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Abstract
Multi-scale vehicle detection is an important application in the field of object detection, and Feature Pyramid Network (FPN) 
is an important means to deal with multi-scale object detection tasks. However, baseline method is the common method used 
in most of the existing network structure, which represents the input image information by selecting one from the output layer 
of FPN, and discard other layers. This not only limits the performance of the network structure, but also performs poorly 
when dealing with the problem of excessive scale differences. To solve this problem, a novelty candidate region aggregation 
network (CRAN) is proposed in this paper. The candidate regions of different feature layers are effectively aggregated to 
improve the network generalization performance. Specifically, calculate the similarity between different feature layers through 
a feature quality score module, and use this as a quantity factor to determine the number of candidate regions reserved for 
the corresponding feature layer. Finally, they are aggregated into a more comprehensive candidate region group. Further, 
in order to improve the detection efficiency of small objects, an area cross entropy loss function is proposed. It makes the 
model pay more attention to small targets by adding a monotonic decrease based on the area. Finally, the proposed CRAN 
and the area cross entropy loss function are applied to the advanced detectors. The experimental results in the KITTI and 
UA-DETRAC datasets show that this method has good performance on vehicle objects in different scenarios, and can meet 
the requirements of practical application.
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1  Introduction

Vehicle object detection plays an important role in intel-
ligent transportation system (ITS). It is the prerequisite and 
foundation for follow-up research work such as vehicle rec-
ognition, vehicle tracking, and traffic statistics [1]. With the 
rapid development of deep neural networks, object detection 
has become a major research hotspot in computer vision 
tasks. General object detection has achieved great success, 
driven by the deep convolutional neural network (DCNN). 
Object detection refers to the combination of object segmen-
tation and recognition, which can not only detect the posi-
tion of the object in the picture or video, but also recognize 

the category of the object. It is widely used in intelligent 
transportation systems, intelligent monitoring systems, mili-
tary target detection, and medical imaging field. However, 
vehicle detection still faces many challenges in complex traf-
fic scenes, such as various lighting conditions, occlusion, 
and low-resolution [2].

Nowadays, many scholars at home and abroad are com-
mitted to the research of object detection and have obtained 
good results. The proposed architecture can be divided 
into two categories: two-stage detectors [3–7], and one-
stage detectors [8–10]. The two-stage detector achieves 
better detection accuracy, but sacrifice speed and consume 
resources. The one-stage detector has poor detection accu-
racy but is more efficient in the training and inference pro-
cess, and it is more suitable for real-time detection in real 
scenes.

In order to detect objects of different scales, CNN-
based target detection algorithms adopt multi-scale out-
puts [11–13]. Among, YOLO v3 and Mask R-CNN use the 
Feature Pyramid Network (FPN) [14] idea to fuse feature 
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maps of adjacent scales through the concat method. FPN 
uses a top-down, side-to-side connection method to fuse 
the features of two adjacent scales. The high-resolution 
feature map contains more fine-grained features of the 
object, and the low-resolution features contain more 
contour information. Effective feature aggregation can 
improve network performance.

With the introduction of FPN, choosing a suitable FPN 
output layer has become a problem that must be solved. 
The traditional method is based on the Region of Interest 
(RoI) obtained by the RPN to select, which is based on 
the width w and height h of the RoI, using the formula (1) 
proposed by [14] to find the best k layer as a sample.

where m represents the size of the pre-trained ImageNet 
input picture, and k0 represents the level corresponding to 
the RoI with an area of w × h. However, we think that the 
choice of a single-layer FPN may limit the ability of net-
work description. [15] proved our idea, which achieved bet-
ter detection accuracy than the baseline method by summing 
the candidate regions generated by all the feature layers. 
However, this summation method inevitably increases the 
complexity of the network, and the training process requires 
more resources. This is understandable, because the sum-
mation method increases the number of candidate regions 
by 5–6 times or even more, and requires a lot of computing 
resources.

