⋅ Vnm(𝛼, r, 𝜃)

≈

K∑
n=0

K∑
m=−K

C̃nm ⋅ Vnm(𝛼, r, 𝜃).

Table 1  �
k
 and z

k
 for ten-point Gaussian integral node

k �
k

z
k

① 0.066671344 − 0.973906529
② 0.149451349 − 0.865063367
③ 0.219086363 − 0.679409568
④ 0.269266719 − 0.433395394
⑤ 0.295524225 − 0.148874339
⑥ 0.295524225 0.148874339
⑦ 0.269266719 0.433395394
⑧ 0.219086363 0.679409568
⑨ 0.149451349 0.865063367
⑩ 0.066671344 0.973906529
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suppression. It means that calculated moments emphasize 
certain parts while ignoring other factors of the image. 
Unlike classical PJFMs, the fractional-order parameter can 
control the AFPJFMs’ zeros distribution, which shows that 
the focus described by AFPJFMs can be transferred to a 
more resolving image area. We call it local/ROI feature 
extraction. This ability comes from the variable replace-
ment r = r� in Eq. (24). Figure 4 shows the relationship 
between r� and r . Figures 5, 6, 7 show some visual exam-
ples of radial kernels Jn(�, r) . In summary, we have the 
following conclusions on the zeros’ distribution and ROI 
feature extraction of AFPJFMs:Fig. 4  Schematic diagram of variable substitution r = r

�

(a) (b) (c)

(d) (e)

Fig. 5  AFPJFMs’ radial kernels with � = 0.1, 0.5, 1, 1.5, 2 from a–e when � = 1,the zeros are uniform. When 𝛼 < 1 or 𝛼 > 1,the zeros biased 
toward 0 or 1

Fig. 6  The 2D view of AFPJFMs’ phase angle ∠V
nm�(r, �) = arctan(Im(V

nm�(r, �))∕Re(Vnm�(r, �))) with � = 0.1, 0.5, 1, 1.5, 2 from a–e (The 
color from blue to yellow indicates that the phase angle is from small to large)
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• When � = 1 , the distribution of radial kernels’ zeros 
is basically uniform. At this time, the moment value 
describes the entire image area equally.

• When 𝛼 < 1 , there will be r = r𝛼 > r in the interval (0, 1) 
and move the radial kernels’s zeros to the r = 0 direction. 
The moments value emphasizes the information in the 
central area of the image.

• When 𝛼 > 1 , there will be r = r𝛼 < r in the interval (0, 1) 
and move the radial kernels’ zeros to the r = 1 direction. 
The moments value emphasizes the information in the 
outer area of the image.

4  Accurate quaternion fractional‑order 
pseudo‑Jacobi–Fourier moments

In [10, 35, 36, 40], PJFMs are only applied to image process-
ing of the grayscale images and cannot be directly applied 
to color images. Therefore, in this section, we will extend 
AFPJFMs to the color image domain and propose accurate 
quaternion fractional-order Pseudo-Jacobi–Fourier moments 
(AQFPJFMs) to suit color image processing. AQFPJFMs 
reflect the color information and the correlation between 
the color channels. Therefore, AQFPJFMs have better image 
representation and distinguishing capabilities.

4.1  Definition

Mathematically, quaternion [41] is an extended number 
system of the complex number system, which is usually 
expressed in the following form:

a, b, c, d are quaternion real parts, and i, j, k are qua-
ternion imaginary parts. We list some basic operation rules 
of the quaternion imaginary unit below:

The quaternion conjugate and modulus are:

Given any two quaternions q1 and q2 , they satisfy the 
following properties:

In recent years, the quaternion theory is widely used 
in color images. Assuming a continuous color image as:

(30)q = a + bi + cj + dk.

(31)

⎧⎪⎨⎪⎩

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

.

(32)q∗ = a − bi − cj − dk, �q� =
√
a2 + b2 + c2 + d2.

(33)(q1 ⋅ q2)
∗ = q∗

2
⋅ q∗

1
.

Fig. 7  The 3D view of AFPJFMs’ phase angle ∠V
nm�(r, �) = arctan(Im(V

nm�(r, �))∕Re(Vnm�(r, �))) with � = 0.1, 0.5, 1, 1.5, 2 from a–e 
( n = 3,m = 3 , X and Y  are the horizontal and vertical coordinates of the image)
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fR(r, �) , fG(r, �) , and fB(r, �) represent three color chan-
nels of the color image f (r, �, z) , respectively. Here we can 
define the color image f (r, �, z) in pure quaternion form as:

Since quaternion multiplication is not commutative, 
from [42], we can get the following two definitions of 
AQFPJFMs:

� is a pure quaternion in any unit, � = (i + j + k)∕
√
3 is 

used in this article. HL
nm�

 and HR
nm�

 are called left AQFPJFMs 
coefficients and right AQFPJFMs coefficients, respectively. 
According to Eq. (33), we prove that HL

nm�
 and HR

nm�
 have the 

following relationship (refer to “Appendix B”):

In this paper, AQFPJFMs represent to the left AQFPJFMs.
AQFPJFMs coefficients HL

nm�
 (or HR

nm�
 ) and the com-

plete orthogonal basis functions Vnm�(r, �) can be used to 
reconstruct the color image f (r, �, z):

If the reconstruction restriction condition |n|, |m| ≤ K 
is added, the approximate reconstruction color image 
f̃ (r, 𝜃, z) can be obtained by Eq. (39):

(34)

f (r, �, z) =

⎡
⎢⎢⎣

f (r, �, 1)

f (r, �, 2)

f (r, �, 3)

⎤
⎥⎥⎦

=

⎡⎢⎢⎣

fR(r, �)

fG(r, �)

fB(r, �)

⎤⎥⎥⎦
, r ∈ [0, 1], � ∈ [0, 2�], z ∈ {1, 2, 3}.

