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Abstract
Domain adaption is to transform the source and target domain data into a certain space through a certain transformation, 
so that the probability distribution of the transformed data is as close as possible. The domain adaption algorithm based on 
Maximum Mean Difference (MMD) Maximization and Reproducing Kernel Hilbert Space (RKHS) subspace transformation 
is the current main algorithm for domain adaption, in which the RKHS subspace transformation is determined by MMD of 
the transformed source and target domain data. However, MMD has inherent defects in theory. The probability distributions 
of two different random variables will not change after subtracting their respective mean values, but their MMD becomes 
zero. A reasonable method should be that the MMD of the source and target domain data with the same label should be as 
small as possible after RKHS subspace transformation. However, the labels of target domain data are unknown and there is 
no way to model according to this criterion. In this paper, a domain adaption algorithm based on source dictionary regular-
ized RKHS subspace learning is proposed, in which the source domain data are used as a dictionary, and the target domain 
data are approximated by the sparse coding of the dictionary. That is to say, in the process of RKHS subspace transformation, 
the target domain data are distributed around the mostly relevant source domain data. In this way, the proposed algorithm 
indirectly achieves the MMD of the source and target domain data with the same label after RKHS subspace transformation. 
So far there has been no similar work reported in the published academic papers. The experimental results presented in this 
paper show that the proposed algorithm outperforms 5 other state-of-the-art domain adaption algorithms on 5 commonly 
used datasets.
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1  Introduction

In the era of big data, it is very crucial to learn the discrimi-
native information of the auxiliary dataset and transfer it 
to the target dataset or other tasks. In order to ensure the 
precision and reliability of the model after training, the tra-
ditional machine learning algorithms are usually established 
under two basic assumptions: (1) The training samples and 
test samples are in the same feature space, independent of 
each other, and they should obey the same probability dis-
tribution[1]; (2) there should be sufficient training samples. 
However, these two basic assumptions are often not satis-
fied in many real-world applications. First, the heterogeneity 

and timeliness of data are increasingly prominent in the era 
of big data. Thus, the original training samples and newly 
collected test samples are often subject to different distri-
butions, and sometimes they are even located in different 
feature spaces. On the other hand, due to the expensive cost 
of data collection and sample labeling, labeled data are rela-
tively scarce and difficult to obtain. In order to solve these 
problems and improve the efficiency and reliability of data 
utilization, a large number of transfer learning algorithms 
have been proposed and attracted wide attention.

Transfer learning (TL) is a kind of machine learning 
method that uses existing knowledge to solve the tasks 
across different but related domains[2, 3]. Domain and 
task[1] are two important concepts in transfer learning. Data 
samples in the same feature space and with the same prob-
ability distribution are categorized into the same domain. 
If two tasks share the same label space and obey the same 
posterior conditional probability distribution, then they can 
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be regarded as one task. The purpose of transfer learning is 
to apply the knowledge extracted from source domain and 
source task to the target domain and target task. Domain 
adaptive learning (DAL) belongs to the category of transfer 
learning[4–6], yet sharing the same source task and target 
task. The research of DAL focuses on how to use labeled 
source domain data, unlabeled or partially labeled target 
domain data and target domain prior knowledge to learn 
and reliably complete the tasks in target domain when the 
probability distribution of source domain and target domain 
is different but relevant. Domain adaptation can be divided 
into three types: supervised[7, 8], semi-supervised[9–11], 
and unsupervised[12–17]. One solution of DAL is to map 
the source domain data and the target domain data into a new 
feature space by finding a suitable feature mapping function, 
so that the distribution of the source domain and the target 
domain in this space is as similar as possible. Kernel func-
tion is a category of suitable feature mapping function which 
can implicitly map the data to the high-dimensional RKHS 
and explicitly provide the inner product of the data in the 
space. Another method is to use neural networks to solve the 
domain adaptation problem, such as the literature[18–20]. 
Cai [18] proposed a new model, named domain adaption 
using cross-domain homomorphism, to identify intrinsic 
homomorphism hidden in mixed data from all domains. 
Long [19] proposed joint adaptation networks (JAN), which 
learn a transfer network by aligning the joint distributions of 
multiple domain-specific layers across domains based on a 
joint maximum mean discrepancy criterion. Bousmalis [20] 
proposed a new approach that learns, in an unsupervised 
manner, a transformation in the pixel space from one domain 
to the other. And their model is based on generative adver-
sarial network (GAN).

Maximum mean discrepancy[21] is a common metric in 
domain adaptive learning. MMD measures the mean value 
of source domain data and target domain data mapped to the 
RKHS through kernel function. By minimizing the mean 
discrepancy between source domain data and target domain 
data in RKHS, the distribution of data from two domains 
will tend to get closer. If the mean discrepancy is lower than 
the tolerable threshold value, it can be claimed that data 
from two different domains in RKHS follow the same prob-
ability distribution. Otherwise, the source domain data and 
the target domain data are not subject to the same probability 
distribution, and they are not similar.

In MMD criterion, data need to be mapped into RKHS, 
so kernel function is essential during the process of MMD. 
The choice of kernel function determines the characteris-
tics of the feature space to which the source domain data 
and target domain data will be mapped and also affects 
the effect of domain adaptive learning. The kernel func-
tion is fixed and cannot learn the geometric structure of 
the data. Therefore, many researchers divide a subspace 

from RKHS and map the source domain data and target 
domain data to the subspace. And subspace learning needs 
to adopt the MMD criterion to minimize the mean differ-
ence between source domain data and target domain data, 
so as to obtain a suitable subspace. In the process of sub-
space learning, researchers put forward various regulariza-
tion items, such as manifold regularization and variance 
maximization regularization, so that the performance of 
the model is more superior.

