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Abstract
Dimensionality reduction is vital in many fields, such as computer vision and pattern recognition. This paper proposes an 
unsupervised dimensionality reduction algorithm based on multi-local linear regression. The algorithm first divides the high-
dimensional data into many localities. Under the criterion of local homeomorphism, the continuous dependency relationship 
of the high-dimensional data is maintained in each locality in the low-dimensional space. At the same time, due to the overlap 
of locality divisions, that is, each data may belong to multiple localities. Therefore, the algorithm performs a multi-local linear 
prediction on each target data point, to better capture the internal geometric structure of the data. Finally, to coordinate the 
predictions of the target data points by each locality, we require that the variance between the predictions of each locality to 
the same target point should be as small as possible. We perform experiments on synthetic and real datasets. Compared with 
the existing advanced algorithms, the experimental results show that the proposed algorithm has good feasibility.

Keywords Dimensionality reduction · Local homeomorphism · Linear regression · Multi-local · Subspace

1 Introduction

The problem of dimensionality reduction arises in many 
fields, such as pattern recognition [1, 2] and computer vision 
tasks [3, 4], which always have to deal with high-dimen-
sional data. High-dimensional data are noisy usually. There 
are many problems while processing high-dimensional data 
such as excessive computational complexity and time con-
sumption. Therefore, it is necessary to find low-dimensional 
representations of high-dimensional data.

Many dimensionality reduction algorithms have been pro-
posed recently. The dimensionality reduction algorithms are 
usually categorized into two kinds, i.e., linear and nonlinear. 
The linear method assumes that the internal structure of the 
data is linearly distributed. Among the linear dimensionality 
reduction algorithms, the three most famous methods are 

principal component analysis (PCA) [5], linear discriminant 
analysis (LDA) [6], and independent component analysis 
(ICA) [7].

Although linear methods are simple and easy to imple-
ment, linear methods may fail to model nonlinear data struc-
ture. This promotes the development of nonlinear dimen-
sionality reduction algorithms, i.e., kernel-based methods 
and manifold learning-based methods. The kernel method 
is to map linear inseparable data to a high-dimensional 
feature space so that the data are linearly separable on the 
high-dimensional space. However, this method can cause 
the dimension of data extremely high. The main algorithms 
based on kernel learning are kernel principal component 
analysis (KPCA) [8, 9] and kernel discriminant analysis [10, 
11].

The basic assumption of manifold learning is that high-
dimensional data samples lie on or close to a low-dimen-
sional smooth manifold embedded in the ambient Euclid-
ean space [12]. With this significant assumption, the goal 
of manifold learning-based methods is to extract intrinsic 
dimensionalities hidden in the input high-dimensional 
dataset. Since manifold learning was first proposed in 
2000 [13–15], many manifold learning-based algorithms 
are raised gradually, such as locally linear embedding 
(LLE) [14], ISOMap [16], Laplacian eigenmap (LE) [17], 
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neighborhood-preserving embedding (NPE) [18], locality-
preserving projection (LPP) [19] and local tangent-space 
alignment (LTSA) [20]. These models are well known and 
have been applied to many real-life applications [21–23]. 
Besides these classical and well-known embedding methods, 
other novel algorithms for dimension reduction have been 
proposed recently. In [24], auto-encoder is utilized to extract 
the local deep features. In some other dimension reduction 
algorithms, nonlinear mapping for manifold learning was 
first proposed to search for the low-dimensional embedding 
representations [25]. Besides, the global geometrical struc-
ture is also taken into consideration to well preserve the data 
structure [26].

Local tangent-space alignment (LTSA) is one of the 
classical and well-known dimension reduction algorithms. 
LTSA computes a linear transformation for the data to align 
the local tangent-space coordinates of each neighborhood 
with the low-dimensional representations in a global coor-
dinate system. The low-dimensional data point can be pre-
dicted by transferring the local tangent-space coordinates. 
However, the prediction of the target data point is only via 
one locality and ignores the fact that the target data point 
may belong to multiple localities. Therefore, the geometric 
information may be lost when constructing low-dimensional 
data features.

This paper proposes an unsupervised dimensionality 
reduction algorithm based on multi-local linear regres-
sion and global subspace projection distance minimum. 
This algorithm fully considers the neighborhood relation-
ship between the original high-dimensional data and main-
tains the local geometric structure. After the original high-
dimensional data is divided into individual parts, the local 
data information is mapped to the low-dimensional tangent 
space, which is also called local coordinates. Each locality 
has overlapping parts. In other words, each data point may 
belong to several localities. Therefore, our algorithm takes 
into account the fact that the target prediction point belongs 
to multiple localities. Based on this characteristic, each 
local coordinate is aligned, and then, linear regression is 
performed on the local data points to learn the linear pattern 
on the locality, which is significantly different from LTSA. 
For each real low-dimensional data, there are different pre-
dicted values in each locality. We require that each predicted 
data should be as close to the real data as possible, and the 
variance between each predicted value should be as small 
as possible, which helps to maintain the geometric relation-
ship between the localities. Figure 1 shows the schematic 
diagram of multi-locality.

For real-world applications, we assume that high-
dimensional data has a manifold distribution. The pro-
posed algorithm can extract and maintain the structure well 
in the low-dimensional space. Besides, we also consider 
the global distribution of the data. It is assumed that the 

low-dimensional data and the high-dimensional data have 
a linear mapping relationship. By finding the projection 
matrix, the high-dimensional data and its projection in the 
subspace have the smallest distance. In this way, the dimen-
sionality reduction and the separability of low-dimensional 
data are achieved.

In general, the algorithm takes account both local and 
global information of the original data and has the following 
characteristics: 

1. In this paper, dimensionality reduction is performed 
under the principle of local homeomorphism, and the 
continuous dependency relationship of the original high-
dimensional data in each locality is maintained after 
dimensionality reduction.