(35)f (r, �, z) = fR(r, �)i + fG(r, �)j + fB(r, �)k.

(36)

HL
nm�

= ∫
1

0 ∫
2�

0

V∗
nm�

(�, r, �) ⋅ f (r, �, z)rdrd�

= ∫
1

0 ∫
2�

0

1

2�
Jn(r, �) exp(−�m�)f (r, �, z)rdrd�.

HR
nm�

= ∫
1

0 ∫
2�

0

f (r, �, z) ⋅ V∗
nm�

(�, r, �)rdrd�

= ∫
1

0 ∫
2�

0

f (r, �, z)
1

2�
Jn(r, �) exp(−�m�)rdrd�.

(37)HL
nm�

= −
(
HR

(−n)(−m)�

)∗

.

(38)

f (r, �, z) =

+∞∑
n=0

+∞∑
m=−∞

Vnm�(r, �) ⋅ H
L
nm�

,

f (r, �, z) =

+∞∑
n=0

+∞∑
m=−∞

HR
nm�

⋅ Vnm�(r, �).

By Eqs. (20)–(23), we can obtain (refer to “Appendix C”):

where

Here Hnm�(⋅) represents the AFPJFMs coefficients of 
⋅ , Im (⋅) represents the imaginary part of the imaginary 
number ⋅ , and Re (⋅) represents the real part of the imagi-
nary number ⋅.

4.2  Invariance

4.2.1  Rotation invariance

f (r, �, z) is the color image, � is the rotation angle. Then the 
rotated image f rot(r, �, z) can be defined as:

Next we will prove that the AQFPJFMs’ magnitude 
coefficients of the rotated image f rot(r, �, z) have rotation 
invariance:

It can be seen that rotated image only affects the phase of 
AQFPJFMs, and does not affect the magnitude of AFPJFMs. 
So there is:

(39)

f (r, 𝜃, z) ≈ f̃ (r, 𝜃, z) =

K∑
n=0

K∑
m=−K

Vnm𝛼(r, 𝜃) ⋅ H
L
nm𝛼

,

f (r, 𝜃, z) ≈ f̃ (r, 𝜃, z) =

K∑
n=0

K∑
m=−K

HR
nm𝛼

⋅ Vnm𝛼(r, 𝜃).

(40)HL
nm�

= AL
nm�

+ BL
nm�

i + CL
nm�

j + DL
nm�

k,

(41)

⎧⎪⎪⎨⎪⎪⎩

AL
nm�

= −
1√
3
[Im(Hnm�(fR)) + Im(Hnm�(fG)) + Im(Hnm�(fB))]

BL
nm�

= Re(Hnm�(fR)) +
1√
3
[Im(Hnm�(fB)) − Im(Hnm�(fG))]

CL
nm�

= Re(Hnm�(fG)) +
1√
3
[Im(Hnm�(fR)) − Im(Hnm�(fB))]

DL
nm�

= Re(Hnm�(fB)) +
1√
3
[Im(Hnm�(fG)) − Im(Hnm�(fR))]

.

(42)f rot(r, �, z) = f (r, � + �, z).

(43)

H̃L
nm𝛼

=
1

2𝜋 ∫
1

0 ∫
2𝜋

0

J∗
n
(𝛼, r) exp(−jm𝜃)f rot(r, 𝜃)rdrd𝜃

=
1

2𝜋 ∫
1

0 ∫
2𝜋

0

J∗
n
(𝛼, r) exp(−jm𝜃)f (r, 𝜃 + 𝜗, z)rdrd𝜃

=
1

2𝜋 ∫
1

0 ∫
2𝜋

0

J∗
n
(𝛼, r) exp(−jm(𝜃 − 𝜗))f (r, 𝜃, z)rdrd𝜃

= exp(jm𝜗)
1

2𝜋 ∫
1

0 ∫
2𝜋

0

J∗
n
(𝛼, r)(−jm𝜃)f (r, 𝜃, z)rdrd𝜃

= exp(jm𝜗)HL
nm𝛼

.
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4.2.2  Scaling invariance

Theoretically, AQFPJFMs are not scaling invariance. How-
ever, in the calculation of AQFPJFMs’ process, the image 
functions are all normalized and mapped to the unit cir-
cle. All the scaling images are the same image after being 
mapped to the unit circle. Therefore, we can consider the 
AQFPJFMs coefficients to be scaling invariance.

5  Image representation via mixed low‑order 
moments

Low-order moments reflect more robust low-frequency 
information, global feature descriptions usually use low-
order moments to improve robustness. However, features 
only containing a few low-order moments usually cannot 
distinguish multiple objects in an image. Therefore, in actual 
situations, high-order moments are needed to improve the 
discriminability, but this comes at the cost of robustness. 
Based on this, we propose a strategy called mixed low-order 
moments feature (MLMF). It uses fractional-order param-
eters to improve discriminability and robustness.

