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Abstract
This paper proposes a nonparametric approach with the purpose of estimating discrete wavelet transform (DWT) sub-band 
coefficients for high performance image interpolation. The number of clusters of defined statistical model that represents 
wavelet coefficients during the learning process is not fixed. The interpolating method is based on Hierarchical Dirichlet 
Process (HDP) where it uses the Blocked Gibbs Sampling method to obtain the optimum final values. The proposed HDP-
HMM exploits statistical inter-scale, and intra-scale dependencies of image sub-bands of three-level decomposed 2D-DWT. 
It derives sub-bands of low resolution (LR) image, to obtain sub-bands of desired high resolution (HR) image. This research 
implements Hidden Markov model (HMM) to model the wavelet coefficients, and HDP to model the observations. It uses a 
very small size dataset that contains both LR and HR images of the dataset. The sophisticated statistical model introduced 
of the paper has excellent results in terms of Peak-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Feature 
Similarity Index (FSIM), and Edge PSNR (EPSNR). It also has a great capability of repressing disturbing artifact, due to 
ability to model statistical dependencies of distant pixels. This method, and other compared state-of-the-art methods, have 
implemented on eighteen test-benches, with different statistical properties.

Keyword DWT · Hierarchical Dirichlet process · HMM · Gibbs sampling · Nonparametric · Artifact · EPSNR. FSIM

1 Introduction

Image interpolation is the resolution enhancement opera-
tion of a given low-resolution image, in order to magnify it 
to high-resolution image. The image interpolation problem 
can be observed from different standpoints. Wavelet domain 
image interpolation using various sub-band decomposition 
is a breakthrough. Wavelet theory has many applications in 
multiple areas of image processing. The dyadic multireso-
lution analysis (MRA) architecture for DWT which is pre-
sented by Mallat in 1989 [1] is the basic platform of this 
research.

It divides the frequency band into two reconstruction/ 
decomposition parts, and provides the ability to analyze 
the input signal by scale-two repeatedly, until the desired 
frequency resolution is achieved [1, 2]. Normally, in 

wavelet-based interpolation methods, the available LR image 
is assumed as the LL sub-band. By obtaining wavelet coef-
ficients, the next finer scale image will be achieved. Chang-
ing the scale from LR to HR is the process of predicting lost 
high-frequency components of the image. Recent machine 
learning and data-driven approaches have improved the sub-
jective quality of interpolated HR images. This category of 
approaches which includes neural network-based methods 
defines statistical chain models based on specific stochastic 
processes that fit the behavior of the corresponding data set 
[3]. We require to reduce image artifacts in order to achieve 
efficient estimation of pixel correlations. This paper concen-
trates on high efficiency estimation of sub-band coefficients 
using hidden Markov chains and nonparametric modeling 
by HDP.

DWT and DCT are two principal tools of image/video 
processing to manipulate, and enhance frequency band to 
achieve the desired intent. Therefore, in both algorithmic 
development and hardware implementation techniques, it 
has received a lot of attention from researchers [4–6]. The 
idea of image interpolation using Markov models based on 
DWT was for the first time offered in [7] and [8] researches. 
Locally adaptive zooming algorithm (LAZA) [9] uses 
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adjustable thresholds to detect sharp edges and exploit data 
of discontinuous lines to update the interpolation process; 
however, the method still suffers from lack of accuracy in 
sharp lines. New edge-directed interpolation (NEDI) [10], 
and directional filtering and data fusion (DFDF) [11], are 
adaptive directional interpolants functioning while gaining 
image directional regularity but still having jaggies artifacts. 
The improved new edge-directed interpolation (INEDI) 
[12], has modified NEDI by using varying size training 
windows according to the edge size, and has obtained better 
results. Visual artifacts such as jaggies and ringing appear 
on INEDI. However, this method still has problem with 
jaggies on the edges. Xianming Liu et al. have proposed 
Interpolation via Graph-based Bayesian Label Propagation 
method (IGBLP), which is a graph-based method in which 
point labels propagate from known to unknown points of the 
graph based on Bayesian inference [13]. It performs based 
on Bayesian inference by labelling known and unknown pix-
els, the defined labels propagate from known to unknown 
points of the graph.