Inspired by [15], a candidate area aggregation network 
(CRAN) is proposed in this paper. First, re-extract features 
of FPN output features through a convolutional layer; then, 
a quality score module is constructed to calculate the simi-
larity between different feature layers. The similarity result 
is used as a quantitative factor to determine the number 
of candidate regions in the corresponding feature layer. 
Finally, a more comprehensive set of candidate regions 
is generated. Since our quantity factor is derived from 
the output feature map of FPN, and each group of feature 
maps is derived from the same input image. Therefore, 
the proposed quality score module can be applied to any 
input picture. In addition, in order to solve the problem of 
difficult detection of small targets in the process of vehicle 
detection, an area cross entropy loss function is proposed. 
This paper designs a monotonically decreasing function 
based on the area of the candidate region to add weight to 
the cross entropy loss function. Our intuition is that small 
goals should be assigned more weight, while big goals 
require less weight. The introduction of area cross entropy 
loss is beneficial to the detection of small targets and the 
improvement of the performance of the model.

The main contributions of this paper are as follows:

(1)k =
�
k0 + log2

�√
wh∕m

��

1)	 A novelty candidate region aggregation network 
(CRAN) is proposed to effectively aggregate candidate 
regions of feature layers of different scales. Improve the 
performance of the network structure to handle multi-
scale problems.

2)	 An area cross entropy loss function is proposed to 
improve the detection performance of the model for 
small targets. In this paper, each candidate region is 
assigned a different weight during the classification pro-
cess, and the weight depends on the area of each gener-
ated candidate region.

3)	 The proposed CRAN and area cross entropy loss are 
introduced into the current advanced detectors and 
tested on challenging datasets.

The flow of the remaining paper is as follows. Object 
detection architecture and feature fusion method are elabo-
rated in Sect. 2. Section 3 describes the proposed approach. 
In Sect. 4, the experimental setup, benchmark datasets and 
experimental results are presented. The conclusions are 
placed in Sect. 5.

2 � Related work

2.1 � Object detection

With the increasing popularity of intelligent transportation 
systems, many experts have begun to study vehicle object 
detection [16]. There have been many outstanding studies 
in the early days, such as Harr [17], SIFT [18], HOG [19], 
DPM [20, 21]. However, traditional detection algorithms 
require manual acquisition of relevant target feature informa-
tion, which results in high complexity and a large amount 
of redundancy. Severely affects the running speed and is 
difficult to realize engineering in real scenarios. With the 
development of deep learning, especially the proposal of 
deep learning algorithms based on convolutional neural 
networks, object detection has entered an intelligent devel-
opment stage. Through parameter sharing and sparse con-
nection, the object detection algorithm can avoid the compli-
cated process of manually extracting features. It effectively 
solves the problems of poor portability and missing features 
of traditional models [22]. In addition, with the rapid devel-
opment of GPU technology, the computing speed of deep 
learning has also shown an exponential increase.

Recently, CNN-based two-stage and one-stage detectors 
are continuously updating object detection performance in 
several benchmark datasets. The first is a two-stage archi-
tecture based on R-CNN [3, 23, 24]. In order to improve 
the training efficiency of the network, in 2015, HE et al. [5] 
proposed Faster R-CNN, which designed an RPN network 
to generate proposals under a unified framework (Fig. 1). 
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Then, a series of excellent two-stage detectors appeared, and 
trying to optimize the network architecture [25–27], train-
ing strategy [28, 29], adding auxiliary modules [30–32] to 
improve the network.

In 2016, the yolo method was proposed by Redmon et al. 
[8]. The candidate bounding box regression, and classifica-
tion are directly integrated into the same convolution net-
work, and obtained extremely fast detection speed. However, 
due to the rough network design, it is far from reaching the 
accuracy requirements of real-time target detection, and 
there are problems such as inaccurate target positioning, 
poor detection of small objects and multiple objects. Subse-
quently, Redmon and others continued to improve the YOLO 
algorithm and proposed YOLO v2 [33] and YOLO v3 [11], 
respectively. At the same time, Liu et al. [9] proposed asin-
gle-shot detector (SSD), which combines the regression idea 
of the YOLO model and the anchor mechanism of faster 
R-CNN. SSD surpasses Faster RCNN in detection speed and 
accuracy, but it does not consider the correlation between 
different layers and different scale targets, resulting in poor 
detection of small objects. Then, RSSD and DSSD were 
proposed, and the performance was greatly improved.