The main contributions of this thesis are as follows: 
A domain adaption algorithm based on source dictionary 
regularized RKHS subspace learning is proposed, in which 
the source domain data are used as a dictionary, and the 
target domain data are approximated by the sparse coding 
of the dictionary. That is to say, in the process of RKHS 
subspace transformation, the target domain data are dis-
tributed around the mostly relevant source domain data. 
In this way, the proposed algorithm indirectly achieves the 
MMD of the source and target domain data with the same 
label after RKHS subspace transformation. The algorithm 
requires the target domain data to be distributed around 
the source domain data with the strongest linear corre-
lation, thereby indirectly reflecting the requirement that 
the spatial distribution of the source domain data and tar-
get domain data of the same category is as consistent as 
possible.

The following parts of this paper are organized as fol-
lows. In Sect. 2, we briefly introduce the related mathemati-
cal theories, including reproducing Kernel Hilbert space 
(RKHS), domain adaptive learning (DAL), maximum mean 
discrepancy (MMD), and dictionary learning (DL). We give 
an overview about the global research trends of domain 
adaptive learning and dictionary learning in Sect. 3. Then, 
in Sect. 4, we introduce our Domain Adaption Based on 
Source Dictionary Regularized RKHS Subspace Learning 
(SDRKHS-DA) in detail. In Sect. 5, we briefly introduce the 
comparison algorithm model and its corresponding charac-
teristics. In Sect. 6, a series of experiments are carried out to 
verify the effectiveness and practicability of our algorithm 
through five cross-domain tasks. Finally, we summarize our 
work in Sect. 7.

2 � Notations and preliminaries

2.1 � Notations

In this paper, Xs and Xt represent, respectively, the source 
domain and target domain data, and the set of source domain 
and target domain data is X = [Xs,Xt] . ys is the source 
domain data projected to the subspace, and yt is the target 
domain data projected to the subspace (shown in Table 1).
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2.2 � Reproducing Kernel Hilbert Spaces

Hilbert space is the complete inner product space, while 
the reproducing kernel Hilbert space is a special kind of 
Hilbert space which introduces the definition of reproduc-
ing kernel. Let H be a Hilbert space composed of functions 
that satisfy certain conditions (such as square integrabil-
ity) defined on the set � , i.e., f ∈ H , f ∶ � → ℝ , if there 
exists a function k ∶ � ×� → ℝ which satisfies the fol-
lowing conditions: 

1.	 For any x ∈ � , k(∙, x) ∈ H;
2.	 For any x ∈ � , and any f ∈ H , f (x) = ⟨f , k(∙, x)⟩ . Here, 

⟨∙, ∙⟩ refers to the inner product in H.

Then, H is a RKHS, and k is the reproducing kernel of H.
[22] The reproducing kernel holds the properties of sym-
metry, positive semi-definition, uniqueness, etc. Using the 
reproducing kernel k, we can define the transformation: 
� ∶ � → H , for any x ∈ � , �(x) = k(∙, x) ∈ H . And with 
the properties of reproducing kernel, it can be proved that, 
for any x, y ∈ � , ⟨�(x),�(y)⟩ = k(x, y).

According to Moore–Aronszajn theorem, RKHS can 
be generated uniquely by kernel function. The definition 
of kernel function[23] is: k ∶ � ×� → ℝ which satisfies: 

1.	 Symmetry: for any x, y ∈ � , k(x, y) = k(y, x);
2.	 Positive definition: for any finite elements 

{
x1,⋯ , xN

}
 

⊆ 𝛺 , the matrix K below is a positive definite matrix: 

The process of generating RKHS with kernel function is as 
follows: 

1.	 Generate the linear space with kernel function: 

 where Z+ represents all positive integers.
2.	 Define inner product in Hk : ⟨∙, ∙⟩ ∶ Hk × Hk → ℝ , for any 

f , g ∈ Hk , 

3.	 Complete Hk and thus obtain H̄k , then H̄k is a RKHS 
and k is the reproducing kernel of H̄k . Because a certain 
kernel function only produces a certain RKHS, learning 
a RKHS is also the process of learning a kernel function.

2.3 � Domain adaptive learning and MMD

There is a special scenario that often occurs in the field of 
machine learning. There are two datasets in data space � : 
source domain dataset Xs =

{
xs
1
,⋯ , xs

Ns

}
⊆ 𝛺 and target 

domain dataset Xt =
{
xt
1
,⋯ , xt

Nt

}
⊆ 𝛺 . The source domain 

data Xs are labeled, while target domain data Xt are unla-
beled, and the distributions of Xs and Xt in data space are 
different. However, now we need to utilize the label of Xs to 
classify the label of Xt . This problem is what we call Domain 
Adaptation Learning problem, and it belongs to transfer 
learning problems. Note that the data space � is usually 
Euclidean space, but it may also be Riemannian manifold or 
Grossmann manifold that has gained increasing popularity 
in machine learning. To articulate this issue, for example, in 
the application of face recognition, the photographs on vari-
ous certificates stored by the public security organs are the 
source domain data. The faces in these photographs are in a 
state of upright posture and neutral expression and are under 
good lighting condition, while the photographs captured 
from video monitoring are the target domain data. The faces 
in these photographs may contain different oblique postures 
and exaggerated expressions or are under unsatisfying light-
ing condition. Obviously, the distribution of ID photographs 

K =

⎡
⎢⎢⎣

k
�
x1, x1

�
⋯ k

�
x1, xN

�
⋮ ⋱ ⋮

k
�
xN , x1

�
⋯ k

�
xN , xN

�
⎤
⎥⎥⎦

Hk =span{k(∙, x)|x ∈ �}

=

{
n∑
i=1

�ik
(
∙, xi

)|||||
xi ∈ �, �i ∈ R, n ∈ Z+

}

f (∙) =

n�
i=1

�ik
�
∙, xi

�
, g(∙) =

m�
j=1

�jk
�
∙, yj

�
,

⟨f , g⟩ = �
�1 ⋯ �N

� ⎡⎢⎢⎣

k(x1, y1) ⋯ k(x1, ym)