Seung-Jun et al. proposed an edge-guided method based 
on computing the derivatives and using Taylor series approx-
imation and calculating intensity values of the desired pix-
els by an approximation of Taylor series [14]. This exploits 
information of sharp lines of image but still has problem 
of staircase effect in interpolating curvatures. Aguerrebere 
et al. also proposed a Bayesian approach method in which 
they use a Gaussian mixture model (GMM) to perform non-
local patch-based restoration [15]. Abbas et al. proposed 
an adaptive interpolation algorithm which defines optimal 
values for trigonometric B-spline [16]. Khan et al. have 
proposed a low-complexity slope-based method that works 
based on Edge Slope Tracing (EST) that operates in a dif-
ferent way, in a way that, first, it predicts slope of the line 
that contains the intended pixel based on adjacent slopes. 
Then, it performs post-processing operations, in order to 
reduce artifacts, correct the edgy regions, and obtains the 
value of the intended pixel [17]. The interpolating algorithm 
presented in [18] has set a trade-off between performance 
and computational complexity of its achieved final results. 

This edge directed algorithm has used a gradient and edge 
map of the input image to interpolate unknown pixels in 
different predicted directions using known intensity pixels. 
It performs by classification of unknown pixels into obvi-
ous and transitional edges using a decision support system. 
The main struggle of these methods is their limited abil-
ity in finding correlation between distant pixels. Therefore, 
this research paper has proposed a sophisticated statistical 
model that operates in two directions in order to model and 
retrieve lost information as much as possible. This powerful 
model has remarkable capabilities in countering jaggies and 
disturbing artifacts. Its final PSNR, SSIM, FSIM results in 
most cases does better than mentioned competing methods. 
Section 2 explains the proposed method, the implementa-
tion process, and how it models inter-scale and intra-scale 
dependencies of the 2D-DWT to obtain a high performance 
image interpolation. Section 3 discusses the experimental 
results. The conclusion comes in Sect. 4.

2  Proposed interpolation method

A. Problem definition
  At the beginning, an appropriate dataset including 

both LR and HR images is presented. Then, as shown 
in Fig. 1, in order to exploit and study the statistical 
dependencies, Level 1, 2, and 3 sub-bands are extracted 
by three scale sub-band decomposition of each LR 
image. Then, through “tying” the coefficients of wave-
let mother function to clusters of HDP-HMM, the 
model trains and obtains the optimum coefficient values 
achieve. The concept of tying coefficients to clusters, 
first time proposed by Crouse et al. [7].

Then, by obtaining wavelet coefficients from the sta-
tistical model in DWT domain, the input image will be 
decomposed one level, and level-1 sub-band is achieved. 
Eventually, through the proposed trans-band computation, 
three level-1 sub-bands of the input image will be doubled 
in size to three sub-band images of level-0. As shown in 

Fig. 1.  2D-DWT of LR image 
with sub-band decoding in three 
stages
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Fig. 2 by inverse 2D-DWT operation the intended output 
HR image is achieved. The detailed flowchart of the pro-
posed method is shown in Fig. 3.

In order to derive coefficients of the desired mother 
function, HDP-HMM, as its name implies, it operates 
in two different phases. In the first phase, the behavior 
of coefficients within a specified MRA scale of DWT is 
modelled through hidden Markov chains. The intra-scale 
dependency extraction will describe in part B of this sec-
tion. On the other hand, in second phase, the inter-scale 
dependencies between two levels of MRA are modelled 
by HDP. This includes statistical dependencies between 
level-1 and level-2, also between level-2 and level-3 of the 
LR images of dataset.

In machine learning, Dirichlet process (DP) has two 
important applications. Dirichlet Process Mixture Model 
(DPMM), and HDP. In the context of mixture model, a DP-
distributed discrete random measure is used as a prior to the 
parameters of mixture components in a mixture model [19].

A DPMM mathematically is defined in terms of a base 
measure  G0 and a concentration parameter α. The number of 
mixture components are not fixed, and this is why it is called 
infinite mixture model. In contrast, Gaussian mixture model 
(GMM) is a finite mixture model with prespecified compo-
nents [20]. (1) describes DPMM in which θi = (µi, σi) of G is 
the mixture component parameters of the observed data, xi. 
Dist represents the distribution of mixture components [21].