2. Considering the linear relationship of the local coordi-
nates, the affine transformation of the local coordinates 
is used to perform linear regression on the target data 
with the remaining data to learn the local linear pattern.

3. Because the division of data parts needs to follow the 
principle of overlap, each target prediction point belongs 
to multiple localities. Therefore, this article performs 
linear prediction on each locality to which the target 
point belongs, which fully considers the geometric rela-
tionship between the localities.

4. By searching for the subspace, the distance between 
the projection of the high-dimensional data on the sub-
space and the high-dimensional data is minimized, and 
the coordinates of the projection are used as the low-
dimensional data to achieve dimensionality reduction 
and maintain global information.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews several related works. Then, the proposed 
algorithm of dimensionality reduction is presented in 

Fig. 1  The schematic diagram of multi-locality. We assume that the 
data point in red belongs to locality 1, locality 2, and locality 3. Then, 
the local linear regression of the data point in these three localities 
can be obtained via local homeomorphism
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Sect. 3. Section 4 describes the experiments. Conclusions 
are given in Sect. 5.

2  Related works

In this section, the mathematical models of the related unsu-
pervised dimension reduction algorithm are first outlined. 
For notational convenience, let us denote the matrix and the 
vector as capital and lower letters in boldface, respectively. 
Matrix dimensions are shown as (m × n) , where m and n are 
the number of rows and columns, respectively. For a matrix 
� = [xij] , xi denotes its ith column. The trace of matrix � is 
��(�) =

n∑
i=1

xii . Note that the dimensionality of the high-

dimensional and the low-dimensional dataset is D and d, 
respectively. The goal of the dimension reduction algorithm 
is to extract the low-dimensional dataset � ∈ ℝ

d×M from the 
original high-dimensional dataset � ∈ ℝ

D×M.

2.1  PCA

Principal components analysis (PCA) [5] is a global linear 
dimensionality reduction algorithm. The embedding result 
of PCA is determined by the covariance matrix of the high-
dimensional dataset and the corresponding principal eigen-
vectors. To compute PCA, we first find the mean vector in 

high-dimensional data space as �̄ =
1

M

M∑
i=1

�i . Then, the 

covariance matrix of high-dimensional space can be written 
as

Next, compute eigenvalues and corresponding eigenvectors 
on the covariance matrix and extract � ∈ ℝ

D×d composed of 
the m eigenvectors corresponding to the first largest eigen-
values. Finally, the low-dimensional data �i can be obtained 
by �i = �T�i . PCA is a linear dimensionality reduction 
algorithm to consider the global distribution of the data and 
therefore cannot extract the nonlinear structure well.

2.2  LE

Laplacian eigenmap (LE) is also a manifold algorithm that 
considers the local structure. LE uses undirected graphs to 
establish the relationship between data points, that is, adjacent 
data points in high-dimensional space maintain a consistent 

(1)� =

M∑
i=1

(�i − �̄)(�i − �̄)T

approximative relationship after dimensionality reduction. 
The property is achieved by solving the following optimization 
problem. The LE algorithm can better maintain the relation-
ship between the data points, but requires a higher sparseness 
of the Laplacian matrix.

where ��� is used to measure the similarity of high-dimen-
sional data points �i and �j . If �j is the neighbor of �i , then 
�ij = 1 or �ij = e

−
�‖�i−�j‖2

�
∕(t2) , where t is a constant. �i and 

�j is the low-dimensional representation of �i and �j . The 
model of LE can be rewritten as min

�T�=�
tr
(
�T��

)
 , where 

� = � −� is the Laplacian matrix of the neighborhood 
graph with the connection weight matrix � , and � is the 
diagonal matrix with column sums of � as its diagonal 
entries.

2.3  LTSA

Local tangent-space alignment (LTSA) [20] utilizes tangent 
coordinates to represent the local geometry. Each data point 
and its neighbors form a patch �i . LTSA acquires the optimal 
tangent coordinates by optimizing the following objective 
function on each patch

w h e r e  �̄i  i s  t h e  c e n t r a l i z e d  d a t a ,  i . e . , 
�̄i = �i

(
�k+1 −

1

k + 1
�k+1�

T
k+1

)
= �i�K+1 ; �k+1 is an iden-

tity matrix; Γk+1 is a vector with all the elements equal to 
one; �i ∈ ℝ

d×(k+1) is the tangent coordinates; �i ∈ ℝ
D×d is 

the orthogonal basis matrix of the tangent space and is used 
to rotate and scale �i.

To obtain the low-dimensional coordinates, the projection 
between the high-dimensional and the low-dimensional data 
can be expressed as:

where �T
i
 denotes the matrix of d left singular vectors of �̄i 

corresponding to its d largest singular values.
Since �i is acquired, Eq.(3) can then be further simplified to

(2)

���
�

1

2

M∑
i,j

‖‖‖�i − �j
‖‖‖
2

2
�ij

s.t.

M∑
i=1

�i�i�
T
i
= �d

(3)
min
�

M∑
i=1

‖‖�̄i − �i�i
‖‖2

s.t. ��T = �d

(4)�i = �T
i
�̄i ∈ ℝ

d×(k+1)
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where �i is a selecting matrix; �K+1 is an identity matrix; 

� =
M∑
i=1

�i�
T
i
 and �i = �i�K+1

(
�K+1 −�

†

i
�i

)
 . Then Eq.(5) 

is actually a Rayleigh quotient problem. Therefore, the 
embedding results can be obtained by computing the eigen-
vectors of matrix � corresponding to the d smallest eigen-
values. The local coordinate of each data point is just com-
puted in one locality in LTSA, which is significantly different 
from our proposed method. The proposed method fully con-
siders the localities containing the same data point to extract 
local structures.