5.1  Definition

Mathematically, we define MLMF based on AQFPJFMs as:

(44)

|||H̃
L
nm𝛼

| = | exp(jm𝜗)HL
nm𝛼

| = |HL
nm𝛼

|||,|||H̃
R
nm𝛼

| = |HR
nm𝛼

exp(jm𝜗)| = |HR
nm𝛼

|||.

(45)

 generates the rotation invariant of AQFPJFMs 
Hnm� . In this paper,  is the magnitude of AQFPJFMs. 
w(�, n,m) is the weight functions, we can set w(�, n,m) to 
strengthen specific features by changing the order (n,m) and 
fractional-order parameter � . Φ is the set of order (n,m) , pri-
ority is given to low order. In this article, we use the largest 
order K to define Φ:

5.2  Robustness

In this section, we will design an experiment to verify the 
robustness of AQFPJFMs with mixed low-order moments 
features. First, we define the AQFPJFMs’ MLMF feature v 
of the image f  as:

where

(46)Φ(K) = {(n,m) ∶ n ∈ N, m ∈ Z, |n|, |m| ≤ K}.

(47)v(f ) =
{||Hnm�(f )

|| ∶ (n,m) ∈ O, � ∈ S
}
.

(48)O = {(0, 0), (0, 1), (1, 0)}, S = {0.1, 0.5, 1, 2, 4}.

Fig. 8  Robustness of AQFP-
JFMs mixed low-order moment 
features under various attacks
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No attack
Rotation 5°
Rotation 45°
Rotation 90°
Scaling 0.5
Scaling 1.5
Scaling 2
Average filter 5×5
Average filter 7×7
Gaussian filter 1
Gaussian filter 2
Salt & pepper noise 0.05
Salt & pepper noise 0.1
Gaussian noise 0.005
Gaussian noise 0.01
JPEG compression 30
JPEG compression 10
Laplace sharpening

Table 2  Image attack parameters

Attack type Level

Rotation Rotation angle: 5°, 45°, 90°
Scaling Scaling factor: 0.5, 1.5, 2
Average filter Kernel size: 5 × 5, 7 × 7
Gaussian filter Kernel size: 5 × 5; Standard derivation: 1, 2
Salt and pepper noise Noise density: 0.05, 0.1
Gaussian noise Kernel size: 5 × 5; Mean: 0; Variance:0.005, 

0.01
JPEG compression Quality factor: 30, 10
Laplace sharpening Kernel: [0, − 1, 0; − 1, 5, − 1; 0, − 1, 0]
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To intuitively understand the robustness of AQFPJFMs 
hybrid low-order moment features, Fig. 8 shows the feature 
v of the original image and each attack image. Here we set 
w (�, n,m) = 1 , attack parameters are listed in Table 2. We 
can see that the variation range of the characteristic v under 
each attack and intensity is small. Therefore, experiments 
have proved that AQFPJFMs hybrid low-order moment fea-
tures have good robustness.

5.3  Time–frequency analysis and discriminability

The MLFM strategy is based on the AQFPJFMs’ time–fre-
quency analysis capabilities. Figure 9 shows the different 
parts of AQFPJFMs’ basis functions. The following conclu-
sions can be drawn:

• When we fixed the fractional-order parameter � , the order 
(n,m) increases and zeros’ number of the basis functions 
Vnm�(r, �) will increase accordingly.

• When we fixed the order (n,m) , zeros’ number of the 
basis functions Vnm�(r, �) does not change. The posi-
tion of the zeros will be affected by the fractional-order 
parameter �.

This phenomenon proves that AQFPJFMs have time–fre-
quency analysis capabilities: The fractional-order parameter 
� affects the time-domain characteristics, the order (n,m) 
affects the frequency-domain characteristics. Different frac-
tional-order parameters � reflect different time-domain char-
acteristics. Combining these moments will make the features 
more distinguishable. At the same time, since the features 
only contain low-frequency components, better robustness 
is ensured.

6  Experiments and application

In this section, we will prove the effectiveness of AQFP-
JFMs and MLMF through several experiments. All the tests 
are implemented with MATLAB R2017a and run under 
the Microsoft Windows 7 environment equipped with a 
3.60 GHz CPU and 16 GB memory computer.

6.1  Computation complexity and numerical 
stability

To prove the correctness and availability of the PJFMs’ 
recursive calculation and polar pixel tiling scheme, the 
image "Lena" ( 128 × 128 ) will be reconstructed in the fol-
lowing three ways:

• Direct calculation method of PJFMs.
• Recursive calculation method of PJFMs.
• Recursive calculation method of APJFMs.

We use the mean square reconstruction error (MSRE) 
here to evaluate the reconstruction quality of the image:

where f̃ (x, y) represents the reconstructed image, f (x, y) 
represents the original image. Figure 10 shows the recon-
structed image, the comparison of the MSRE values and 
calculation time are shown in Fig. 11. These results indicate 
that:

(49)

MSRE =

+∞

∫
−∞

+∞

∫
−∞

[f (x, y) − f̃ (x, y)]2dxdy

/ +∞

∫
−∞

+∞

∫
−∞

[f (x, y)]2dxdy,

Fig. 9  a The real parts of AQFPJFMs’ basis functions, b the imaginary parts of AQFPJFMs’ basis functions
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• When K < 22 , PJFMs’ direct and recursive calculation 
method will obtain consistent subjective reconstruction 
results and objective reconstruction accuracy. There-
fore, our recursive calculation method is correct.