HDP is the extended concept of DPMM. In order to 
link several mixture models (in the case of this research 
two mixture models), hierarchical Dirichlet process has 
been proposed [22, 23]. In fact, HDP allows to juxtapose 
prior observations of several groups of data with the same 
characteristics inside a model. This gives the ability of 

G ∼ DP(�,G0)

�i|G ∼ G

(1)xi|�i ∼ Dist(�i)

training based on defined combinatorial distribution for 
wavelet mother function.

B. Intra-scale dependency extraction
  Although in some researches wavelet coefficients have 

been assumed statistically independent, they could be 
modeled in several ways based on different distributions 
[24]. However, through studying the wavelet-function 
and scaling-function structure, we can demonstrate that 
their behavior can be modeled. Several statistical models 
which meet the statistical properties of natural images 
have been proposed for wavelet and scaling functions. 
For modeling and extracting intra-scale dependencies, 
this paper presumes two-state model as the basis for 
wavelet coefficient’s behavior [7, 8]. This idea is based 
on the fact that DWT wavelet function in the frequency 
domain could be shown with two hidden Markov chains. 
One of them for the marginal coefficients with small 
value (red), and the other for the central coefficients with 
large value (blue) as shown in Fig. 4. Its HMM block 
diagram is shown in Fig. 5

Due to reconstructability principle of orthogonal DWT 
system, by mother function, the scaling functions can be 
achieved. Therefore, the purpose is to derive only the 
mother function from the proposed statistical model.

The final value is taken from one of the chains. Thus, 
the two are complementary and the sum of their probabil-
ity density functions (pdf) is 1. Ps

(
Sred

)
+ Ps

(
Sblue

)
= 1 . 

For the observed random variable W, the conditional pdf 
W|S should be obtained with respect to the red and blue 
states. Hence, the Gaussian pdf of W is as (2) which is 
how a coefficient wavelet associates itself with one of the 
aforementioned hidden Markov chains.

C. Inter-scale dependency extraction

(2)
fw(w) = Ps

(
Sred

)
fw|s

(
w|S = Sred

)
+ (Ps

(
Sblue

)
)fw|s

(
w|S = Sblue

)

Fig. 2  Generating HR image by 
Inv. 2D-DWT of LR and 0-level 
sub-bands
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  Like the case of intra-scale dependencies of particular 
level coefficients, statistical dependencies across DWT 
levels could also be modeled and extracted either. In 
order to obtain three sub-bands of level-0 that are the 
same size as the LR image, tracking the added frequency 
details in the three-level sub-band decomposition of the 
input image is required. In order to model inter-scale 
dependencies, a mixture model of Gaussians with the 
ability of varying the number of clusters has been used. 
With higher capabilities, a nonparametric hierarchical 
clustering model is suitable for HMM-based problems 
that are defined in a way that number of hidden states is 
not predefined [25].

HDP is assigned with one prior distribution, and two 
groups of data. As described in (3),  G0 represents the base 
distribution of low-level mixture of DP prior. This distribu-
tion is drawn from the DP prior. Each drawn of  GRed and 
 GBlue from DP prior of DP(α0,  G0) has a shared discrete base 
distribution [22].

G0 ∼ DP(� ,H)

GRed|G0 ∼ DP(�0,G0)

binary set of LR and HR of each dataset image
enter themodel

Three times sub-banddecompositionof LR image

Set Daub-8 as startingwavelet filter

Producing
LH1 , LH2 , LH3
HL1 , HL2 , HL3
HH1 , HH2 , HH3

Generating
LH0 , HL0 , HH0

Using Trans-band computation

Inverse 2D-DWTandproducing the desiredHR
image

Set ( :: 9, :: 10)) and ( :: 9, :: 17)) as pertaining
two-statewaveletmodel’s statistical properties
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Assignwavelet coefficients to clusters ofmixture
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Fig. 3  Detailed flowchart of the proposed algorithm
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Fig. 4  States of the Two-state model

Fig. 5  Two-state model for wavelet function in frequency domain
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Daub-8 filter-bank is an appropriate starting point. The 
function and hierarchical structure of an HDP could be seen 
in its block diagram that is shown in Fig. 6. In fact, each state 
itself could be considered to be a self-contained probabilistic 
model that consists of two chains of the two-state model 
shown in Fig. 5. Hidden states of the HMM correspond to 
the finer scale of DWT, and observed states correspond to 
the coarse scale, and HDP-HMM models statistical depend-
encies across wavelet scales.