2.2 � Multi‑scale features

As the limitation of single feature representation becomes 
more and more prominent, people began to study multi-
feature fusion technology in order to find a better feature 
representation. The existing feature fusion methods can 
be divided into two types: direct addition to average and 
weighted sum. In fact, the former is a special form of the 
latter. Many scholars have tried this research [16, 34–36] and 
achieved good performance. However, in the field of object 
detection, we often need to deal with targets of different 
scales, so multi-scale issues must be considered. [14] pro-
posed a feature pyramid network (FPN) to perform feature 
representation from different levels, and has been proven 
to be effective for general object detection. However, the 
selection of the FPN output feature layer is based on heu-
ristic, which limits its performance to a certain extent. On 
this basis, a novel candidate region aggregation network is 
designed to effectively utilize all the output layer informa-
tion of FPN and improve the performance of the network 
structure.

2.3 � Classification loss function

In terms of object classification, the cross entropy loss func-
tion adjusts network parameters by describing the distance 
between vectors. It has always had a good performance and 
is used in many advanced algorithms [3, 4, 6, 7]. However, 
we can see from the expression of the cross entropy loss 
function that its weight parameter for all input samples is 

1, which makes it perform poorly in dealing with complex 
problems, such as a serious imbalance in the number of sam-
ples (1: 100), the object size gap is too large, etc. Based 
on this problem, [8] proposed Focal loss for the first time. 
Focal loss effectively solves the problem of imbalance in the 
sample category ratio by adding a balance coefficient to the 
cross-entropy. In the process of vehicle detection, the detec-
tion of small targets and low-resolution targets has always 
been a challenging problem. Therefore, based on the idea 
of area weight loss in [37], we propose a cross entropy loss 
function based on the area factor. By assigning more weights 
to small targets and a small amount of weights to large tar-
gets, the problem of excessive object size gaps in the vehicle 
detection process is effectively solved.

3 � Methodology

In this section, the candidate region aggregation network 
(CRAN) and area cross entropy loss function are described 
in detail.

3.1 � Candidate region aggregation network (CRAN)

The proposal of FPN effectively solves the problem of multi-
scale feature selection, and is an architecture that can select 
appropriate features according to the size of the image. 
FPN effectively solves the problem of multi-scale feature 
selection, and can select the appropriate feature architec-
ture according to the size of the image. Many literatures 
have proved that FPN has the ability to maintain effective 
spatial information, and avoids the complicated calculation 
problems caused by the refinement of features at each scale. 
In the network architecture, the selection of feature maps is 
generally based on the baseline method to select one of them 
as the input of the RoI layer. Although the baseline method 
is a more general method, but the [15] proves that the base-
line method is similar to the random selection method, and 
has proved this idea through experiments. The experiment 
selected some samples from the COCO data set, and the 
baseline method, random method and direct sum method 
were selected for comparison experiments. Figure 2 shows 
the progress of the training process. It can be seen that the 
progress of the random method and the baseline method are 
relatively similar, and the average accuracy gap is small. It 
shows that each output feature map of FPN contains valid 
information, and it is not comprehensive to use any single 
feature map to represent the input image. In addition, the 
experiment also directly sums the output feature maps of 
FPN. The results show that the training progress of the 
summation method is basically consistent with the baseline 
method, and after the 9th epoch, the test accuracy exceeds 
the result of the baseline method. The above experimental 
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results show that every output feature map of FPN cannot be 
ignored. Therefore, effectively aggregating the output feature 
maps of FPN is of great help in improving the performance 
of the network model. 

Based on the above problems, this paper proposes a can-
didate region aggregation network (CRAN). Our inspira-
tion is that although the method of summation can increase 
the richness of candidate regions, it greatly increases the 
consumption of computing resources, and a large number 
of candidate regions are easy to cause interference between 
classes. Therefore, this article tries to process the generated 
candidate regions to minimize the number while ensuring 
the richness. CRAN mainly consists of three modules: fea-
ture re-extraction module, quality score module and aggre-
gation module. The network structure is shown in Fig. 3.

Fig. 1   Two-stage detector architecture

Fig. 2   The average prediction accuracy of different FPN layersse-
lected under the COCO data set

Fig. 3   Candidate region aggregation network
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3.1.1 � Feature re‑extraction module

Through the ResNet50 backbone network and FPN, feature 
maps P2–P6 of different scales can be extracted from the 
input image, where P6 is obtained by up-sampling from P5. 
Since the above features are obtained by superimposing the 
up-sampling features and the basic features C2–C5, in order 
to better fuse these two features, this paper re-extracts the 
merged features P2–P6. The output features of FPN are re-
extracted using a convolution kernel with a size of 3 × 3, and 
the [38] proves that this method can effectively improve the 
quality of features.