⋮ ⋱ ⋮

k(xn, y1) ⋯ k(xn, ym)

⎤⎥⎥⎦

⎡⎢⎢⎣

�1
⋮

�m

⎤⎥⎥⎦

Table 1   The basic notations

Notations Description

Xs Source domain data
Xt Target domain data
X The set of source and target domain data
Ns The number of source domain data
Nt The number of target domain data
N The number of data points
W The projected matrix
ys Source domain data projected to subspace
yt Target domain data projected to subspace
z The dictionary encoding matrix
ℝ Real number field
k Kernel function
K Kernel matrix
XT Transpose
X−1 Inverse
⟨∙, ∙⟩ Inner product
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(source domain data) and those captures by real-time cam-
eras (target domain) is different in image space. But we only 
know the identity of the faces on the ID photographs, and 
we have to recognize the identity of the face on those real-
time photographs with the available labels.

Among various DAL methods, MMD is a commonly used 
and helpful criterion. DAL focuses on the scenario that the 
distributions of source domain data Xs and target domain 
data Xt in data space � are not the same. Then, MMD wants 
to learn a RKHS composed of functions in data space � and 
utilize the reproducing kernel k of this space to transform 
the source domain data Xs and target domain data Xt in data 
space � to this RKHS H, i.e.,

such that the distributions of �(Xs) and �(Xt) in RKHS H can 
be as similar as possible. And the similarity here can exactly 
be measured by MMD, i.e.,

where � is the mapping defined by reproducing kernel k, and 
the optimization of � also means the process of choosing k. 
As we know, k relies on the RKHS H. Therefore, this process 
can be attributed to the choice of RKHS H.

In practice, it is not easy to learn an optimal RKHS H 
according to MMD. As a result, most methods based on 
MMD do not choose to learn RKHS H, but a linear subspace 
W of it, so that the mean values of �(Xs) and �(Xt) can be 
similar after they are projected once again into the linear 
subspace W:

where �W (X
s) and �W (X

t) mean the projection of �(Xs) and 
�(Xt) in the subspace, respectively.

2.4 � Dictionary learning

The premise of sparse coding is to have a suitable dictionary. 
The dictionary mentioned in this paper is learned based on 
samples of specific applications. After collecting a certain 
number of representative samples, the dictionary is obtained 
after optimization.

𝜙(Xs) =
{
𝜙
(
xs
1

)
,⋯ ,𝜙

(
xs
Ns

)}
⊆ H,

𝜙
(
Xt
)
=
{
𝜙
(
xt
1

)
,⋯ ,𝜙

(
xt
Nt

)}
⊆ H.

‖‖‖‖‖‖
1

Ns

Ns∑
i=1

�
(
xs
i

)
−

1

Nt

Nt∑
j=1

�

(
xt
j

)‖‖‖‖‖‖

2

�

������→ min

‖‖‖‖‖‖
1

Ns

Ns∑
i=1

�W

(
xs
i

)
−

1

Nt

Nt∑
j=1

�W

(
xt
j

)‖‖‖‖‖‖

2

�

������→ min

Let X = {x1,⋯ , xN} be a sample, and find a suitable dic-
tionary {d1,⋯ , dL} through the N samples. The objective 
function of dictionary learning can be expressed as follows:

where A =

⎡⎢⎢⎣

a11 ⋯ a1L
⋮ ⋱ ⋮

a11 ⋯ aNL

⎤⎥⎥⎦
 is called the sparse coding matrix. 

In the above objective function, the sparse coding matrix A 
is a by-product that is not needed in the next algorithm, but 
the trained dictionary {d1,⋯ , dL} is needed.

After the dictionary {d1,⋯ , dL} has been learned, each 
trusted data point x can be roughly represented by this set of 
dictionaries. The function of sparse coding is to make the 
coefficient components of x linearly represented by this set 
of dictionaries {d1,⋯ , dL} tend to 0 as much as possible. 
The objective function of sparse coding can be expressed 
as follows

Here, � = [�1,⋯ , �L]
T , sparse(�) is the sparse regular term 

of sparse coding and makes the component tend to 0 as 
much as possible. We usually use the 1 norm to represent 
the sparse regular term of sparse coding

And sparse(�) is the feature vector after sparse coding. With-
out sparse(�) , it will become a problem of solving subspace 
projection. If {d1,⋯ , dL} is orthogonal to each other, then

3 � Related works

3.1 � Domain adaptive learning

Domain adaptive learning is an active new research field 
which has been successfully applied to various fields includ-
ing text classification, object recognition, face recognition, 
event recognition, indoor location, target location, video 

(1)min
d1,⋯,dL

N�
i=1

⎡
⎢⎢⎣

������
xi −

L�
j=1

aijdj

������

2

+ �������(AiRow)

⎤
⎥⎥⎦

(2)J(w) =

‖‖‖‖‖‖
x −

L∑
j=1

�jdj

‖‖‖‖‖‖

2

+ �sparse(�)

(3)������(�) = ‖�‖1 =
L�
j=1

��j�

(4)min
�

‖‖‖‖‖‖
x −

L∑
j=1

�jdj

‖‖‖‖‖‖

2

→ �j = xTdj, j = 1,⋯ ,L
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concept detection, etc.[24]. The purpose of domain adaptive 
learning is to solve the problem of inconsistent distribution 
of source domain data and target domain data. There are 
many ways to solve this problem, and the most common 
one is to use MMD as the criterion of domain adaptation, 
such as TCA [15], SSTCA[15]], and IGLDA [16]. In recent 
years, some researchers have also proposed other domain 
adaptation criteria. Li et al.[11] proposed covariance as a 
criterion for domain adaptive learning, which minimizes the 
difference between the variance of the source domain data 
and the target domain data to make the source domain data 
and target domain data as consistent as possible. Moreover, 
the learning subspace is optimized by minimizing the intra-
class distance and maximizing the inter-class distance. At 
the same time, manifold regularization is used to maintain 
the geometric structure of the data. Wang [25] et al. pro-
posed that the distribution of target domain data projected 
to the subspace can be approximated to the distribution of 
source domain data of the same category through a transfor-
mation matrix, and the correlation between different label 
categories in the projection matrix is minimized.