α: The concentration hyperparameter.
G0: The default value of G set for Daub-8 is NRED (9, 

10) and NBLUE (9, 17).
Z: Observed state of the defined HMM.
X: Hidden state of the defined HMM.

D. Function of HDP-HMM
  The model receives an LR-HR set of each image 

dataset separately, and decomposes the LR image as 
explained. It takes the normalized wavelet coefficients 
of Daub-8 in the frequency domain as the starting point 
for training process, and ties them as initial values of 

GBlue|G0 ∼ DP(�0,G0)

�Blue−Red|GB ∼ GR

(3)�Red−Blue|GR ∼ GB

the HMM hidden states [7]. The purpose of the training 
process is to get the highest PSNR value of the original 
and interpolated HR image for each sample. At each full 
cycle, in order to achieve this endpoint, the final post-
training posterior probabilities are sampled 10,000 times 
by blocked Gibbs sampler. The algorithm takes the out-
put as initial distribution for the next LR-HR set of data-
set. Blocked Gibbs sampler will sample each clusters 
separately. Traditional DWT, HMM-based methods are 
trained using datasets with several hundreds of images 
[7, 26], but the proposed method has the capability to be 
trained with a very limited dataset, less than 30 images 
[5], [25] for the supervised HDP (sHDP).

The problem is considered by involving groups of data 
that each observation within a group is drawn from a mixture 
model, where it is desirable to share mixture components 
between groups. We assume that the number of mixture 
components is unknown at priori and will be inferred from 
the data [27]. The function of the two relating states of the 
model are explained here. The final number of clusters after 
optimization process is the final number of desired wave-
let coefficients. Thus, we need to know the assignment of 
each data point to a cluster. Similar hierarchical Dirichlet 
processes are also used in text modeling applications such 
as [28] paper. That paper proposes a Nested HDP (nHDP) 
in which the hierarchy of Dirichlet processes are defined 
nested, where G as the base distribution of H ∼ DP(�,G) 
is another DP with its own relating α, and base distribu-
tionG ∼ DP(�,J) . In fact, each word follows its own path to 
a topic node, based on a document distribution on a specific 
tree that is modeled with a DP [29].

Sampling from conditional distribution is a task easier 
than sampling from marginal distributions for Gibbs sam-
pler. The observation vector 

⇀

z = (z
(n)

1
, z

(n)

2
,… ,z

(n)

i
) is the 

objective assignment of each data point after n iteration. In 
order to update zi from the joint distributionP(z1,z2,… ,zi) , 
by starting the clustering and data assignment process, 
let’s assume each data point of observations is dependent 
on clustering of its neighboring clusters. As shown in (4), 
the process unfolds with the general presumption that data 
depends on clusters and parameters before narrowing down 
the cluster dependencies.

zi : Observed and assigned data to ith cluster.
z−i : Data related to all z parameters, except zi.
xi : The data associated with the ith cluster.
⇀

x  : Observation input of Dataset.
�k : Parameters associated to cluster k.
α: The concentration hyperparameter.
G: The base distribution of two-state HMM.

(4)P
(
zi|z−i

)
= P

(
zi|z1,z2,… ,zi−1, ,zi+1,… ,x,�,G

)

GBlue
GRed

,

G0

,

HMM

Fig. 6  The block diagram of HDP-HMM with two-state wavelet 
model
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Each data point depends on the clustering of its neigh-
bors, and the probability distribution parameters. Therefore, 
P
(
zi|z−i

)
 can be written as (5).

Let’s take a random guess initially by cluster assignment 
of each observation which provides a mean for each cluster. 
Based on weights of atoms, clusters either grow or shrink. 
Therefore, by updating zi and incrementally changing all 
the assignments, after a chain of observations, we will find 
that they correct themselves. This is necessary to obtain the 
sequence of observations, which is derived by expanding, 
and specifying the equation. By applying chain rule we reach 
to (6). The mean of the data is related to xi of the particular 
cluster belongs to. In other words, in terms of the DPMM 
problem presentation of Chinese restaurant process, it is 
equivalent to what table we are sitting at.

The observation associated with the mean of a cluster 
and xi , the data associated with the cluster are conditioned 
to input data [30]. Given the mean and covariance matrix 
of cluster k, by separating their conditional probabilities, 
respectively, for both cases with and without added clusters 
we get (7) and (8) for P

(
zi|z−i

)
.