3.1.2 � Quality score module

The quality score module is mainly to learn the quantity fac-
tor of FPN output feature maps by introducing an attention 
mechanism. We tried two ways to learn quantity factor to 
explore them: one is based on Feedforward Neural Network 
(FNN), the other is based on Convolutional Neural Network 
(CNN) method.

The based on FNN method first converts feature maps of 
different scales into the same size according to the princi-
ple of forward propagation. Then calculates the degree of 
similarity between the corresponding feature maps of the 
baseline method and other feature maps. Finally, the fea-
ture quality score is determined through the normalization 
operation. The basic structure is shown in Fig. 3, Pk is the 
feature map of the Kth layer selected by the baseline method, 
Pi is the FPN output feature map, and Pi

* is the result of Pi 
tiled expansion. It is worth noting that the vector sizes cor-
responding to different object sizes are different. In order to 
ensure that the vector similarity calculation is not affected 
by the size, this paper uses the cosine phase similarity as the 
benchmark to measure the similarity of the feature maps.

The quantity factor is as follows:

The CNN method first converts the output feature map 
into 1 × 1 feature points through the multi-layer Valid con-
volution method. Then calculate the similarity between the 
feature value obtained in each layer and the feature value of 
the specified layer. Finally, the similarity result is used as 
a quantitative factor to determine the number of candidate 
regions in the corresponding feature layer. Among them, the 
specific layer is obtained from the baseline method. Since 

(2)Valuei =

�
P∗
i
⋅Pk

‖P∗
i ‖⋅‖Pk‖ i ≠ k

1 i = k

(3)�i = Softmax
�
Valuei

�
=

eValuei
∑6

j=2
eValuei

every output feature of FPN is derived from the input image, 
we think that there are similarities between all feature maps 
(Fig. 4). The network structure is shown in Fig. 5 below: 

In Fig. 5, Valuei is the feature map of the output Pi of the 
ith layer of FPN, and the weighting calculation method is as 
follows:

where Valuek is the feature map of the feature map Pk of the 
Kth layer selected by the baseline method.

3.1.3 � Aggregation module

The main function of this module is to generate candidate 
region groups according to the quantity factor of each scale 
feature map. Specifically, a series of candidate regions are 
generated for each feature map. We completely retain the 
candidate region of the feature layer of the baseline method, 
and retain part of the candidate region and the remaining 
feature layer. Among them, the number of reserved candi-
date regions is determined by the quantity factor, which can 
be expressed by formula (6).

where Ni is the number of candidate regions generated by 
the Pi feature layer, and Numi is the reserved number. The 
number of candidate regions generated by each feature layer 
is determined by the size of the feature map. Hi and Wi, 

(4)wi

valuek −
||Valuek − Valuei

||
Valuek

(5)Numi = Ni × �i

(6)Ni = Hi ×Wi × anchors

Fig. 4   Quality score module based on feedforward neural network

Fig. 5   Quality score module based on convolutional neural network



1640	 Pattern Analysis and Applications (2021) 24:1635–1647

1 3

respectively, represent the height and width of the Pi feature 
layer. The anchors represent the number of anchor points 
generated by each feature point, and is usually set to 9.

3.2 � Loss function

The loss function of object detection is mainly composed 
of two parts, classification loss and positioning loss, which 
can be described as:

where i is the anchor index, pi is the classification probability 
of the anchor i, pi

* is the probability that the anchor i is the 
true label; gi is the coordinate vector of the predicted bound-
ing box, gi

* is that of the ground truth coordinate vector; ti 
represents the positive and negative sample type. ti is 1 if the 
anchor is positive, and 0 if not. In order to train the detection 
network, we need positive samples and their ground truth. 
Calculate the degree of overlap between each candidate box 
and the ground truth bounding box. Candidate boxes are 
defined as positive samples if the overlap is greater than the 
threshold (0.5). Finally, the candidate frame with the largest 
overlap is selected as the object.

3.2.1 � Area cross entropy loss function

For the classification loss Lcls, the multivariate cross entropy 
is usually used, and a negative log likelihood function is 
applied to all object classifications. The specific expression 
is as follows:

Among them, qij is a one-hot vector, which is defined as 
follows:

where pij represents the probability of ith sample belongs 
to category j. When calculating category probability, the 
Softmax function is used.