In addition to different criteria in domain adaptation, 
researchers have also proposed many other methods. In 
order to simultaneously extract cross-domain information 
of emotion and topic vocabulary, Li et al.[26] first generate 
emotion and topic ‘seeds’ in the target domain and then use 
a method called Relational Adaptive bootstraPping (RAP) 
to expand ‘seeds.’ RAP is a DAL algorithm based on spe-
cific relationship so as to complete the extraction task in the 
target domain according to the extracted information. Long 
et al.[27, 28] proposed a Deep Adaptation Network (DAN) 
to learn the transferable features, which started the research 
of deep learning-based adaptive learning. The research of 
adversarial adaptive learning[29] utilized a binary domain 
discriminator to realize domain confusion in a supervised 
way, thus minimized the differences between domains.

Gong et al.[30] proposed geodesic flow kernel (GFK), 
and it used the source domain data and target domain data 
to construct a geodesic flow and a geodesic flow kernel. The 
geodesic flow represents the incremental changes between 
the two domains, while the geodesic flow kernel maps 
numerous subspaces on the geodesic flow. GFK integrates 
numerous subspaces on the geodesic flow from the source 
domain subspace to the target domain subspace and extracts 
the domain-invariant subspace direction.

Fernando et al.[31] proposed the method of subspace 
alignment (SA) to solve the DAL problems. SA learns a 
mapping function that aligns the subspace of source domain 
and target domain. Specifically, it aims to learn a transforma-
tion matrix M and construct the target function:

Xs and Xt are the subspace representations of source domain 
data and target domain data constructed by principal com-
ponent analysis (PCA) according to data from both domains 
and the pre-defined subspace dimension. Equation (5) can 
be solved by the least square method. According to the sub-
space representation after alignment, we can train classifiers 
on the source domain data and then apply it to the target 
domain.

Pan et al.[32] put forward Maximum Mean Discrepancy 
Embedding algorithm (MMDE), and MMDE first learns a 
kernel matrix K, so that the data in the source domain and 
the target domain could follow the consistent distribution in 
the embedding RKHS corresponding to the kernel matrix. 
At the same time, the variance of the data can be preserved 
for better classification. Then, MMDE conducts PCA to K 
to learn a low-dimensional feature subspace of RKHS and 
select the main feature vectors to construct the low-dimen-
sional representation of the data. The limitation of MMDE is 
that it learns the kernel matrix in a transductive way, so the 
kernel matrix must be re-learned when out-of-sample data 
are introduced. Moreover, the process of PCA after optimiz-
ing the kernel matrix may lose the potential useful informa-
tion in the kernel matrix.

Transfer component analysis (TCA) proposed by Pan 
et al.[15] also focuses on learning a low-dimensional sub-
space of RKHS under the principle of reducing the distri-
bution differences between domains and maintaining the 
internal structure of data. TCA uses empirical kernel trick 
to combine kernel method and subspace learning. And its 
constraint is used to maintain the linear independence of 
the transformation matrix and preserve the data variance 
mapped to the subspace. Based on TCA, semi-supervised 
transfer component analysis[15] (SSTCA) maximizes the 
correlation between the data and label information and pre-
serves the data locality. Furthermore, Integration of Global 
and Local Metrics for Domain Adaptation Learning[16] 
(IGLDA) introduces category information of the data, so 
that the intra-class distance of the projected data can be as 
small as possible.

Liu et al.[33, 34] proposed an approach called low-rank 
representation (LRR) to identify the subspace structure of 
noisy data. Based on this, Jhuo et al.[35] proposed a robust 
DAL algorithm based on low-rank reconstruction. Shekhar 
et al.[36, 37] proposed a method using shared dictionaries 
to represent source domain data and target domain data in 
a latent subspace. And domain-specific dictionary learn-
ing[38, 39] aims to learn a dictionary for each domain and 

(5)min
M

‖‖XsM − Xt‖‖2F
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then use domain-specific or domain-common representation 
coefficients to represent the data of each domain.

Li et al.[40] proposed a method for judging feature learn-
ing based on categories. The algorithm first uses the basic 
classifier to identify a pseudo-label on the target domain data 
and minimizes the distance between the source data of the 
same class and maximizes the distance between the source 
data of the different class. The method also minimizes the 
distance between the target data of the same class and maxi-
mizes the distance between the target data of the different 
class. Zhang et al.[41] proposed a Manifold Criterion guided 
Transfer Learning. The algorithm uses the source domain 
to generate an intermediate domain, so that the generated 
intermediate domain data approximate the distribution of 
the target domain data from both local and global aspects.