• When K ≥ 22 , the direct calculation method of PJFMs 
has serious numerical instability problems, and the 
computational complexity is relatively high. Since the 
recursive calculation method of PJFMs does not involve 
the factorial (or gamma function) of large numbers, it 
exhibits better stability during K ≥ 22 , and the com-
putational complexity is relatively low. Therefore, our 
recursive calculation method is effective and meets the 
theoretical expectations in Sect. 2.2.

• Compared with the recursive calculation of PJFMs, 
the image reconstruction ability of APJFMs has been 

greatly improved. Therefore, our polar pixel tiling 
scheme is effective.

The recursive calculation method of APJFMs is used in 
the experiments after this section.

6.2  Image reconstruction

This section will analyze the significance of the fractional-
order parameter on the image reconstruction ability of AFP-
JFMs and AQFPJFMs. As we mentioned in Sect. 3.2, when 
� = 1 , AFPJFMs and AQFPJFMs equally extract global 
image features, and when the value of � deviates from 1, 
AFPJFMs and AQFPJFMs more reflect the local charac-
teristics of the image. Therefore, this experiment sets the 

Fig. 10  Reconstructed image Lena(128 × 128 ) with order K = 5, 10… , 50 from left to right: a direct calculation of PJFMs. b Recursive calcu-
lation of PJFMs. c Recursive calculation of APJFMs
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Fig. 11  Data comparison of grayscale image “Lena” ( 128 × 128 ) with order K = 5, 10… , 50 from left to right. a MSRE values, b decomposi-
tion times, c reconstruction times
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parameter as: � = {0.1, 0.5, 1, 1.5, 2} . Figure 12 shows 
the gray image "Lena" ( 128 × 128 ) with different fractional-
order parameter under AFPJFMs’ recursive method, Fig. 13 
shows the color image "Lena" ( 128 × 128 ) with different 
fractional-order parameter under AQFPJFMs’ recursive 
method. The corresponding reconstruction error, decompo-
sition time, and reconstruction time are given in Figs. 14 
and 15. We can see:

• When � = 1 , AFPJFMs’ recursive calculation method 
will obtain consistent subjective reconstruction results 
and objective reconstruction accuracy with APJFMs’ 

recursive calculation method. Therefore, our fractional 
expansion is correct.

• AQFPJFMs’ recursive calculation method will obtain 
similar subjective reconstruction results and objective 
reconstruction accuracy with AFPJFMs’ recursive cal-
culation method. Therefore, quaternion expansion is 
effective.

• From the perspective of global features, the reconstructed 
image effect is better than PJFMs because of the adjust 
zeros distribution and polar pixel tiling scheme. How-
ever, when 𝛼 < 0.5 , the image center will produce a vital 
integration error. On the contrary, the integration accu-

Fig. 12  Recursive computation of AFPJFMs’ reconstructed grayscale image Lena ( 128 × 128 ) with order K = 5, 10… , 50 from left to right 
and � = 0.1, 0.5, 1, 1.5, 2 from top to bottom
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Fig. 13  Recursive computation of AQFPJFMs’ reconstructed color image Lena ( 128 × 128 ) with order K = 5, 10… , 50 from left to right and 
� = 0.1, 0.5, 1, 1.5, 2 from top to bottom
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racy and numerical stability of the image center when 
� ≥ 0.5 are better.

• From the perspective of local features, when 𝛼 < 1 , the 
image reconstruction effect of the central area is bet-
ter than the outer area of the image. When 𝛼 > 1 , the 
reconstruction effect of the outer area of the image is 
better than that of the central area of the image. This is 
in line with the theory we gave in Sect. 3.2. By observ-
ing Figs. 12 and 14, we can see that AFPJFMs and 
AQFPJFMs show more obvious spatial characteristics 
when 𝛼 > 1.

6.3  Application to image zero‑watermarking

The watermarked image obtained by traditional digital 
watermarking technology will be distorted. Image distor-
tion is unacceptable in some applications, such as military 
imaging systems, artwork scanning, and medical diagno-
sis. Moreover, this method is difficult to balance robust-
ness, imperceptibility, and capacity due to its inherent con-
tradictions [43]. Based on this, Wen [44] offered a new 
zero-watermarking algorithm. The zero-watermarking 
algorithm does not change the host image but constructs 

Fig. 14  AFPJFMs’ data comparison of grayscale image “Lena” ( 128 × 128 ) with order K = 5, 10… , 50 from left to right. a MSRE values, b 
decomposition times, c reconstruction times
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a watermark from the host image’s characteristics. In this 
process, the digital image is absolutely fidelity. Therefore, 
zero-watermarking has perfect imperceptibility and effec-
tively solves the balance between robustness, impercepti-
bility, and watermark capacity.

Moments and moments invariants have constantly been 
researching hotspots in the area of zero-watermarking due 
to their excellent image description ability and invariance. 
However, moments based on the zero-watermarking algo-
rithm still has problems to be solved, including:

• Traditional zero-watermarking algorithm is generally 
applicable to the protection of grayscale images, in 
reality, color images to be protected are more common;

• Traditional zero-watermarking algorithm paid too 
much attention to robustness and ignoring the distinc-
tion. This phenomenon leads to a high false detection 
rate;

• Most zero-watermarking algorithms based on fre-
quency domain features, their features are not robust 
to geometric attacks. Therefore, they can only improve 
robustness through machine learning (such as SVM). 
Also, their time complexity and applicability are infe-
rior;

• In the algorithm based on the moment feature, the 
moment calculation methods almost have the prob-
lems of enormous calculation complexity, numerical 
instability, and low calculation accuracy, which directly 
affect the performance of the algorithm.