It is not difficult to find that the weight of all samples in 
the cross entropy loss function is 1, which is equivalent to 
ignoring the size of the object. However, our attention to 
multi-scale objects is different in real scenes. A study has 
shown that when detecting multi-scale targets at the same 
time, more attention needs to be devoted to small target 
detection [39].

In order to deal with the difficulty of detecting small 
objects and low-resolution objects, this paper quote the 

(7)LLoss =
1

N

∑
i
Lcls

(
pi, p

∗
i

)
+ �

1

Nloc

∑
i
tiLloc

(
gi, g

∗
i

)

(8)L
(
pi, qi

)
= −

c∑

j=1

qij × log
(
pij
)

(9)qij =

{
1 ith sample category is j

0 otherwise

area weight idea in [37] and design an area cross entropy 
loss function. Our expectation is to design a weight param-
eter that depends on the target size, which assigns different 
parameters to different objects. Using only width or height 
as a weighting factor is not the best choice, due to the 
existence of some large aspect ratio targets, such as buses 
and coach. Therefore, an area-based weight parameter mi 
is proposed. Due to the large difference in the area of the 
proposal, we normalized its area to between 0 and 1, and 
designed a monotonically decreasing function on the area. 
In order to prevent the weight from being too small, the 
weighting factor mi remains greater than 1 and less than 2. 
For the definition of mi, we refer to the expression of the 
SoftMax function, and defined as follows:

where si represents the area of the ith prediction frame.
Figure 6 shows the image representation of the weight 

factor mi. It can be seen that a larger weight can be 
obtained when the area of the prediction frame is relatively 
small. In contrast, when the area of the prediction frame is 
relatively large, a smaller weight can be obtained.

In summary, the area cross entropy loss function 
defined in this article is:

Compared with the author’s global area weight in [37], 
the difference is that we only focus on the object clas-
sification process. Because our intuition is that the final 
regression process is based on classification.

(10)mi = 1 + e−si

(11)LArea
(
pi, qi

)
= −

c∑

j=1

(1 + e−si) × qij × log
(
pij
)

Fig. 6   Regional weight factor expression
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3.2.2 � Location loss

For the location loss, we choose the Smooth L1 function 
with fast convergence speed and good smoothness, and its 
expression is:

In the overall loss calculation, ti × Lloc means that only 
the positive sample loss will be activated. In the process 
of returning the candidate frame to the ground truth, the 
offset of the center (cx, cy), height (h) and width (w) can be 
expressed as:

In summary, our loss calculation can be defined as:

After adding the weight mi to LLoss, the size of the object 
will affect the loss and gradient, and the smaller the object, 
the greater the impact on the result.

4 � Experiments

This section reports experimental details, including object 
detection data set, experimental environment, evaluation 
metrics, implementation details, experimental results.

4.1 � Data set and evaluation metrics

4.1.1 � Data set

With the development of the object detection field, many 
challenging data sets have been released for further research, 
such as PASCAL VOC, COCO, KITTI. In order to evalu-
ate our proposal, experiments were carried out on the UA-
DETRAC and KITTI datasets [24].

4.1.1.1  UA‑DETRAC data set [40]  It is a challenging 
multi-target detection benchmark in real scenes. The data 
set contains a series of video sequences under different 
scenes and was shot in 24 different locations in Beijing 
and Tianjin, China. There are more than 140,000 video 
frame pictures in the entire data set, including 84 K for 
the training set and 56 K for the test set. Since only the 

(12)Smooth L1(x) =

{
0.5x2 if x < 0

|x| − 0.5 otherwise

(13)
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training data contains vehicle annotation information, we 
divide the training set into two parts, of which 56  K is 
used for training and 28 K is used for validation.

4.1.1.2  KITTI data set [41]  It is the most representative 
object detection data benchmark in autonomous driving 
scenarios. Most of the pictures in KITTI are taken from 
the driving recorder and contain real picture data under 
various road conditions. This paper mainly selects the 
data set of the vehicle detection part, including 7 K train-
ing pictures and 7  K test pictures. Since only the train-
ing data contains vehicle annotation information, we also 
divide the training set into two parts, where 4 K is used for 
training and 3 K is used for validation.