3.2 � Dictionary learning

Before sparse coding, a dictionary is first generated, so 
sparse coding methods are usually associated with dictionary 
learning. Traditional dictionary learning methods are unsu-
pervised, and the dictionary has no category labels. In order 
to learn more discriminative dictionaries, in recent years, 
researchers have proposed supervised dictionary learning 
methods. Ramirez and Castrodad proposed a dictionary 
determined for each type of data learning category[42, 43]. 
Zhou proposed to learn a dictionary with certain categories 
by minimizing the divergence between classes of similar 
data and learning a shared dictionary by maximizing the 
divergence between classes of different types of data[44]. 
Perronnin proposed to adaptively generate a category-deter-
mined dictionary from a common dictionary through the 
GMM model[45]. Gao proposed to simultaneously learn the 
category-determined dictionary and the shared dictionary 
and apply it to fine-grained image classification tasks[46]. 
The above-mentioned supervised dictionary learning meth-
ods are all methods based on vector space. Among the dic-
tionary learning methods on the SPD manifold, most of the 
dictionary learning methods are unsupervised. Sivalingam 
proposed a Tensor Dictionary Learning algorithm based on 
Logdet divergence[47]. When training each type of diction-
ary, the inconsistency between this type of dictionary and 
other types of dictionaries is used as a regular term to learn a 
dictionary of discriminative category determination. The cri-
terion used by Sivalingam to measure the coherence between 
two SPD matrices is the matrix inner product:

where Symd
++

 is d × d symmetric positive definite matrix. 
The larger the Q(X, Y), the greater the continuity between X 

(6)Q(X, Y) = tr(XY),X, Y ∈ Symd
++

and Y. Hrandi learns both the dictionary and the classifier 
by minimizing the classification error[48]. In general, the 
supervised dictionary learning method on SPD manifold 
needs further research.

4 � Domain adaption based on source 
dictionary regularized RKHS subspace 
learning

4.1 � The framework of RKHS subspace learning

In the existing domain adaptive algorithms, many research-
ers will use the RKHS subspace learning framework to solve 
the domain discrepancy problem. The common RKHS sub-
space learning framework is to use the RKHS reproducing 
kernel to transform the data from the original data space to 
RKHS and then transform to a finite-dimensional RKHS 
subspace by the subspace projection and finally transform 
to the Euclidean space by the standard orthonormal basis of 
the subspace and isomorphic transformation. This paper also 
uses this framework.

Below, we will give the structure of the RKHS subspace, 
the constraints that must be met, and the data representa-
tion of the subspace dependence in the Euclidean space. 
The specific choice of RKHS subspace is open and can be 
determined according to the specific application of machine 
learning.

4.1.1 � Construction and constraints of RKHS subspace

Let (H, ⟨∙, ∙⟩) be the RKHS on the data space � , and use the 
reproducing kernel k of H to define the transformation from 
the data space � to RKHS H ∶ � ∶ � → H , for any x ∈ � , 
�(x) = k(∙, x) ∈ H . For any x, y in � , ⟨�(x),�(y)⟩ = k(x, y)

Give a dataset in the data space �

Use � to transform X to H:

And we record K as

(7)X =
{
x1,⋯ , xN

}
⊆ 𝛺

(8)𝜙(X) =
{
𝜑(x1),⋯ ,𝜑(xN)

}
⊆ H
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where KiCol represents the ith column of K, i = 1,… ,N.
Now, we use �(X) to structure a subspace of H, Let

And we denote W as

where WiCol represents the ith column of W, i = 1,… , d.
We use � =

{
�1,⋯ , �d

}
 to span a subspace of H

We hope that � constitutes the standard orthogonal basis of 
span� and then

For all

, we have

(9)

K =

⎡
⎢⎢⎣

⟨�(x1),�(x1)⟩ ⋯ ⟨�(x1),�(xN)⟩
⋮ ⋱ ⋮

⟨�(xN),�(x1)⟩ ⋯ ⟨�(xN),�(xN)⟩

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

k
�
x1, x1

�
⋯ k

�
x1, xN

�
⋮ ⋱ ⋮

k
�
xN, x1

�
⋯ k

�
xN, xN

�
⎤
⎥⎥⎦

=
�
K1Col ⋯ KNCol

�
∈ RN×N

(10)�i =

N∑
j=1

wji�
(
xj
)
, i = 1,⋯ , d

(11)W =

⎡⎢⎢⎣

w11 ⋯ w1d

⋮ ⋱ ⋮

wN1 ⋯ wNd

⎤⎥⎥⎦
=
�
W1Col ⋯ WdCol

�
∈ RN×d

span� =

{
d∑
i=1

�i�i

|||||
�i ∈ R, i = 1,… , d

}

(12)
⎡⎢⎢⎣

⟨�1, �1⟩ ⋯ ⟨�1, �d⟩
⋮ ⋱ ⋮

⟨�d, �1⟩ ⋯ ⟨�d, �d⟩

⎤⎥⎥⎦
= Id

(13)

⟨
�i, �j

⟩
=

⟨
N∑
p=1

wpi�(xp),

N∑
q=1

wqi�(xq)

⟩

=

N∑
p=1

N∑
q=1

wpiwqi

⟨
�
(
xp
)
,�

(
xq
)⟩

=

N∑
p=1

N∑
q=1

wpiwqik
(
xp, xq

)
= WT

iCol
KWjCol

(14)

⎡⎢⎢⎣

⟨�1, �1⟩ ⋯ ⟨�1, �d⟩
⋮ ⋱ ⋮

⟨�d, �1⟩ ⋯ ⟨�d, �d⟩

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

WT
1Col

KW1Col ⋯ WT
1Col

KWdCol

⋮ ⋱ ⋮

WT
dCol

KW1Col ⋯ WT
dCol

KWdCol

⎤⎥⎥⎦
= WTKW = Id

Obviously, the subspace span� is a d-dimensional subspace 
and completely determined by the combinational coefficient 
W, and W must satisfy the above constraints.

4.1.2 � Data representation of RKHS subspace

According to the projected theorem, if 
{
�1,… , �d

}
 is the 

standard orthogonal basis of the subspace span� , the coor-
dinate of �

(
xi
)
 projected on the subspace span� is

where i = 1,… , d . Through the RKHS subspace, we realize 
the data transformation from the original data space � to the 
European space Rd:

The original data space � can be varied according to the 
specific situation, e.g., European space, Riemannian Mani-
fold, Grassmann Manifold, etc., but the working space is all 
European space Rd , where W will be determined according 
to the specific machine learning task.