2.4  LDFA

Local deep-feature alignment (LDFA) [24] is an unsuper-
vised deep-learning dimensionality reduction algorithm. 
First, the neighborhood for each data sample is constructed. 
Then, a local stacked contractive auto-encoder (SCAE) 
from the neighborhood is learned to extract the local deep 
features. Next, an affine transformation to align the local 
deep features of each neighborhood with global features 
is exploited. The objective function of LDFA in the low-
dimensional data space is similar to LTSA as

where �L
i
 is the top-layer local deep feature. The following 

procedures are similar to LTSA. LDFA learns discrimina-
tive local features well via stacked contractive auto-encoder. 
However, the neural network increases the complexity and 
executed efficiency of the model.

2.5  SNPPE

Simplify neighborhood-preserving embedding (SNPPE) 
[25] is an explicit nonlinear manifold learning algorithm 
based on the assumption that there exists a polynomial 
mapping between high-dimensional data samples and their 
low-dimensional representations. The polynomial mapping 
between high- and low- dimensional representations of 
SNPPE is defined as:

(5)

argmin
��T=�d

M∑
i=1

‖‖‖‖��i�K+1

(
�K+1 −�

†

i
�i

)‖‖‖‖

2

= argmin
��T=�d

M∑
i=1

‖‖��i
‖‖
2

= argmin
��T=�d

��
(
���T

)

(6)
min
�

M∑
i=1

‖‖‖Ȳi − �i�
L
i

‖‖‖
2

F

s.t. ��T = �d

where yk
i
 is the kth component of �i , l1, l2,… , ln are inte-

gers. The superscript � stands for the n-tuple indexing array (
l1, l2,… , ln

)
 , and �k is the vector of polynomial coefficients, 

which can be expressed as:

To obtain the embedding results of the high-dimensional 
data samples, the optimization problem can be expressed as:

where �ij(i, j = 1, 2,… ,M) are symmetrical and positive 
matrixes, which can be derived from the input data samples 

similar to LLE and �i =
M∑
j=1

�ij.

Then, further derivation of Eq. (9) leads to a Rayleigh quo-
tient problem as

where � =
(
�ij

)
 ; � is a diagonal matrix whose ith diagonal 

entry is �i and �p =
[
�(1)

p
�(2)

p
⋯ �(N)

p

]
 is achieved by

Once �i, i = 1, 2,… ,m is determined, the embedding results 
can be acquired by:

(7)
yk
i
=

∑

l1, l2,… , ln ≥ 0

1 ≤ l1 + l2 +…+ ln ≤ p

�l
k
(�1

i
)
l1 (�2

i
)
l2
⋯ (�n

i
)ln

(8)�k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vl
k

���l1=p,l2=0,…,ln=0

vl
k

���l1=p−1,l2=1,…,ln=0

⋮

vl
k

���l1=1,2=0,…,ln=0

⋮

vl
k

���l1=0,l2=0,…,ln=1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

min
yi

1

2

M∑
i,j

�ij
‖‖‖�i − �j

‖‖‖
2

2

s.t.

M∑
i=1

�i�i�
T
i
= �d

(10)�p(� −�)XT
p
�i = ��p��

T
p
�i, i = 1, 2,… ,m

(11)�(i)
p
=

⎛
⎜⎜⎜⎜⎜⎝

p

�������������������
�i ⊙ �i ⊙⋯⊙ �i

⋮

�i ⊙ �i
�i

⎞⎟⎟⎟⎟⎟⎠

(12)� =

⎛⎜⎜⎜⎝

∑
l v

l
1

�
x1
�l1�x2�l2 ⋯ (xn)ln

⋮∑
l v

l
m

�
x1
�l1�x2�l2 ⋯ (xn)ln

⎞⎟⎟⎟⎠
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where � is the low-dimensional representation. SNPPE 
assumes that there is a polynomial mapping between the 
high-dimensional data and their low-dimensional repre-
sentations, which may destroy the nonlinear structure, and 
the polynomial operation also significantly increases the 
complexity.

2.6  ULG

Local regression and global information-embedded dimen-
sion reduction (ULG) [26] preserve both local information 
and global information. First, ULG applies PCA to denoise 
the local data. Besides, a regularization is added to solve the 
ill-posed problem (D ≫ M) . Furthermore, a linear regression 
model is used to capture the local geometrical structure. The 
objective function of ULG is as follows:

where � is related to the local geometrical information and 
�n contains information about global geometrical informa-
tion. Similarly, Eq. (13) is also solved by eigenvalue decom-
position. Then, the low-dimensional representations can be 
computed by � = �T� . ULG assumes that there is a linear 
mapping between high- and low-dimensional data space, 
which makes it difficult for ULG to capture the nonlinear 
structure of the original high-dimensional dataset. At the 
same time, ULG also ignores the multi-local property.

3  Proposed method

In this section, we propose an unsupervised dimensional-
ity reduction method based on multi-local linear pattern 
preservation. The purpose of the algorithm is to fully con-
sider the existence of multiple local characteristics for each 
data point, correct the prediction error of a local data point, 
and extract the geometric structure of the data so that more 
effective features to be maintained during the dimensionality 
reduction process.

The algorithm proposed in this paper can be divided into 
the following three steps: (1) We use the KNN algorithm to 
find the nearest k points of each high-dimensional sample 
point to form the locality. (2) After performing the SVD 
decomposition on the centralizing locality, we obtain the 
local coordinates of each locality. The linear prediction coef-
ficient of each local is obtained by the affine transformation 
of local coordinates. (3) Since each data point may belong 
to several different localities at the same time, we require 
that the predicted values of each locality are as similar as 

(13)
min
�

��

(
�T���T�

�T��n�
T�

)

s.t. �T� = �d

possible and the variance between each predicted value is 
the smallest.

3.1  Local decomposition

F o r  a  g i v e n  h i g h - d i m e n s i o n a l  d a t a s e t 
� =

[
�1,… , �N

]
∈ ℝ

D×N , � is decomposed into several 
localities �1,… ,�M , where �m ∈ ℝ

D×Nm and Nm represents 
the number of high-dimensional data contained in �m , 
m = 1,… ,M . The decompositions must overlap each other, 
that is, one locality at least overlaps the other locality. In 
addition, the decomposition must include all data, that is 

�=
M⋃

m=1

�m.