4.1.2 � Evaluation metrics

The COCO python package is used in ablation experi-
ments, using APs, APm, and APl to verify the effectiveness 
of CRAN and area cross entropy. In addition, in order 
to verify the performance of the proposed method in the 
state-of-the-art network architecture, we also conducted 
experiments on the recent DETRAC benchmark [40] and 
KITTI benchmark [41].

4.2 � Implementation details

4.2.1 � Pre‑processing

This article first selects ResNet50 as the backbone net-
work, and introduces FPN to extract multi-scale feature 
map. The input size of DETRAC is 540 × 960 pixels, and 
the input size of KITTI is 576 × 1920 pixels. The generali-
zation ability of the model has been improved by means of 
data set enhancement.

4.2.2 � Training

In order to obtain a more accurate mapping, all our param-
eter settings follow the settings in [22]. The training set 
is used to train the network, and the validation set is used 
to verify the training results. In the training process, the 
batch size of each GPU is 4. In addition, the "Xavier" 
method in this paper is used to initialize the convolutional 
layer parameters, and the stochastic gradient descent 
(SGD) method is used to optimize the model. In particu-
lar, 12 epochs are set in the training process, the initial 
learning rate is 0.01, and it decreases to 50% of the current 
learning rate as the epoch increases, and the learning rate 
decays to 0.0001 after the 9th epoch. In addition, we use 
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optimization techniques such as batch normalization and 
dropout to optimize each method.

4.2.3 � Testing

In the testing process, we use the trained object detection 
network model to obtain the category and border of each 
object in the test set, and then compare it with the label data 
to obtain its testing accuracy.

4.2.4 � Experimental environment

Our experiment is based on python language and Pytorch1.2 
framework in ubuntu16.04 operating system. The main hard-
ware configuration includes 2.4 GHz CPU and 64 GB RAM. 
On this basis, GTX 1080Ti graphics cards (12G memory) 
are used for accelerated training.

4.3 � Ablation analysis

This paper designs an ablation experiment on the COCO 
dataset to verify the performance of the proposed CRAN and 
area cross entropy on different evaluation indicators. During 
the experiment, the same parameter settings were used, and 
mAP with an IoU threshold of 0.7 was used to ensure the 
fairness of the experiment.

4.3.1 � Baseline setting

In this paper, a baseline network based on Faster RCNN is 
constructed, the backbone network used is ResNet50, and 
FPN is used for multi-scale feature extraction. Table 1 shows 
the output feature size of FPN. Experimental results show 
that the global mAP is 36.5% in the test set [22].

4.3.2 � Effect of CRAN module

CRAN module is applied to Faster R-CNN, and the basic 
network settings are consistent with the baseline method. 
The experimental results are shown in Table 2. It can be 
seen that the detection results have been improved after 
adding the CRAN module. During the experiment, we 
choose the CRAN module based on FNN and the CRAN 
module based on CNN to conduct experiments, respec-
tively. From the experimental results in Table 2, it can 
be seen that the detection accuracy of the CNN-based 
method is better than FNN on the verification set, and 
the model size is also lower than the latter. This is under-
standable, because the FNN-based method contains more 
training parameters, and the CNN-based method has more 
advantages in processing two-dimensional data. There-
fore, in the subsequent experiments, this article uses the 
CNN-based CRAN method.

Baseline method has a suboptimal performance on recall-
ing objects of various scales, especially the tiny ones, as 
depicted in Fig. 7a. As shown in Fig. 7b, our CRAN per-
forms considerably well, and achieves an encouraging recall 
rate on the COCO validation set.

In addition, this article also conducted experiments on the 
DETRAC dataset. The visualization results in Fig. 8 further 
illustrate the effectiveness of our mothed. Our CRAN per-
forms considerably well and achieves an encouraging recall 
rate over 99% on the DETRAC validation set.