By calculation of integrals, (9) and (10) are obtained from 
(7) and (8). It turns out that clusters are assigned with a 
normal distribution.

n : Total data.
nx : The mean of data.
nk : Categorized data in clusters.
During the optimization process, by obtaining the 

optimized values of conditional probabilities, the pos-
terior distributions are sampled 10,000 times for each 
cycle. This is performed by Blocked Gibbs sampling that 
operates separately for each cluster. The final number of 
clusters and their mean values are the numbers of wave-
let coefficients and their value. Due to wavelet function’s 
symmetric nature after posterior distributions of clusters 
of a nonparametric Bayesian mixture model, each sam-
pling operation comes with symmetricizing operation of 
the coefficients. Meanwhile, the final number of HMM 

(5)P
(
zi = k|z−i,

⇀

x ,
{
�k
}
, �
)
= P

(
zi = k|z−i, xi,

⇀

x , �k, �
)

(6)P
(
zi = k|z−i,

⇀

x , �k, �
)
= P

(
zi = k|z−i, �

)
P(xi|

⇀

x , �k)

=

⎧⎪⎨⎪⎩

�
nk

n+𝛼

�
∫
𝜃

P
�
xi�𝜃

�
P
�
𝜃�G,x⃗� d𝜃 existing clusters (7)

�
𝛼

n+𝛼

�
∫
𝜃

P
�
xi�𝜃

�
P(𝜃�G) d𝜃 newly added clusters (8)

=

{
nk

n+�
N
(
X,

nx

n+1
,1
)

exis. clusters (9)

kN(X,0,1) newly added clusters (10)

states that represents and embodies the DWT coefficients, 
is determined by the training process. Due to the cluster-
ing property of the DP, some data points will share the 
same parameters θ, which can be represented as those data 
points being assigned to the same topic.

E. Trans-band computation

After wavelet function generation, and subsequent scal-
ing function generation from the model, in order to obtain 
level-0 sub-bands (sub-bands of HR image), a trans-band 
computation has introduced. Trans-band computation fol-
lows the pattern of changes in three level-1, level-2, and 
level-3 sub-bands that were generated by derived filter 

Fig. 7  General pattern of 2D-DWT sub-bands of a natural image a 
LH in up-right b HL in down-left c HH in down-right

Fig. 8  Moving from LH-3 to LH-2 and LH-1 sub-bands
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banks, and extend it to level-0 sub-band. The general idea 
behind this section is related to the usual pattern of filtered 
sub-bands (Fig. 7).

LH Sub-band: Generally, the LH sub-band filtered by 
LPF row-wise, and by HPF column-wise, are continuous 
row-wise peaks with two-sided slopes toward top and bot-
tom of the sub-band (as shown in Fig. 7a). As shown in 
Fig. 8, x3

m∕2,n∕2
 and x3

m∕2−1,n∕2
 are pixels of a single column 

in LH-3 sub-band. By moving toward LH-2 sub-band, it 
vertically transforms to rectangular eight pixels, and in one 
step further it obtains the corresponding thirty-two pixels 
of LH-1 sub-band. Column-wise for LH sub-band a Curve-
fitting algorithm aimed at maintaining the curvature of the 
hillsides is the basis of the work. Curve-fitting and filling 
the blank pixels with best value, is a suitable choice in this 
case, and exploits the provided platform in best way. The 
convexity of the changes is the determining factor in filling 
blank pixels while moving to the next level-0 sub-band. 
Row-wise, cubic spline is implemented.

HL Sub-band: In the case of HL sub-band Trans-band 
computation acts in an opposite manner which means that 
row-wise curve-fitting and column-wise cubic spline are 
implemented (as shown in Fig. 7b).

HH Sub-band: Regarding HH sub-band, in both dimen-
sions, cubic spline is implemented, in order to obtain HH-0 
sub-band.

By obtaining LH-0, HL-0, and HH-0 sub-bands, and tak-
ing the LR image as the LL-0 sub-band image, we are able 
to operate a 2D-IDWT and obtain the desired HR image as 
shown in Fig. 9. The similar but row-wise pattern is correct 
for HL-1 sub-band.