The decomposition of high-dimensional datasets can be 
determined according to various principles. The simplest 
decomposition method of a high-dimensional dataset is that 
each high-dimensional data and its neighbors constitute a 
locality. � =

[
�1,… , �N

]
∈ ℝ

d×N represents the low-dimen-
sional data of � , where d ≪ D . Because the dimensionality 
reduction data and the high-dimensional data have a one-
to-one correspondence, the dimensionality-reduced data-
set is also decomposed into several localities �1,… ,�M 
accordingly where the locality of the reduced-dimensional 
data �m ∈ ℝ

d×Nm includes the corresponding data of �m , 
m = 1,… ,M.

3.2  Learning the local linear pattern based on local 
homeomorphism

The assumption of manifold learning is that the high-dimen-
sional dataset � ∈ ℝ

D×N is collected from a sub-manifold 
embedded in a D-dimensional Euclidean space ℝD and 
the dimension of the sub-manifold is d, where D ≫ d . 
According to the mathematical definition of the manifold, 
each locality �m ∈ ℝ

D×Nm of the high-dimensional data-
set � is said to be locally homeomorphic with an open set 
�m ∈ ℝ

d×Nm of the Euclidean space ℝd . This open set �m 
is the local coordinate of �m . The local coordinate lies in 
low-dimensional Euclidean space, so it can be used as the 
dimensionality reduction representation of the high-dimen-
sional data.

There are several solutions to solve the local coordinates. 
The most common one is to project the locality �m on the 
manifold to the tangent space centered at �m . The coordinate 
of the projection is the local coordinate of �m . In numerical 
calculations, �m is the PCA result of �m . The specific steps 
are as follows. 

1. Centralization of �m Centralize the locality 
�m =

[
�m1

,… , �mNm

]
 of high-dimensional data, that is 



1718 Pattern Analysis and Applications (2021) 24:1713–1730

1 3

 where �Nm
= �Nm

−
1

Nm

�Nm
�T
Nm

∈ ℝ
Nm×Nm is the central-

ized matrix and �̄�m =
1

Nm

Nm∑
i=1

𝐱mi
 is the center of �m.

2. Singular value decomposition of �̂m

 where �m ∈ ℝ
D×D and �m ∈ ℝ

Nm×Nm are both standard 
orthogonal matrices.

3. Local coordinates �m,d ∈ ℝ
D×d is a matrix consisting of 

the first d column vectors of �m , the column vectors of 
�m,d are the standard orthogonal bases of the midpoint 
�̄�m of �̄�m in the tangent space. Therefore, the coordinate 
of the projection in the tangent space is 

 The center of the local coordinate �m is 0, which is the 
origin of the Euclidean space ℝd.

4. Local linear pattern: The local coordinate �m is obtained 
by considering a single locality �m . The relationship 
between �m and other localities is ignored during the 
dimensionality reduction process. Therefore, �m is not 
the global coordinate �m of �m . However, both �m and 
�m are data in the d-dimensional Euclidean space ℝd , and 
both are derived from �m . Therefore, we assume that there 
is an affine relationship between �m and �m , i.e., 

 where �̂�m = 𝐘m𝐂Nm
 which means �m is centralized. 

Geometrically, it is equivalent to translate �m , so that 
the center of �̂� coincides with the center of the d-dimen-
sional Euclidean space ℝd . �m ∈ ℝ

d×d is the rotation and 
scaling matrix and can be approximated as 𝐀m = �̂�m𝚯

†
m
 . 

Therefore, �̂�m is obtained by: 

 where �†
m

 is the pseudo-inverse of �m . For any data 
point �mi

 , we have 

(14)�̂m =
[
�m1

− �̄m,… , �mNm
− �̄m

]

(15)�̂�m = 𝐔m𝚺m𝐕
T
m

(16)𝚯m = 𝐔T
m,d

�̂�m =
[
𝛉m,1,… , 𝛉m,Nm

]
∈ ℝ

d×Nm

(17)�̂�m = 𝐀m𝚯m

(18)�̂�m = �̂�m𝚯
†
m
𝚯m = 𝐘m𝐂Nm

𝚯†
m
𝚯m

(19)

�mi
−

1

Nm

Nm∑
j=1

�mj
= �mi

(
1 −

1

Nm

)
−

1

Nm

Nm∑

j = 1

j ≠ i

�mj

= �mi

(
1 −

1

Nm

)
−

1

Nm

Nm∑

j = 1

j ≠ i

�m�m,j

= �m�Nm
�†

m
�m�m,i

where �m,i ∈ RNm is to select a specific data point from 
the locality. The i-th element is 1 and others are 0 for 
i = 1,… ,Nm . Thus, the local linear pattern of �mi

 is 

where 
{
�m,i|i = 1,… ,Nm

}
 is the local linear pattern 

obtained according to the local homeomorphic crite-
rion, and 

3.3  Learning the local geometrical structure

For any low-dimensional data point �m ∈ � , �m may 
belongs to several localities simultaneously due to the 
overlapping rule of the locality decomposition, i.e., 
�m ∈ �mj

 , 1 ≤ mj ≤ M for j = 1,… , Jm . To illustrate the 
multi-locality situation intuitively, a schematic diagram of 
multi-locality is shown in Fig. 2. The black solid lines in 
Fig. 2 denote the weighted connections between data point 
9 and the remaining points in that locality. In Fig. 2, data 
point 9 belongs to the pink, green, and blue localities con-
currently. Obviously, each locality will provide a predic-
tion to data point 9. For instance, in Fig. 2a, data point 9 
will be reconstructed by data points 3, 4, 5, 6 in the green 
locality with the linear regression coefficients calculated 
in Sect. 3.2. Similarly, the pink and blue localities will 
provide another two predictions to data point 9, as shown 
in Fig. 2b, c.