4.3.3 � Effect of area cross entropy loss function

Three experiments are designed in this paper to verify the 
effectiveness of the area cross entropy loss function. The 
area cross entropy loss function is applied to RPN classifica-
tion, object classification, and both simultaneously. Table 3 
reports the comparison results between the three experimen-
tal methods and the baseline method. It can be seen that the 
proposed area cross entropy loss function has improved per-
formance for the RPN classification process and the object 
classification process, especially for the detection of small 
targets, which also verifies our ideas. We found that when 
the area cross entropy loss function is applied to both RPN 
classification and object classification processes, the mAP 
has been greatly improved. Therefore, in the subsequent 

Table 1   FPN output feature map size

Layer name P2 P3 P4 P5 P6

Stride 64 32 16 8 4

Table 2   Ablation analysis on 
CRAN module

Boldface indicates the best performance among the comparison methods

Method mAP APS APM APL Training time Model size Environment

Baseline[25] 36.5 21.9 40.4 46.8 – 238 M –
Random[22] 34.8 19.0 39.3 45.2 – – –
sum[22] 36.8 22.0 41.0 47.2 – 330 M GPU@1080Ti
 + CRAN(FNN) 36.9 22.0 40.8 47.4 73 h 289 M GPU@1080Ti
 + CRAN(CNN) 37.3 22.3 41.5 47.3 52 h 253 M GPU@1080Ti
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experiments, this paper applies the area cross entropy loss 
function to both the RPN classification and object classifica-
tion processes.

Figure 8 shows the loss in the training process. It can 
be seen from Fig. 9a that our area cross entropy loss can 
converge faster compared to the baseline method, and the 
overall loss value is smaller; Figure 9b shows the clas-
sification and positioning loss of our method separately. 
Obviously, the contribution of the classification loss to the 
overall loss is greater at the beginning of training, which 
also validates the idea in Sect. 3.2 of this paper.

Fig. 7   Baseline a and CRAN b. 
Visibly, CRAN obtained better 
accuracy, and experimentally in 
COCO datasets, it has a higher 
recall for than baseline

Fig. 8   Baseline a and CRAN 
b. Baseline a and CRAN b. 
Visibly, CRAN obtained better 
accuracy, and experimentally 
in DETRAC datasets, it has a 
higher recall for than baseline

Table 3   Ablation analysis on Area loss

Boldface indicates the best performance among the comparison  
methods

Method mAP APS APM APL Time

Baseline[25] 36.5 21.9 40.4 46.8 0.1 s/img
 + Area RPNcls 37.0 22.6 40.6 46.8 0.1 s/img
 + Area CLScls 37.0 22.3 40.8 47.0 0.1 s/img
 + Area CLS 37.2 22.5 40.8 47.2 0.15 s/img
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4.4 � Application of CRAN and area cross entropy 
to different architectures

We apply the proposed CRAN and area cross entropy to the 
several state-of-the-art architectures at present, and verify 
the performance of the method in the UA-DETRA data-
set and the KITTI dataset. For the one-stage network, our 
method eliminates the RPN process. CRAN is applied to 
aggregate candidate regions of different feature layers, and 
the area cross entropy is only applied to the object classifica-
tion process.

4.4.1 � Performance test on UA‑DETRAC data set

This paper tests our method on the UA-DETRAC dataset, 
and submitted the training results of the training set and 
validation set to the UA-DETRAC benchmark test. The 
comparative experimental results are reported in Table 4. 

It can be seen that our proposed method performs well in 
outstanding detectors. In particular, the performance on the 
Hard subset has been greatly improved, which is consistent 
with our original intention of designing area cross entropy. It 
is worth noting that our proposed method has a good perfor-
mance on the two-stage detector, which improves the detec-
tion accuracy by more than 1.0% on average. In addition, the 
test results of several outstanding anchor-free methods on 
UETRAC (CornerNet, CenterNet, FCOS) are also listed. We 
found that the method proposed in this article makes some 
excellent detectors beyond the anchor-free method.

4.4.2 � Performance detection on KITTI data set

In order to verify the performance of the proposed method 
in state-of-the-art network structures, we also conducted 
training and testing on the KITTI dataset, and fully evalu-
ated our method on the KITTI benchmark. Applying our 

(a) (b)

Fig. 9   Loss during training. a baseline mothed overall loss and our overall loss. Area cross entropy loss can converge faster and the loss value is 
smaller. b Our classification and positioning loss

Table 4   Performance 
evaluation on UA-DETRAC 
dataset. +  + means adding our 
proposed CRAN module and 
area cross entropy loss; (+ **) 
means improved detection 
performance