Therefore, we applied AQFPJFMs and MLMF in zero-
watermarking. Compared with other advanced algorithms, 
our proposed algorithm has the following advantages:

• We proposed a new moment AQFPJFMs to effectively 
reflect the correlation between color information and 
color channels.

• We proposed an image description method based on 
AQFPJFMs called mixed low-order moments features 
(MLMF). The low-order AQFPJFMs have good robust-
ness. The moments’ value of the fractional-order param-
eter is mixed to enhance the features’ discriminability, 

thereby MLMF achieving a good balance of robustness 
and discriminability.

• We proposed a new moment calculation scheme AQF-
PJFMs, which has significant advantages over existing 
calculation methods by calculation speed, numerical sta-
bility, and calculation accuracy.

The process of our zero-watermarking algorithm is as 
follows:

6.3.1  Initial setup

H o s t  i m a g e 
I = {f (i, j, z) ∶ f ∈ [0, 255], (i, j) ∈ [1, NI]

2, z ∈ {1, 2, 3}}.
Fractional-order parameter � = {0.1, 0.5, 1, 1.5, 2}.
Weight functions w(�, n,m) = 1.
Logo W = {w(i, j) ∶ w ∈ {0, 1}, (i, j) ∈ [1, NW ]

2}.
K e y  key1 = {x0 = 0.5, � = 0.45, n = NW}

, key2 = {a = 2, b = 3, It = 10}

,key3 = {a = 1, b = 2, It = 5}.

6.3.2  Use AQFPJFMs and MLMF to generation 
zero‑watermarking

1. Get the R, G, B color channel components of the host 
image I.

2. Calculate the AQFPJFMs coefficients according to Eq. 
(41).

3. Generate mixed low-order moments features:

4. Quantify and MLMF v = {vi}
NW

i=1
 to obtain quantized fea-

tures bv = {bvi}
NW

i=1
:

5. Use key1 and asymmetric Tent map to generate a chaotic 
sequence {xi}:

(50)

(51)

bvi =

{
0 vi < T

1 vi ≥ T
,

T = median (mean(v1), mean(v2), … , mean(vNW
)).

(52)xi =

{ xi−1

𝜇
0 ≤ xi−1 ≤ 𝜇

1−xi−1

1−𝜇
𝜇 < xi−1 ≤ 1

.
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6. Use chaotic sequences {xi} and quantized features bv to 
perform left, right, and cyclic shift operations [45] to 
generate feature maps W .

7. Use key2 and key3 to scramble the watermarking W and 
the feature map B through the generalized Arnold trans-
formation to obtain the scrambled watermarking WS and 
the scrambled feature map BS;

  (x�, y�) represents the position of the pixel after trans-
formation, and (x, y) represents the position of the pixel 
before transformation.

(53)
(
x�

y�

)
=

(
1 b

a ab + 1

)(
x

y

)
mod NW .

8. Take the XOR of the scrambled watermarking WS and 
the scrambled feature map BS to get the zero-watermark-
ing ZW:

9. Send the zero-watermark ZW , key1 , key2 , key3 , and the 
identity information IDOwner of the copyright owner to 
a trusted organization through a confidential channel, 
requesting it to be authenticated. After accepting the 
request, the trusted organization will verify the related 
message received and stamp it with a digital time stamp:

(54)ZW = XOR (WS, BS).

(55)CTA = hTA(ZW||key1||key2||key3||IDOwner||t).

Fig. 16  The generation process 
of our proposed zero-water-
marking algorithm

Fig. 17  The verification process of our proposed zero-watermarking algorithm
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  t is a digital timestamp means the authentication time; 
hTA(⋅) is a single-channel hash function; | | marks the 
concatenation of data.

6.3.3  Use AQFPJFMs and MLMF to verification 
zero‑watermarking

1. The verifier downloads information from the trusted 
organization, including: zero-watermarking ZW , key1 , 
key2 , key3 and identity information IDOwner , uses the 
trusted organization to calculate whether the timestamp 
is complete and authentic:

2. Perform steps B.1 to B.6 on I′ to obtain a feature map B′

.

(56)C�
TA

= hTA(ZW||key1||key2||key3||IDOwner||t).

3. Use key3 to scramble the feature map B′ through the 
generalized Arnold transformation, then we obtain the 
scrambled feature map BS′:

4. Take the XOR of the zero-watermarking ZW and the 
scrambled feature map BS′ to get the scramble water-
mark WS′:

5. Use key2 to reverse the scrambled watermarking WS′ , 
then we obtain the detected watermarking W ′:

(57)
(
x�

y�

)
=

(
ab + 1 −b

−a 1

)(
x

y

)
mod NW .

(58)WS� = XOR(BS�, ZW).

(59)W � = {w�(i, j) ∶ w� ∈ {0, 1}, (i, j) ∈ [1, NW ]
2}.