Therefore, there are several predictions to the low-
dimensional data point �m . Each prediction is predicted 
linearly by one locality and can be expressed as:

where �mj,id(m,mj) is the linear regression coefficients of 
locality �mj

 , id
(
m,mj

)
 is the order of �m in �mj

 and 
�mj

∈ ℝ
N×Nm is a selecting matrix with �j,mj

= 1 for 
j = 1,… ,Nm and zero for remaining elements. Then, the 
linear predictions of �m are denoted as 

{
�m,j

|||j = 1,… , Jm

}
 . 

(20)
�mi

=
Nm

Nm − 1
�m

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�Nm
�†

m
�m�m,i +

1

Nm

Nm�

j = 1

j ≠ i

�m,j

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= �m�m,i,

i = 1,… ,Nm

𝐰m,i =
Nm

Nm − 1

⎛
⎜⎜⎜⎜⎜⎝

𝐂Nm
�̂�†

m
�̂�m𝐬m,i +

1

Nm

Nm�

j = 1

j ≠ i

𝐬m,j

⎞
⎟⎟⎟⎟⎟⎠

∈ ℝ
Nm .

(21)�m,j = �mj
�mj,id(m,mj) = ��mj

�mj,id(m,mj)
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The goal is to reconstruct data points �m with these predic-
tions, and the derivation of the final objective function in 
low-dimensional space is departed into three steps as 
follows: 

1. Approximating �m to the average of 
{
�m,j

|||j = 1,… , Jm

}
 

The average of all the predictions is 1
Jm

Jm∑
j=1

�m,j and the 

function can be denoted as: 

 where �m ∈ ℝ
N is a selecting vector that the m-th ele-

ment is one and the remaining elements are zeros, 
�m = �m −

1

Jm

Jm∑
j=1

�mj
�mj,id(m,mj) ∈ ℝ

N  a n d 

�m = �m�
T
m
∈ ℝ

N×N.
2. Minimize the variance of each prediction: We require 

that the variance of the prediction by different localities 
is minimum, that is 

 Similarly, substituting (21) into (23) yields 

(22)

argmin
�m,{ �m,j|j=1,…,Jm}

‖‖‖‖‖‖
�m −

1

Jm

Jm∑
j=1

�m,j

‖‖‖‖‖‖

2

= argmin
�

‖‖‖‖‖‖
��m −

1

Jm

Jm∑
j=1

��mj
�mj,id(m,mj)

‖‖‖‖‖‖

2

= argmin
�

‖‖‖‖‖‖
�

(
�m −

1

Jm

Jm∑
j=1

�mj
�mj,id(m,mj)

)‖‖‖‖‖‖

2

= argmin
�

‖‖��m‖‖2 = argmin
�

��
(
��m�

T
m
�T

)

= argmin
�

��
(
��m�

T
)

(23)argmin
�m,{ �m,j|j=1,…,Jm}

1

Jm

Jm∑
j=1

‖‖‖�m,j − �m
‖‖‖
2

 w h e r e  �m,j = �mj
�mj,id(m,mj) − �m  a n d 

�m =
1

Jm

Jm∑
j=1

�m,j�
T
m,j

.

3. Multi-local Linear Regression Considering the two con-
straints above, we obtain the objective function, that is 

 where �m=�m+�m . �m is a symmetric matrix due to 
the fact that both �m and �m are symmetric matrixes. 
Take all the data points into consideration and the final 
objective function can be written as 

 where � =
N∑

m=1

�m and obviously, � is also a sym-

metric matrix.

(24)

argmin
�m,{ �m,j|j=1,…,Jm}

1

Jm

Jm∑
j=1

‖‖‖�m,j − �m
‖‖‖
2

= argmin
�

1

Jm

Jm∑
j=1

‖‖‖��m,j
‖‖‖
2

= argmin
�

1

Jm

Jm∑
j=1

��
(
���,��

�
�,�

��
)

= argmin
�

��

(
�

(
1

Jm

Jm∑
j=1

�m,j�
T
m,j

)
�T

)

= argmin
�

��
(
��m�

T
)

(25)
��

(
��m�

T
)
+��

(
��m�

T
)

=��
(
�
(
�m+�m

)
�T

)
=��

(
��m�

T
)

(26)

argmin
�

N∑
m=1

��
(
����

�
)

= argmin
�

��

(
�

(
N∑

m=1

�m

)
�T

)

= argmin
�

��
(
���T

)

Fig. 2  Schematic diagram of multi-local linear predictions
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3.4  Global projection distance minimum

We also considered the global distribution of the data. As men-
tioned above, for a given high-dimension dataset � ∈ ℝ

D×N , 
the task is to determine a low-dimensional representation 
� ∈ ℝ

d×N , where D ≫ d and � is the dimensionality reduc-
tion result of � . Since the product of � and a matrix can 
change the size of � , we want to determine a matrix � ∈ ℝ

D×d 
and take the product of � and � as the dimensionality reduc-
tion result, i.e., � = �T�.

From the perspective of data dimensionality reduction, the 
meaning of � = �T� is that the column vectors of matrix 
� expand into a subspace span� , and the column vectors of 
matrix � are the standard orthogonal bases of this subspace. 
The coordinates of the projection are � = �T� . The projec-
tion of high-dimensional data in the subspace is still high-
dimensional data, but the coordinates of the projection are 
low-dimensional data. The objective function for finding � 
can be written as:

where ��T� is the projection of � on the subspace span� . 
The optimization problem can be simplified as:

(27)
min
�

‖� − ��‖2 = min
�

���� − ����
���
2

s.t. �T� = �

(28)

���� − ����
���
2

=
�
� − ����,� − ����

�

= ⟨�,�⟩ + �
����,����

�
− 2

�
�,����

�

= ⟨�,�⟩ + tr
�
���������

�
− 2tr

�
������

�

= ‖�‖2 − tr
�
������

�

Therefore, the optimization problem is transformed to:

3.5  Multi‑local linear regression and the global 
subspace projection distance minimum

In order to mine the structural information of the data bet-
ter, the proposed algorithm considers both local information 
and global information of the original data. The model of 
the algorithm is:

Since we denote � = �T� , once the subspace � is selected, 
the dimension reduction data � is also determined. The 
selection of subspace � needs to consider both criteria, that 
is, the distance between the high-dimensional dataset � and 
its projection ��T� in the subspace span� is the smallest, 
and the coordinate � of the projection is the most condu-
cive to multi-locality linear embedding principle. Under 
orthogonal constraint of � , the optimization problem in 
(26) transforms into a generalized Rayleigh entropy prob-
lem. The procedure of the proposed method is summarized 
in Algorithm 1.