Boldface indicates the best performance among the comparison methods

Method Overall Easy Medium Hard Sunny Cloudy Rainy Night Time

Faster RCNN +  +  60.06(+ 1.61) 83.59 63.96 45.77 63.15 66.97 45.86 71.13 0.06 s/img
FCN +  +  71.25(+ 1.38) 93.87 76.42 55.69 85.22 74.94 57.34 76.57 0.09 s/img
EB +  +  69.25(+ 1.29) 89.82 74.57 56.03 73.26 74.85 54.07 84.65 0.06 s/img
Yolo v2 +  +  58.33(+ 0.61) 83.48 63.86 44.16 70.47 57.78 48.36 65.49 0.04 s/img
Yolo v3 +  +  73.29(+ 0.83) 95.26 77.32 52.67 87.64 78.36 57.15 79.29 0.05 s/img
RetinaNet +  +  78.27(+ 0.86) 95.85 81.14 61.35 88.39 80.23 59.22 82.41 0.06 s/img
Cascade R-CNN +  +  79.34(+ 1.26) 95.32 83.69 64.28 87.34 79.59 60.37 84.17 0.08 s/img
CornerNet 76.64 92.86 81.65 59.66 85.34 77.41 58.20 78.79 –
CenterNet 78.22 94.49 83.22 61.91 87.47 80.74 57.49 81.63 –
FCOS 79.15 95.07 83.65 63.47 88.40 80.67 61.39 86.33 –
SpineNet +  +  82.16(+ 1.34) 96.34 83.39 64.19 89.44 82.61 62.88 87.84 0.08 s/img
CBNet +  +  83.29(+ 0.92) 96.81 85.12 66.28 90.37 83.94 64.31 89.25 0.08 s/img
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method to several outstanding detectors, Table 5 gives a 
comparison of several methods. It can be clearly seen that 
for several outstanding detectors, the proposed method 
improves the mAP by more than 1.0%, especially on the 
Hard subset.

This improvement is more obvious in Fig. 10, where 
we visualize some detection cases on the DETRAC and 
KITTI test sets. It can be clearly seen from the successful 
cases that the proposed method can better detect small 
targets at a longer distance. In particular, it can also detect 
obstructed, blurred, and night vehicles. In short, our 
method can not only be applied to a variety of detectors, 
but also enhance the generalization ability of the network.

5 � Conclusion

In order to improve the performance of vehicle object detec-
tion, this paper proposed a CRAN and area cross entropy 
loss, respectively, to improve the recall rate of the model 
and the detection performance of difficult instances. The 
ablation experiment proves that the proposed method can 
not only greatly improve the recall rate, but also promote 
model convergence. Finally, the experimental results on the 
UA-DETRAC and KITTI datasets show that our method can 
increase the mAP of several existing advanced detectors by 
more than 1%, especially the two-stage detector.

Table 5   Performance evaluation 
on KITTI dataset. +  + means 
adding our proposed CRAN 
module and area cross entropy 
loss; (+ **) means improved 
detection performance

Boldface indicates the best performance among the comparison methods

Method Average Precision (AP)/% Time

Easy Moderate Hard

Faster RCNN +  +  88.65(+ 0.75) 79.57(+ 0.46) 71.46(+ 1.27) 1.4 s/img
RefineNet +  +  90.26(+ 0.10) 79.82(+ 0.61) 66.29(+ 0.58) 1.4 s/img
MSCNN +  +  90.58(+ 0.12) 89.19(+ 0.36) 77.25(+ 2.41) 0.2 s/img
YOLO v2 +  +  89.53(+ 1.52) 86.44(+ 0.79) 76.23(+ 2.07) 0.03 s/img
Yolo v3 +  +  93.31(+ 0.91) 89.72(+ 1.14) 77.94(+ 1.88) 0.05 s/img
RetinaNet +  +  94.67(+ 0.94) 90.34(+ 0.76) 78.62(+ 1.64) –
Cascade R-CNN +  +  94.86(+ 1.03) 90.92(+ 0.83) 79.92(+ 1.51) –
CornerNet 92.80 87.54 76.52 0.08 s/img
CenterNet 93.42 87.81 76.83 0.08 s/img
FCOS 94.26 89.20 78.09 –
SpineNet +  +  95.28(+ 0.85) 90.73(+ 1.23) 79.47(+ 1.32) –
CBNet +  +  95.69(+ 0.79) 91.21(+ 1.19) 81.04(+ 1.17) 1.1 s/img

Fig. 10   Success cases from DETRAC and KITTI
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