Table 3  “Lena” image under different attacks with corresponding PSNR, BER values, and retrieved watermarks

Attack Rotation with 
cropping 15°

Rotation with 
cropping 45°

Rotation with 
no cropping 
2°

JPEG com-
pression 10

JPEG com-
pression 30

Scaling 0.25 Scaling 2.0

PSNR 11.6 10.3 14.6 27.5 30.9 28.6 42.3
Attacked 

image

BER 0 0 0 0 0 0 0
Retrieved 

water-
mark

Attack Gaussian 
noise 0.01

Salt & Pepper 
noise 0.01

Surround 
cropping 1/4

Sharpening UnZign (6,6) Median filter-
ing 3 × 3

Blurring

PSNR 20.3 25.1 8.5 21.3 26.4 33.8 28.1
Attacked 

image

BER 0 0 0.0454 0 0 0 0
Retrieved 

water-
mark
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The above is all the processes of the zero-watermark 
algorithm. Figure 16 shows the generation process of our 
proposed zero-watermarking algorithm, Fig. 17 shows the 
verification process of our proposed zero-watermarking 
algorithm.

Next, the peak signal-to-noise ratio (PSNR) of the carrier 
image is estimated to the degradation after being attacked:

We use the detected watermark’s bit error rate (BER) to 
estimate the robustness of the algorithm:

(60)

PSNR

= 10 lg

{(
3 ⋅ 2552 ⋅ N2

I

)
∕

3∑
z=1

NI∑
i=1

NI∑
j=1

(f (i, j, z) − f �(i, j, z))2

}
.

Fig. 18  Original MRI medical images and logo

Table 4  BER comparison results with other zero-watermarking algorithms (Whole Brain Atlas)

Attacks PSNR Proposed Yang2020 [47] Xia2019 [48] Wang2017 [49] Wang2016 [50] Chang2008 [51]

Rotation
5° 18.2236 0.0000 0.0000 0.0059 0.0206 0.3320 0.0037
45° 15.2647 0.0000 0.0000 0.0052 0.0235 0.3155 0.0042
Scaling
0.25 20.7022 0.0000 0.0002 0.0274 0.0527 0.0438 0.0117
4 25.1038 0.0000 0.0001 0.0020 0.0049 0.0168 0.0088
JPEG compression
30 22.9507 0.0000 0.0007 0.0059 0.0275 0.0084 0.0054
70 24.7500 0.0011 0.0009 0.0026 0.0234 0.0048 0.0037
Upper left corner cropping
1/16 49.6328 0.0000 0.0002 0.0000 0.0000 0.1743 0.0000
1/8 29.5355 0.0000 0.005 0.0000 0.0000 0.2256 0.0000
Salt and pepper noise (0.01) 23.7615 0.0011 0.0009 0.0260 0.0400 0.0446 0.0698
Gaussian noise (0.01) 21.3016 0.0106 0.0077 0.0200 0.0430 0.0344 0.0285
Gaussian filtering (3 × 3) 21.6548 0.0000 0.0001 0.0024 0.0052 0.0241 0.0092
Median filtering (3 × 3) 24.9545 0.0038 0.0039 0.0098 0.0147 0.0249 0.0178
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Here, we take the color image “Lena” ( 512 × 512 ) as an 
example. Table 3 gives the images of “Lena” under various 
attacks, and their corresponding PSNR values, the detected 
watermarking and BER values. These results show that our 
proposed algorithm has excellent robustness. In the face of 
various attacks, our algorithm is still identifiable.

To test the effectiveness of our algorithm, we use the 
mean value of the detected watermark BER to compare 

(61)BER =

NW∑
i=1

NW∑
j=1

XOR(w(i, j), w�(i, j))∕N2
W
.

with other similar zero-watermarking algorithms. In this 
experiment, eighteen colorful MRI medical images from 
the “Whole Brain Atlas” image library [46], Fig. 18 shows 
the test images whose size was 256 × 256 , and a binary 
image with the size of 32 × 32 . The experimental results 
will be compared with the five most advanced zero-water-
marking algorithms [47–51]. Among them, Yang2020 [47], 
Xia2019 [48], Wang2017 [49], and Wang2016 [50] are some 
zero-watermarking algorithms based on moments, while 
Chang2008 [51] is the zero-watermarking algorithm based 
on spatial domain features. It can be seen from Table 4 that 

Fig. 19  Original color image and logo

Table 5  AR comparison results 
with other watermarking 
algorithms (USC-SIPI)

Attacks PSNR Proposed Xia2021 [53] Kang2020 [54] Liu2019 [55]

JPEG
30 29.3325 1.0000 0.9923 0.9762 0.9091
70 31.5819 1.0000 0.9968 0.9914 0.9932
Rotation
5° 15.8961 1.0000 0.9967 0.9892 0.9150
45° 10.8333 1.0000 0.9946 0.9860 0.8555
Scaling and resizing to original size
0.25 27.1446 1.0000 0.9895 0.9585 0.5762
4 41.6412 1.0000 0.9978 0.9971 0.9893
Gaussian noise (0.01) 20.1584 1.0000 0.9813 0.9470 0.9609
Gaussian filtering (3 × 3) 29.2265 1.0000 0.9978 0.9946 0.9629
Median filtering (3 × 3) 31.7905 1.0000 0.9906 0.9818 0.9727
Salt and peppers noise (0.03) 20.5037 1.0000 0.9735 0.9544 0.9424
Upper left corner cropping
1/16 17.3245 0.9965 1.0000 1.0000 0.9053
1/8 14.448 0.9921 1.0000 1.0000 1.0000
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for most attacks, our proposed algorithm has the lowest bit 
error rate and higher robustness. This is because the AQFP-
JFMs’ low-order moments and MLMF algorithms are more 
robust to conventional image attacks (sharpening, blurring, 
compression, noise, etc.). For [47–50], the algorithms have 
to use high-order moments to increase the watermark capac-
ity, so their robustness is poor.