4.2 � Domain adaption based on RKHS subspace 
learning

This paper studies the domain adaptive problem. Given 
a source domain dataset and a target domain dataset in the 
original data

y =

⎡
⎢⎢⎣

⟨�(x), �1⟩
⋮

⟨�(x), �d⟩

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�
�(x),

N∑
j=1

wj1�(xj)

�

⋮�
�(x),

N∑
j=1

wjd�(xj)

�

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

N∑
j=1

wj1

�
�(x),�(xj)

�

⋮

N∑
j=1

wjd

�
�(x),�(xj)

�

⎤
⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

N∑
j=1

wj1k
�
x, xj

�

⋮

N∑
j=1

wjdk
�
x, xj

�

⎤⎥⎥⎥⎥⎥⎦

(15)yi =

⎡⎢⎢⎢⎢⎢⎣

N∑
j=1

wj1k
�
xi, xj

�

⋮

N∑
j=1

wjdk
�
xi, xj

�

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎣

WT
1Col

KiCol

⋮

WT
dCol

KiCol

⎤⎥⎥⎦

(16)X =
{
x1,… , xN

}
⊆ 𝛺 ⇒ Y =

{
y1,… , yN

}
∈ Rd
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where the source domain data Xs is labeled, and the labels 
of the unlabeled target domain data Xt need to be identified 
by the label of Xs . However, the distribution of Xs and Xt in 
� is different, and identifying directly on � will inevitably 
cause a larger error.

The domain adaptive algorithm based on RKHS subspace 
learning transforms the source domain data and target domain 
data from the original data space to the RKHS subspace, and 
through subspace learning, the distribution of source domain 
data and target domain data can converge after transforming 
from the original data space to RKHS subspace.

Let

Using the RKHS subspace learning framework proposed in 
Section 4.1, we have

In the expressions of Ys and Yt , the matrix W is unknown and 
represents the RKHS subspace. Through the learning of W, 
Ys and Yt are converged in the distribution of Euclidean space 
Rd . How to measure the convergence of the distribution? The 
common criterion is the maximum mean difference (MMD) 
criterion:

4.3 � Domain adaption based on source dictionary 
regularized RKHS subspace learning 
(SDRKHS‑DA)

4.3.1 � Dictionary learning

Given a source domain dataset and a target domain dataset 
in the original data space �:

We hope to use the source domain data Xs as a dictionary, 
and the data Xt as a training sample. The training sample will 

(17)Xs =
{
xs
1
,… , xs

Ns

}
⊆ 𝛺

X = X6 ∪ X6 =
{
x1,… , xN

}

=
{
x
s

1
,… , x

s

Ns

, x
t

1
,… , x

t

Nt

}
⊆ 𝛺,N

= Ns + Nt

Ys =
{
ys
1
,… , ys

Ns

}
⊆ Rd, ys

i
= WTK

iCol
, i = 1,… ,Ns

Yt =
{
yt
1
,… , yt

Nt

}
⊆ Rd, yt

j
= WTK

(Ns+j)Col
, j = 1,… ,Nt

(18)arg min
W

‖‖‖‖‖‖
1

Ns

Ns∑
i=1

WTK
iCol

−
1

Nt

Nt∑
j=1

WTK
(Ns+j)Col

‖‖‖‖‖‖

2

Xs =
{
xs
1
,… , xs

Ns

}
⊆ 𝛺,Xt =

{
xt
1
,… , xt

Nt

}
⊆ 𝛺

be linearly represented by a dictionary. The linear represen-
tation is expressed as z. In the process of dictionary learning, 
we need to learn the coding coefficients z. We hope that each 
target domain data can be obtained by a suitable linear rep-
resentation of the original data. At the same time, we hope 
that the coding coefficients are sparse, i.e., the target domain 
data can only be derived from a few source domains. In 
terms of data, this can force the model to learn the relation-
ship between the target domain data and the source domain 
data as much as possible and select the source domain data 
most relevant to the target domain, so the L1 regularity is 
used for the coding coefficients. The model of dictionary 
learning is as follows

4.3.2 � Modeling

As mentioned in 4.1, we use the RKHS regeneration kernel 
to transform the data from the original data space to RKHS 
and then transform to a finite-dimensional RKHS subspace 
by subspace projection and finally transform to the Euclid-
ean space by the subspace standard orthogonal basis and 
isomorphic transformation. In the selection of subspace, this 
paper adopts MMD most commonly used in domain adap-
tation, which is to minimize the mean difference between 
the source domain and target domain data, to reduce the 
distribution difference between them. And based on the 
above, this paper proposes a novel regular term, i.e., the 
source domain dictionary regularization, which constitutes 
a new RKHS subspace learning method based on the source 
domain dictionary regularization. This method aims to learn 
the relationship between the source domain data and the tar-
get domain data by the model so that the target domain data 
can be represented by the few most relevant source domain. 
Our model is as follows:

ys is the source domain data, yt is the target domain data, 
and W is the projection matrix. z is the coding coefficient, 
that is, the linear representation of the source domain data 
mentioned above. The first part of the model is MMD, and 
the second is the source domain dictionary criterion. ‖z‖1 

(19)

DIC2
(
Xs,Xt

)
= arg min

z

Nt∑
j=1

‖‖‖‖‖‖
yt
j
−

Ns∑
i=1

ys
i
zij

‖‖‖‖‖‖

2

+ �

Nt∑
j=1

‖‖‖zj
‖‖‖1

(20)

arg min
W,z

������
1

Ns

Ns�
i=1

ys
i
−

1

Nt

Nt�
j=1

yt
j

������

2

+ �

Nt�
j=1

������
yt
j
−

Ns�
i=1

ys
i
zij

������

2

+ �

Nt�
j=1

���zj
���1 + �‖W‖2
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controls the sparsity of z, and ‖W‖2 is used to control the 
complexity of W.