(29)
max
�

tr
(
������

)

s.t. �T� = �

(30)
min
�

tr

(
����

������

)
=

�=���
min
�

tr

(
�������

������

)

s.t. �T� = �

Algorithm 1 (Procedures of MLLRGPD)

1. Input: High-dimensional dataset X, parameters k and embedding dimension
d.

2. Output: The low-dimensional set Y.
3. Initialize W to a zero matrix
4. Find the locality of each sample xm utilizing the k-nearest neighborhoods

method and the corresponding index for the locality is m
5. for m = 1 to N do
6. Record the indexes of localities containing xm and calculate the number of

these localities Jm

7. for j = 1 to Jm do
8. Compute Smj and sm in (21) and (22)
9. Calculate the reconstructed coefficient wmj ,id(m,mj) of xm in the jth lo-

cality
10. Accumulate Smjwmj ,id(m,mj) and calculate hmj in (24).
11. end for
12. Obtain W by updating Lm in (22) and Hm in (24);
13. end for
14. Solve the generalized Rayleigh entropy problem as (30);
15. return Y.
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3.6  Computational complexity analysis

The high-dimensional dataset � ∈ ℝ
D×N contains N data 

points, and the dimension of the data point is D. As shown 
in the proposed framework, we need to find the locality 
of each sample �m utilizing the k-nearest neighborhood 
method. The computational complexity of finding k near-
est neighbors by calculating the distance is O(ND) , and for 
all N data points to find the k nearest neighbors, the cor-
responding computational complexity is O

(
N2D

)
 . To cal-

culate the reconstructed coefficient of each sample, the 
computational complexity of singular value decomposi-
tion on each locality �m ∈ ℝ

D×Nm is O
(
D3

)
 for Nm ≪ D . 

For the convenience of analysis, we assume that the num-
ber of localities containing �m for m = 1,… ,N is the same 
fixed value, i.e., Jm = J,m = 1, 2,… ,N . Therefore, the total 
computational complexity required for SVD is O

(
NJD3

)
 . 

The computational complexity of the proposed algorithm 
is O

(
NJD3 + N2D

)
.

4  Experiments

In this section, we compare our proposed method with other 
unsupervised dimensionality reduction algorithms on real-
world datasets. We tested the proposed algorithm and com-
pared the results with five different dimensionality reduc-
tion algorithms based on manifold learning, i.e., LTSA, LE, 
ULG, SNPPE, and LDFA. Among these algorithms, LE and 
LTSA are two classical manifold learning-based dimension-
ality reduction algorithms. ULG and SNPPE are two repre-
sentative dimension reduction algorithms devised recently. 
LDFA is a novel dimension reduction algorithm based on 
deep learning.

4.1  Datasets’ description

In this section, we list several real-world datasets that are 
utilized to verify the performance of our proposed method. 
These datasets are widely used to test the performance 
of the dimensionality reduction algorithms. The detailed 

description of these datasets is presented below, and Table 1 
shows the statistics of the experimental data. 

1. Faces94 [27] [28]: The dataset contains images of 153 
subjects. Each subject has 20 images with different facial 
expressions. Out of 153 subjects, 20 subjects are female, 
113 are male subjects, and 20 male staff subjects. In our 
experiment, we randomly choose images of 10 males. 
Each sample is with a size of 64 × 64 . All the images 
are resized to 50 × 45 in our experiment.

2. Olivetti [29]: Olivetti Faces is a relatively small face 
database of New York University. It consists of 400 pic-
tures of 40 people, that is, each person has 10 faces. The 
gray level of each picture is 8 bits, and the gray level of 
each pixel is between 0 and 255, and the size of each 
picture is 64 × 64.

3. MNIST [30] [31]: The MNIST dataset is from the 
National Institute of Standards and Technology (NIST). 
Handwritten Arabic numerals are written by different 
people. From 0 to 9, each number contains 100 images, 
a total of 1,000, each of which is 28 × 28 in size.

4. COIL20 [32] [33]: The dataset is an object dataset with 
20 subjects. There are 72 images for each object with 
different orientations. Each image is resized to 32 × 32 
in our experiment.

5. USPS [25, 34]: The USPS (United States Postal Ser-
vice) dataset is a handwriting dataset. This dataset has 
10 classes corresponding to the digits 0 to 9 with 1100 
samples per class. Based on the size of the dataset itself 
and the consideration of the high complexity of some 
algorithms, we only randomly choose four digits as our 
experimental data. A total of 800 samples in four cat-
egories.