To ensure the universality of proposed algorithm, we 
select 30 color images with the size of 256 × 256 as carrier 
images from the USC-SIPI image database [52]. A binary 
image with the size of 32 × 32 as a watermark. Figure 19 
shows some of these images.

The watermark of [53, 54] is composed of two differ-
ent kinds of moments. The watermark of algorithm [55] is 
composed of DTCWT-DCT. Table 5 shows the comparison 
of the proposed algorithm and the above algorithm. We use 
the detected watermark accuracy rate (AR) to estimate the 
robustness of the algorithm:

Obviously, under most attacks, the AR values of our 
proposed algorithm is the highest. These experiments fur-
ther confirmed our previous analysis; MLMF and AQFP-
JFMs improve the robustness of the proposed algorithm. 
Since most zero-watermarking algorithms are publicly 
verifiable, in addition to their robustness, discriminabil-
ity is also extremely important. However, the existing 
zero-watermarking algorithms often ignore the discrimi-
nability that will lead zero-watermarking algorithm may 
mistakenly confirm some carrier to be verified. Therefore, 
we designed the following discriminability experimental 
program: First, we choose five carrier images in the Coil-
100 image database [56] and generate the corresponding 
zero-watermarking. Then, we use the attack version (zero-
mean Gaussian noise) of these five images to verify and 
record the BER of the detected watermark. Finally, set a 
verification threshold. Only when the BER is less than 
this threshold, the algorithm will confirm the verification. 
For the algorithm’s discriminability, here we use the false 
positive ratio (FPR) to measure it:

TP and FP , respectively, represent the number of the 
algorithm correctly times confirmed and incorrectly con-
firmed. The test results of our algorithm will be com-
pared with Wang2017 [49] and Wang2021 [57]. Fig-
ure 20 shows the discriminability test results comparison 
between Wang2017, Wang2021 and our algorithm. The 
red background shows the failed verification. The green 

(62)AR = 1 − BER.

(63)FPR = FP/(TP + FP).

Gen.

Ver.

0.054 0.114 0.146 0.105 0.117

0.157 0.123 0.172 0.159 0.145

0.154 0.131 0.079 0.141 0.147

0.111 0.120 0.145 0.058 0.103

0.134 0.123 0.159 0.121 0.064

(a) Wang2017

Gen. 

Ver.

0.054 0.114 0.146 0.105 0.117

0.157 0.123 0.172 0.159 0.145

0.154 0.131 0.079 0.141 0.147

0.111 0.12 0.145 0.058 0.103

0.134 0.123 0.159 0.121 0.064

(b) Wang2021

Gen. 

Ver.

0 0.076 0.142 0.152 0.123

0.076 0 0.1 0.099 0.122

0.153 0.1 0 0.083 0.222

0.152 0.099 0.083 0 0.222

0.112 0.122 0.222 0.222 0

(c) Proposed

Fig. 20  Discriminability results. a Wang2017. b Wang2021, c. Pro-
posed algorithm

▸
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background shows the passed verification. The noise vari-
ance of Wang2017, Wang2021, and our proposed algo-
rithm is 0.01; the verification threshold of Wang2017, 
Wang2021, and our proposed algorithm is 0.13, 0.22, and 
0.04, respectively; the FPR of Wang2017, Wang2021, and 
our proposed algorithm is 0.615, 0, and 0. Here, robust-
ness requires confirmation and verification when the car-
rier content is consistent, even if the verification carrier 
is attacked. This required that the BER on the diagonal of 
Fig. 20 should be as low as possible. The discriminability 
requires that when the carrier content is consistent, even 
if the verification carrier is attacked, robustness can be 
used for confirmation and verification. It means that the 
off-diagonal BER of Fig. 20 should be as high as possible. 
If the algorithm is good enough, there should be a clear 
boundary between the BER of the above two cases. For 
Wang2017, the length of the generated feature is equal 
to the length of the watermark, so the feature contains 
high-order PCET coefficients (K = 32) , which has better 
discriminability. Simultaneously, the robustness of high-
order coefficients is poor (Fig. 20a BER on the diagonal 
is too high), which makes Wang2017's FPR too large. For 
Wang2021, the algorithm has obvious boundaries, so it has 
better discriminability than Wang2017. But in Fig. 20b, 

we can see that the discriminative values of Wang2021 is 
generally too large. Compared with Fig. 20c, the values 
on the diagonal of Wang2021 are not 0, but the values 
on the diagonal of our proposed algorithm are all 0, the 
boundary is clearer. Therefore, the discriminability of 
our proposed algorithm is better than Wang2021. This is 
because the proposed algorithm is based on AQFPJFMs 
and MLMF. On the one hand, MLMF is composed of the 
low-order moments of K = 2 , which ensures that the algo-
rithm has good robustness. On the other hand, based on the 
AQFPJFMs’ different fractional-order parameters, the rich 
time-domain information contained in MLMF enhances 
the discriminability of the algorithm. It can be seen that 
compared with other watermarking algorithm methods, 
our proposed zero-watermarking algorithm performs bet-
ter in both robustness and discriminability.