3  Experimental results

The proposed algorithm is applied to eighteen mostly-used 
standard test-images with completely different sizes, and 
statistical properties that can prove an interpolating algo-
rithm’s efficiency (Table 1). Test images are obtained from 
[31, 32], and [33].

LPF

LL-1 HL-1LH-1 HH-1

HL-0LH-0 HH-0LR image

LR image

LPF

2

HPFLPF

LPF

HPF

HPF HPF

2 2 2

2 2 2 2

HR image

+

LPF HPFLPF HPF

LPF LPFHPF HPF

2 2 2 2

2 2 2 2

trans-band computation

Fig. 9  Building HL-0, LH-0, and HH-0 sub-bands and deriving HR 
image by inverse 2D-DWT

Table 1  Test images and their sizes

# Test-bench # Test-bench

1 Splash (512 * 768) 10 Butterfly (324 * 492)
2 Airplane (512 * 768) 11 Letter (512 * 512)
3 Tower (300 * 300) 12 Door (512 * 768)
4 Baboon (512 * 512) 13 Boat (512 * 512)
5 Peppers (512 * 512) 14 Cameraman (256 * 256)
6 Lena (512 * 512) 15 Arial (256 * 256)
7 Fiber (512 * 512) 16 Clock (256 * 256)
8 Monarch (512 * 512) 17 Lake (512 * 512)
9 Girl (512 * 768) 18 Fruit (512 * 512)
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Experimental results are presented to demonstrate the 
performance of the proposed algorithm. They have com-
pared against the twelve most prominent, and the latest 
interpolating algorithms. Since the results of all eighteen 
test-benches are not available in each mentioned papers, they 
are reproduced in this research, and the results have matched 
with the existing results in the original papers. Proposed 
algorithm in PSNR, and FSIM outperforms in eleven test-
benches, and in SSIM outperforms in ten test-benches.

Comparison results are presented in PSNR, SSIM, and 
FSIM in Table 2. Peak signal-to-noise ratio is a subjective 
method as the most common criterion to measure the quality 
of the output image in all image processing applications. It is 
the maximum power of the signal to the power of distorting 
noise ratio. SSIM is an image similarity test based on the 
structure of the image that looks at the issue from different 
angle [34]. It is an objective method to assess the differ-
ences between output image and the reference image based 
on their averages, variances, and covariance calculations. 
Furthermore, this research paper has conducted the subjec-
tive evaluation of the final results from a different perspec-
tive. FSIM is the extended concept of SSIM. Like SSIM, the 
basis of this criterion for quality assessment is to bring pixel-
based analysis to structure-based [35]. FSIM operates based 
on the fact that human visual system (HVS) understands an 
image mainly according to its low-level features. The pri-
mary feature of SSIM is phase congruency (PC), which is a 
dimensionless measure of the significance of a local struc-
ture. The secondary feature of FSIM is the image’s gradient 

magnitude (GM) that encodes contrast information of the 
target image [36].

Moreover, for the reader’s further study of algorithm’s 
performance in the sub-bands, this survey has conducted an 
EPSNR comparison. Here, Sobel filter is used to distinguish 
the edges of the original HR image, and the PSNR of the 
pixels on the edge are used to generate the EPSNR [39]. 
This is a very good evaluation of image sub-bands, and how 
their edges, and slopes are predicted, and built in different 
directions before Inverse 2D-DWT, after Trans-band compu-
tation. Table 3 presents the EPSNR results of the proposed 
and the competing results. The Table has presented EPSNR 
values of the three LH-0, HL-0, and HH-0 sub-bands. The 
proposed algorithm in HL-band EPSNR, and HH-band 
EPSNR outperforms in twelve test-benches, and in LH-band 
EPSNR outperforms in eleven test-benches.

Table 4 gives the complexity comparison of the proposed 
and twelve competing methods on eighteen test benches. 