4.2  Parameter selection

In this section, we first evaluate the effect of parameter k, 
i.e., the number of neighbors in the proposed algorithm, 
and compare the results with LTSA, ULG, SNPPE, LE, and 
LDFA. We refer to [38] [39] for the experimental settings. 
We apply the proposed method and compare the algorithms 
on the USPS, MNIST and COIL20 datasets followed by the 
k-means clustering method on the embedding results. The 
performance of clustering results is evaluated by clustering 
accuracy. And the clustering accuracy is defined as:

Clustering Accuracy =
1

M

M∑
j=1

�(lj, l
∗
j
)

Table 1  Statistics of the experimental data

Dataset Original dimen-
sionality

Number of cat-
egory

Number 
of sam-
ples

Faces94 2250 10 200
Olivetti 4096 40 400
MNIST 784 10 1000
COIL20 1024 20 1440
USPS 256 4 800
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where l∗
j
 and lj are the truth label and cluster label provided 

by the clustering approaches for the data point �j , respec-
tively. �(⋅, ⋅) is set to 1 if and only if l∗

j
= lj , and 0 

otherwise.
In addition to the parameter k, our algorithm also includes 

another parameter, i.e., the embedding dimension d. There-
fore, we fix the value of parameter d and observe the influ-
ence of the change of parameter k on the experimental 
results. There are many algorithms proposed to estimate the 
intrinsic dimensionality of a dataset, such as the maximum 
likelihood estimator (MLE) [35], minimum neighbor dis-
tance (MiND) [36], and the geodesic minimum spanning 
tree estimator (GMST) [37]. The range of the estimated 
dimensionality of the experimental data is usually between 
5 and 25, so we fixed the embedding dimension to 15. We 

test the clustering performance with k ∈ {10, 20,… , 80} . 
The results are presented in Fig. 3.

From the experimental results, it can be seen that the 
proposed algorithm shows strong robustness for the param-
eter k. As the increase of k, the clustering accuracy of the 

Fig. 3  Clustering accuracy versus k of algorithms on datasets. a USPS, b MNIST, c COIL20

Table 2  Parameters’ setting for algorithms

Algorithms Parameters setting

MLLR k = 60

ULG tr = 0.95, � = 0.5, k = 60

LTSA k = 60

LDFA k = 60 , 1 hidden layer d nodes
SNPPE Polynomial degree = 2, k = 60

LE k = 60
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proposed algorithm is quite stable. The parameter k repre-
sents the number of neighbors to perform linear regression. 
Our model contains two parts: multi-local linear regression 

and global subspace projection distance minimum. There-
fore, for different datasets, the effect of these two parts in 
the model may be different. Our algorithm takes into account 

Fig. 4  The 2D visualization result of the COIL20 dataset by a MLLRGPD, b ULG, c LTSA, d LDFA, e SNPPE, f LE
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Fig. 5  The 2D visualization result of the Faces94 dataset by a MLLRGPD, b ULG, c LTSA, d LDFA, e SNPPE, f LE
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Fig. 6  The clustering accuracies base on the dimension reduction in a COIL20 and b Faces94

Fig. 7  USPS dataset. a Clustering accuracy, b NMI

both global information and local information, which may 
be the reason for its high robustness. In the future, it would 
be better to adjust the proportion of these two parts of the 
model via a parameter.

In general, the clustering accuracy of the proposed 
algorithm on these three datasets is relatively good when k 
takes different values. The clustering accuracy of the pro-
posed algorithm is the best on the USPS dataset (Fig. 3a). 
For the COIL20 dataset (Fig. 3c), MLLRGPD is also supe-
rior to LTSA due to the utilization of multiple predictions 
during the feature extraction procedure. As the increase of 

the number of neighbors, the clustering accuracy of LDFA 
decreases significantly. As is illustrated in [24], LDFA 
learns discriminative local features well with relatively 
small neighborhood size, which explains the tendency of 
the curve for LDFA in Fig. 3.

We hope to set the parameters k with the same physi-
cal meaning in different algorithms to be the same value. 
However, the experimental results show that we cannot 
choose a value to optimize the performance of all algo-
rithms. The performance of most algorithms is relatively 
good when k is 60. To simplify the discussion of the 
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following experiments, we set the parameter k of MLL-
RGPD to 60, as well as other compared algorithms involv-
ing k.

4.3  Visualization experiment

To show the dimensionality reduction results intuitively, we 
reduce the high-dimensional data to two-dimensional data 
and show the distribution of data in the low-dimensional 
plane. In this section, we perform a visualization experiment 
on the COIL20 dataset and the Faces94 dataset. The experi-
mental results are compared with the algorithms introduced 
above. The parameters’ setting of all algorithms is shown 
in Table 2. Figures 4 and 5 show the experimental results 
of all algorithms on the COIL20 and the Faces94 datasets, 
respectively.

Although there are only two feature dimensions in the 
dimension-reduced data, the low-dimensional data are 
also obviously separable (Figs. 4a, 5a). The criterion of 
global projection distance minimum indicates that the low-
dimensional data are with large variance. Therefore, the 
dimensionality-reduced data can achieve high separability. 
In addition, data belonging to the same category still show 
aggregation distribution after dimensionality reduction. 
This phenomenon shows that the MLLRGPD algorithm can 
effectively keep the original distribution information of the 
high-dimensional data. The MLLRGPD algorithm consid-
ers the relationship between multiple localities that contain 
the same data point and effectively maintains the spatial 
structure of the original high-dimensional data in low-
dimensional space. The performance of LTSA and LDFA 
is relatively poor. Data points of different categories are 
mixed, which means that the original structure in the high-
dimensional space is destroyed. The dimensionality reduc-
tion effect of LE is relatively good. The basic idea of LE is 
to keep the adjacency relationships between data points via 
an undirected graph. However, the data of different catego-
ries also overlap obviously. On the Faces94 dataset, most 
algorithms achieve good performance. However, the distri-
bution of the low-dimensional data obtained by LDFA has 
a relatively obvious aliasing phenomenon, which may be 
caused by the SCAE during the feature extraction procedure.

To quantitatively analyze the dimensionality reduction 
effect of the algorithms, we show the clustering accuracy 
of two-dimensional features in Fig. 6. Among them, MLL-
RGPD performs better than other compared algorithms on 
the COIL20 dataset. On Faces94, MLLRGPD is 2% higher 
than LTSA, and the dimensionality reduction effects of 
ULG, SNPPE, and LE are similar. The accuracy of cluster-
ing is consistent with the result of the visualization.