4.3.3 � Objective function

Our model is available through section 4.3.1.

For 
�����

1

Ns

Ns∑
i=1

ys
i
−

1

Nt

Nt∑
j=1

yt
j

�����

2

 , we get

where

For 
Nt∑
j=1

�����
yt
j
−

Ns∑
i=1

ys
i
zij

�����

2

+ �

Nt∑
j=1

���zj
���1 , we get

where � =
∑
j

(K(Ns+j)Col
−

Ns∑
i=1

KiColzij)(K(Ns+j)Col
−

Ns∑
i=1

KiColzij)
T

(21)

‖‖‖‖‖‖
1

Ns

Ns∑
i=1

ys
i
−

1

Nt

Nt∑
j=1

yt
j

‖‖‖‖‖‖

2

=

‖‖‖‖‖‖
1

Ns

Ns∑
i=1

WTKiCol −
1

Nt

Nt∑
j=1

WTK(Ns+j)Col

‖‖‖‖‖‖

2

= tr
(
WTKLKW

)

(22)

�s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

Ns

⋮
1

Ns

0

⋮

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ RNs+Nt �t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

Nt

⋮
1

Nt

0

⋮

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ RNs+Nt � = �s − �t

Ks =

⎡⎢⎢⎣

k
�
xs
1
, xs

1

�
⋯ k

�
xs
1
, xs

N

�
⋮ ⋱ ⋮

k
�
xs
N
, xs

1

�
⋯ k

�
xs
N
, xs

N

�
⎤⎥⎥⎦
Kst =

⎡⎢⎢⎣

k
�
xs
1
, xt

1

�
⋯ k

�
xs
1
, xt

N

�
⋮ ⋱ ⋮

k
�
xs
N
, xt

1

�
⋯ k

�
xs
N
, xt

N

�
⎤⎥⎥⎦

Kts =

⎡⎢⎢⎣

k
�
xt
1
, xs

1

�
⋯ k

�
xt
1
, xs

N

�
⋮ ⋱ ⋮

k
�
xt
N
, xs

1

�
⋯ k

�
xt
N
, xs

N

�
⎤⎥⎥⎦
Kt =

⎡⎢⎢⎣

k
�
xt
1
, xt

1

�
⋯ k

�
xt
1
, xt

N

�
⋮ ⋱ ⋮

k
�
xt
N
, xt

1

�
⋯ k

�
xt
N
, xt

N

�
⎤⎥⎥⎦

K =

�
Ks Kst

Kts Kt

�
, L = IN −

1

N
�N�

T
N

Nt�
j=1

������
yt
j
−

Ns�
i=1

ys
i
zij

������

2

+ �

Nt�
j=1

���zj
���1

=

Nt�
j=1

������
WT

�
K(Ns+j)Col −

Ns�
i=1

KiColzij

�������

2

+ �

Nt�
j=1

���zj
���1

= tr

�
WT

��
j

�
K(Ns+j)Col −

Ns�
i=1

KiColzij

��
K(Ns+j)Col

−

Ns�
i=1

KiColzij

�T⎞⎟⎟⎠
W

⎞⎟⎟⎠
+ �

Nt�
j=1

���zj
���1

= tr
�
WT�W

�
+ �

Nt�
j=1

���zj
���1

We hope to use dictionary learning as regular terms for 
the target domain data distribution to approach the source 
domain. Therefore, our final objective function is as follows:

4.4 � Solution to SDRKHS‑DA

For SDRKHS-DA , the idea of dictionary learning needs 
to be applied to domain adaptation. Therefore, we need to 
optimize the projection matrix W and coding coefficients z in 
the final objective function. The iterative alternate optimiza-
tion strategy is commonly used. Each round is divided into 
the update of the projection matrix W and the update of the 
coding coefficients z.

4.4.1 � Solution to W

In the process of updating the projected matrix W, we first fix 
the value of the coding coefficient, and the problem becomes 
an ordinary problem of solving the projected matrix W. The 
objective function of the projected matrix W update is

Similarly, WT
KW = W

T
K

1∕2
K

1∕2
W =

V=k1∕2W
V
T
V = Id

Then,

We use the Rayleigh entropy to solve and perform eigen-
value decomposition of K1∕2LK1∕2 + K−1∕2�K−1∕2 . The 
eigenvector of the first d dimension can be taken as the pro-
jected matrix W.

(23)

arg min
W,z

tr
(
WTKLKW

)
+ �tr

(
WT�W

)
+ �

Nt∑
j=1

‖‖‖zj
‖‖‖1 + �tr

(
WTW

)

Subject to WTKW = Id

min
W

tr
(
W

T
KLKW

)
+ tr

(
W

T�W
)

= min
W

tr
(
W

T
K

1∕2
K

1∕2
LK

1∕2
K

1∕2
W
)

+ tr
(
W

T
K

1∕2
K

−1∕2�K
−1∕2

K
1∕2

W
)

=
V=k1∕2W

min
W

tr
(
V
T
K

1∕2
LK

1∕2
V
)

+ tr
(
V
T
K

−1∕2�K
−1∕2

V
)

(24)

min
W

tr
(
V
T
K

1∕2
LK

1∕2
V
)
+ tr

(
V
T
K

−1∕2�K
−1∕2

V
)

= min
W

tr
(
V
T
(
K

1∕2
LK

1∕2 + K
−1∕2�K

−1∕2
)
V
)

= min
W

tr
(
V
T�V

)

V
T
V = Id
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4.4.2 � Solution to z

In updating the coding coefficients z, we first fix the value of 
the projection matrix W, and the problem becomes the most 
primitive sparse coding problem. The objective function for 
updating the coding result is

The above problem is a typical Lasso optimization problem, 
and SPAMS[49] and CVX[50] toolboxes can quickly solve 
this problem.