To prove the security of our proposed algorithm, we test 
the impact of changing a single x0 ∈ key1 on the algorithm 
security. Here, AR is used to check the security of the zero-
watermarking algorithm.

We increase x0 from 0.4 to 0.6 with a step size of 0.001. 
Figure 21 shows that the carrier image to be inspected can 
pass the verification only when the x0 is correct ( x0 = 0.5 ). 
When the key x0 is incorrect, the value of AR fluctuates 
around 0.8. It proves that the key is the crux to the security 
of the algorithm. When the key is not disclosed, even if all 
the algorithm details are totally exposed, our proposed zero-
watermarking algorithm still has sufficient security.

Our proposed zero-watermarking algorithm’s watermark 
capacity is:

K is the maximum order, C is the watermark capacity 
(bit), and S is the number of selected parameters s . Fig-
ure 22 shows the relationship between K , S , and watermark 
capacity. Obviously, adding K and S can increase the water-
mark capacity of the zero-watermarking algorithm, but we 

(64)C = S ⋅ (K + 1) (2K + 1).
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recommend that users increase S instead of increasing K , 
because the low-order moments values are more robust.

The calculation time of our proposed algorithm is mainly 
spent on calculating the AQFPJFMs of the carrier image. 
Because we use a recursive calculation method, the time 
complexity of the moment is reduced from O(N2K2) to 
O(N2K) . ( N is the size of carrier image, K is the maximum 
order.) Although using polar pixel tiling scheme and the 
increase of fractional-order parameter will increase the time 
complexity, the calculation time of our proposed zero-water-
marking algorithm will not be significantly affected because 
the low-order moments and recursive calculation method 
we used. Therefore, the time complexity of our zero-water-
marking algorithm is O (3 ⋅ 10 ⋅ N ⋅ N2

⋅ S ⋅ K) = O (SN3K) 
( S is the number of fractional-order parameter � ). Figure 23 
shows the relationship between the zero-watermarking algo-
rithm spent time and the carrier image’s size.

7  Conclusion

In this paper, first, we proposed the recursive method of 
PJFMs, because the recursive calculation method does not 
involve the factorial (or gamma function) of large numbers, 
so it has better numerical stability; second, we proposed the 
accurate algorithm of PJFMs, called APJFMs. The polar 
pixel tiling scheme can cancel geometric and numerical 
integration errors, so we can reconstruct high-order images 
better; third, we proposed a new set of generalized frac-
tional orthogonal moments, called AFPJFMs. Due to the 
introduction of fractional-order parameter, users can adjust 
the radial basis functions’ zeros distribution by changing 
the fractional-order parameter according to different appli-
cation backgrounds; fourthly, we extended AFPJFMs to the 
color images by quaternion. AQFPJFMs are realized. It has 
been improved in terms of accuracy, numerical stability and 
applicability; finally, we make full use of the time–frequency 
analysis capabilities of AQFPJFMs to propose MLMF and 
apply it to the digital image zero-watermarking algorithm. 
Compared with other advanced zero-watermarking algo-
rithms, our proposed algorithm proves that MLMF has 
significant advantages in both global feature robustness 
and discriminability. Also, after testing, our proposed zero-
watermarking algorithm has high security and has certain 
advantages in zero-watermarking capacity and calculation 
speed.

For future work, there are still many aspects of this 
paper that need to be improved. First, the nearest neighbor 

interpolation method in the AQFPJFMs algorithm affects 
the accuracy of the algorithm. We should use a higher-pre-
cision interpolation method to achieve upsampling; second, 
because of the powerful image description ability of MLMF 
to improve system performance, we consider applying AQF-
PJFMs and MLMF in other digital image processing fields.

Appendices

Appendix A

By Eq. (4), the weighting function is:w(r) = (1 − r) ⋅ r2.
Here replace the independent variable r of the radial basis 

function with the new variable r = r� , r ∈ [0, 1] , and the new 
weight function can be obtained as:

We define a new radial basis functions:

The proof is complete.

Appendix B

Taking the conjugate of HL
nm�

 , there are:

Therefore, HL
nm�

= −(HR
(−n)(−m)�

)∗.

w�(r�) = (1 − r�) ⋅ �r�−1 ⋅ r2� .

J�
n
(r�) =

[
w�(r)

rbn

] 1

2

Pn(r
�) =

[
(1 − r�) ⋅ �r�−1 ⋅ r2�

rbn

] 1

2

Pn(r
�)

=

[
(1 − r�) ⋅ �r3�−2

bn

] 1

2

Pn(r
�)

= (−1)n
[

(2n + 4)

(n + 3)(n + 1)
(1 − r�)�r3�−2

] 1

2

× Pn(�, r).

(
HL

nm�

)∗
=

(
∫

1

0 ∫
2�

0

1

2�
Jn(r, �) exp(−�m�)f (r, �, z)rdrd�

)∗

= ∫
1

0 ∫
2�

0

1

2�
(Jn(r, �) exp(−�m�)f (r, �, z))

∗rdrd�

= ∫
1

0 ∫
2�

0

1

2�
(Jn(r, �))

∗f (r, �, z)(exp(−�m�))∗rdrd�

= −∫
1

0 ∫
2�

0

Jn(r, �)f (r, �, z)
1

2�
exp(−�m�)rdrd�

= −HR
(−n)(−m)�

.
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