4.4  Clustering experiment

In this section, we evaluate the performance of the proposed 
algorithm by conducting a clustering experiment on the 
dimensionality-reduced dada. The experiment results are 
compared with several algorithms, such as LE, LTSA, ULG, 
LDFA, and SNPPE. The k-means approach with the Euclidean 
distance metric is applied to cluster the embedding results. 
Since the k-means algorithm is sensitive to the initial point, 
we repeat the clustering procedure 50 times, and the final 
scores are computed by averaging the scores. We evaluate the 
clustering performance of the proposed algorithm and other 
algorithms with two scores, i.e., clustering result and normal-
ized mutual information (NMI) [12]. NMI between two sets 
l∗ and l is defined as

where H(l∗) and H(l) denote the entropy of l∗ and l, respec-
tively, and

p
(
l∗
j

)
 and p

(
li
)
 are the marginal probability distribution of 

l∗
j

 a n d  li  ,  r e s p e c t i v e l y ,  a n d 
p
(
li, l

∗
j

)
 denote the joint probability function of l∗

j
 and li.

The parameter settings of all algorithms are shown 
in Table 2. In the process of dimensionality reduction, 
we cannot predict the embedding dimension of data in 
advance. The dimensionality of the reduced data for all 
algorithms is searched in [5, 21] for the datasets. The 
detailed clustering results are shown in Figs. 7, 8, 9, 10, 
and 11.

For the embedding results of the USPS, Faces94, and 
COIL20 dataset, the clustering accuracy of the proposed 
algorithm is the best with different embedding dimensions. 
For NMI, the proposed algorithm is superior to other meth-
ods too. On the USPS dataset, the curve of the proposed 
method is quite stable, while the clustering accuracy of 
LTSA decreases with the increase of the embedding dimen-
sion. The reason may be that low-dimensional data con-
tain redundant information and cause interference. LDFA 
fails to extract the intrinsic dimensionalities of USPS and 
MNIST datasets totally, which may due to the error brought 
by SCAE during the feature extraction procedure. Besides, 
maybe it is not suitable for LDFA to deal with the problem 
of a small number of samples since LDFA contains a neu-
ral network. Compared with LTSA and ULG, MLLRGPD 
shows stronger robustness for embedding dimension.

NMI
(
l∗, l

)
=

MI
(
l∗, l

)

max
(
H
(
l∗
)
,H(l)

)

MI(l∗, l) =

n∑
li∈l,l

∗
j
∈l∗

p
(
li, l

∗
j

)
log2

p
(
li, l

∗
j

)

p
(
li
)
p
(
l∗
j

)
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time, it will also bring more redundant information, which 
will cause interference to the data processing. The curves of 
LE on the Faces94 dataset and LTSA on the USPS dataset 
reflect this problem.

Overall, the proposed algorithm performs well on five 
datasets, which shows that the effectiveness of information 
retention through multiple localities. Besides, we take the 
global distribution of the data into account to avoid huge 
interference caused by special local structures. The exper-
imental results of the proposed algorithm have obvious 

Fig. 8  Faces94 dataset. a Clustering accuracy, b NMI

Fig. 9  COIL20 dataset. a Clustering accuracy, b NMI

On Faces94, COIL20, MNIST, and Olivetti datasets, 
the curves of the clustering accuracy and NMI of most 
algorithms have a similar trend. As the reduced dimen-
sion increases, the clustering accuracy rises first and then 
remains stable. This is because too much information is lost 
when the dimension is too low and the performance dete-
riorates. When the reduced dimension is increased enough 
to represent the effective information of the original data, 
the increase of the dimension will not improve the perfor-
mance. The increase of the embedding dimension makes 
the data information mining more sufficient, but at the same 
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improvements compared with LTSA, which confirms the 
conclusion.

To consider the overall clustering performances on 
all embedding dimensionalities, we average the cluster-
ing accuracy and clustering NMI. The average results are 
summarized in Tables 3 and 4. The proposed algorithm 
performs better than other algorithms on almost datasets, 
which illustrates the effectiveness of our proposed method 
in terms of clustering tasks.

5  Conclusion

In recent years, computer vision, pattern recognition, and 
other technologies have been widely used in face recogni-
tion, object recognition, speech processing, and biological 
fields. These fields involve a large amount of high-dimen-
sional data. Therefore, the multi-local linear regression and 
global subspace projection distance minimum algorithm 
proposed in this paper are of great significance in practical 

Fig. 10  MNIST dataset. a Clustering accuracy, b NMI

Fig. 11  Olivetti dataset. a Clustering accuracy, b NMI
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application. Under the local homeomorphic criterion, the 
algorithm fully maintains the internal continuous depend-
ency relationship of high-dimensional data. Besides, the 
proposed algorithm fully considers the fact that each target 
point belongs to multiple localities. To maintain the inter-
nal data relationship of each locality, we have learned the 
linear pattern of each locality through linear regression. We 
require that each predicted data should be as close to the 
ideal data as possible, and the variance of all predicted val-
ues obtained from several localities should be as small as 
possible to maintain the geometric relationship between the 
overlapping localities.

At the same time, we consider the global distribution of 
the data. We want to learn a subspace so that the distance 
between the high-dimensional data and its projection on the 
subspace is the smallest. Combining the multi-local linear 
regression and the minimum global projection distance, the 
proposed algorithm maintains both the local homeomor-
phism characteristics and the global structure of the data. 
Experiments show that the proposed algorithm can well 
maintain the structural relationship of high-dimensional data 
during the dimensionality reduction process. On most data-
sets, the clustering effect is significantly better than other 
algorithms.

Our model actually contains two parts: multi-local lin-
ear regression and global subspace projection distance 
minimum. These two parts describe the local and global 
information of the data, respectively. Therefore, we may 
add a parameter to adjust the proportion of these two parts 
to improve the robustness of the algorithm. Besides, the 

idea of multi-localities may be applied to more manifold 
learning algorithms.
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