Table 6  Learning time for image galleries

Test bench Ga. 1 Ga. 2 Ga. 3 Ga. 4 Ga. 5

Splash 15′06” 30′36” 44′47” 57′21” 1̊13′42”
Air 15′24” 31′04” 45′14” 58′30” 1̊16′12”
Tower 7′07” 13′49” 21′17” 29′05” 35′13”
Babo 10′41” 21′10” 30′54” 40′51” 52′03”
Pepp 9′48” 20′19” 29′11” 39′02” 50′22”
Lena 9′53” 20′36” 29′21” 39′14” 50′45”
Fiber 10′10” 19′59” 30′46” 40′03” 51′43”
Mon 10′13” 20′53” 30′46” 41′24” 51′30”
Girl 15′56” 30′44” 44′20” 57′43” 1̊12′12”
But 8′54” 17′28” 24′48” 32′45” 41’.01”
Let 10′09” 19′48” 30′07” 39′49” 50′46”
Door 14′50” 29′29” 39′41” 50′42” 1̊8′53”
Boat 9′39” 19′21” 29′28” 39′37” 49′48”
Came 5′51” 10′54” 15′37” 20′52” 26′46”
Arial 6′20” 11′03” 16′10” 21′04” 26′22”
Clock 5′51” 11′39” 15′28” 20′35” 26′31”
Lake 9′18” 19′46” 28′54” 39′11” 49′16”
Fruit 9′39” 20′10” 29′06” 39′05” 50′31”

Fig. 10  Lena’s dataset for Gallery 1 to gallery 5
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MATLAB 2018 is the used IDE which is run by a typical 
laptop (Intel Corei3 CPU 2.00 GHZ, 1G memory RAM). As 
discussed in previous section, the filter-bank coefficients of 
the proposed HDP-HMM, and DWT-based method have the 
ability to be trained using a very small dataset down to 30 
images. In this experiment, in order to observe this process, 
five image galleries, Ga. 1, Ga. 2, Ga. 3, Ga. 4, and Ga. 
5 with 10, 20, 30, 40, 50 LR-HR set of images have been 
tested. The dataset for each image can be provided online 
easily, and for algorithm’s similar input images like Pepper, 
and Fruit, the same dataset is used. The complexity of time 
is related to the size of the image. For example, for the large 

images of the Kodiak database like Airplane, and Splash it 
takes longer, whereas for smaller images like Cameraman, 
Arial, and Clock, the time is shorter. Also it is important to 
note that, original input samples should not be used for the 
test. In order to investigate the effect of dataset size on the 
quality of the output images in Table 5, each gallery was 
tested five times using different images then we averaged 
their final values. As can be seen in that table, 30-size data-
sets are sufficient for this experiment. Table 6 presents the 
learning time of the statistical model for each image gallery 
of each test bench.

Finally, to view the performance of the model and the 
objective quality of the interpolated images, two test images 
are chosen. Lena, and Baboon are considered as highly and 
lowly correlated images in papers. Figures 10, and 11 show 

Fig. 11  Baboon’s dataset for Gallery 1 to gallery 5

Fig. 12  Interpolated ‘Lena’ with 4 highlighted regions, and used 
dataset

Fig. 13  Interpolated ‘Baboon’ with 4 highlighted regions, and used 
dataset
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the considered Ga. 1 to Ga. 5 datasets. Figures 12, and 13 
show the interpolated results with four highlighted regions. 
By scrutinizing the critical locations of the two images such 
as Lena's eye, and eyebrow, and Baboon's nose, and mus-
taches, it is clear that the method’s ability to suppress jaggies 
and disturbing artifacts is outstanding. This is the result of 
taking advantage of the inter-scale and intra-scale dependen-
cies of the image sub-bands.

4  Conclusion

This paper proposes a sophisticated probabilistic model 
for HDP-HMM based image interpolation. It decomposes 
the input LR image, models the wavelet coefficients and 
exploits the inter-scale statistical dependencies of three 
consecutive sub-bands and intra-scale statistical dependen-
cies of obtained wavelet function. HMM is the platform for 
modeling wavelet coefficients, and HDP models the obser-
vation. It uses Dirichlet distributions as prior distributions 
in Bayesian statistics, for clustering analysis and statistical 
data clustering.

During the learning process, the statistical model divides 
the data population into subpopulations that fit our model 
without constraining continuity over the entire model we 
used to encounter before. Through optimization of filter-
banks by this nonparametric statistical tool, we have 
achieved better results than most of the state-of-the-art 
image interpolating methods. This is the result of the sta-
tistical model’s ability to exploit statistical dependencies 
of distant pixels. As a result of taking great advantage of 
statistical dependencies, the output interpolated images of 
the HDP-HMM has a great ability in suppressing jaggies 
and ringing artifact.
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