The pseudo-code for solving the projected matrix is 
shown in Algorithm 1.

Algorithm 1

Input: source domain data sampleXs and target domain data sam-
pleXt

Output: the projection matrix W
1. Calculation matrix: K and CN , randomly initialize coding coef-

ficients z;
2. Calculate matrix � by coding coefficient;
3. Perform eigenvalue decomposition on 
K1∕2LK1∕2 + K−1∕2�K−1∕2 , and take

the d eigenvectors corresponding to the first d largest eigenvalues to 
form WT;

4. Solve coding coefficients z by mexlasso;
5. Iteratively solve steps 3 and 4, and stop iterating until the loss 

value
is less than the set threshold;
6. Get the projection matrix W.

4.5 � Complexity analysis

We use O1 and O2 to represent our time complexity and space 
complexity. In the algorithm, we need to update the param-
eter W through SVD algorithm. For each SVD algorithm, 

(25)

min
W

‖‖‖‖‖‖
WTKjCol −

Ns∑
i=1

WTKiColzij

‖‖‖‖‖‖
+
‖‖‖zj

‖‖‖1

= min
W

(
WTKjCol −

Ns∑
i=1

WTKiColzij

)T

(
WTKjCol −

Ns∑
i=1

WTKiColzij

)
+
‖‖‖zj

‖‖‖1

= min
W

KT
jCol

WWTKjCol +

Ns∑
i=1

KT
jCol

WWTKiColzij

+

Ns∑
i=1

zT
ij
KT
iCol

WWTKjCol

+

Ns∑
i=1

Ns∑
p=1

zT
ij
KT
iCol

WWTKpColzpj +
‖‖‖zj

‖‖‖1

the time complexity is O1

(
N3

)
 and the space complexity is 

O2

(
N2

)
 , N = Ns + Nt ; then, the sparse matrix Z is updated 

through mexlasso, the time complexity is O1

(
N4

)
 , and the 

space complexity is O2

(
N2

)
 ; at the same time, the param-

eter � needs to be updated. The time complexity of the 
update process is O1

(
NsNt

)
 , and the space complexity is 

O2

(
N + NtN

)
 . If the number of the algorithm update iter-

ations is k, then the time complexity of our algorithm is 
O1

(
k
(
N4 + N3 + NsNt

))
= O1

(
kN4

)
 , and the space complex-

ity is O2

(
k
(
N2 + N2 + N + NtN

))
= O2

(
kN2

)
.

5 � Comparison to other related 
state‑of‑the‑art algorithm

In this chapter, we will introduce 5 state-of-the-art algo-
rithms related to the algorithm proposed in the paper. These 
five algorithms all use subspace learning methods to solve 
the domain adaptation problem, and they all have their own 
advantages and disadvantages in domain adaptation. This 
chapter mainly elaborates the theoretical difference between 
the algorithm proposed in this paper and the comparison 
algorithm, and the difference in experimental effects will be 
explained in the next chapter.

5.1 � Comparison to TCA​

The model of TCA[15] is as follows:

where W is the projected matrix and K is kernel matrix. 
KiCol represents the ith column of K. TCA uses MMD as 
the criterion of domain adaptation and maps the data to 
RKHS through a kernel function and then maps the data to 
the RKHS subspace through a projection matrix. In the pro-
cess of constructing the subspace, the distance between the 
source domain data and the target domain data is required 
to be minimized. ‖W‖2

2
 controls the complexity of W. The 

role of WTKHKW = Id is to maximize the variance of the 
mapped data, which helps to retain the attributes useful for 
classification tasks.

The main difference between SDRKHS-DA algorithm 
and TCA algorithm is that SDRKHS-DA algorithm adds 
source domain dictionary regularization on the basis of 
TCA. The SDRKHS-DA algorithm adopts the source 
domain dictionary regularization, so that the spatial distri-
bution of the source domain data and the target domain data 
in the same category in the subspace overlaps as much as 
possible.

min
W

������
1

Ns

Ns�
i=1

WTKiCol −
1

Nt

Nt�
j=1

WTK(Ns+j)Col

������

2

+ �‖W‖2
2

s.t.WTKHKW = Id
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5.2 � Comparison to SSTCA​

SSTCA[15] adds the optimization term of manifold regulari-
zation on the basis of TCA, and its model is:

SSTCA has made some improvements on the basis of TCA, 
in which WTKHk̃yyHKW = I uses HSIC to enhance the cor-

relation between labels and data; 
N∑

j,l=1

���WTKjCol −WTKlCol
���Pjl 

is a manifold regular term that retains the geometric struc-
ture of the data.

The difference between the SDRKHS-DA algorithm and 
the SSTCA algorithm is that SSTCA uses a manifold regu-
lar, and it hopes that all data mapped to the subspace are as 
close as possible. The source domain dictionary is combined 
with the idea of linear discrimination, and it is hoped that the 
spatial distribution of the source domain data and the target 
domain data in the same category in the subspace overlaps 
as much as possible.

5.3 � Comparison to TIT

TIT[51] obtained pseudo-labels through multiple experi-
ments to improve the final accuracy rate. Its model is:

where W is the projected matrix, Kt represents the target 
domain data on RKHS, and Wt is the projected matrix of Kt . 
The TIT model is the same as the previous models, using 
MMD as the domain adaptation criterion, and also using 
manifold regularization to preserve the geometric structure 
of the data. But this model ‖W‖2,1 uses in the construction 
subspace, which means that the elements of W are as sparse 
as possible.

TIT has one more regular term on the basis of SSTCA. 
The function of the regular term ‖‖Kt −WtW

T
t
Kt
‖‖2F is similar 

to the PCA algorithm. If KNN is used as the classifier, the 

min
W

������
1

Ns

Ns�
i=1

WTKiCol −
1

Nt

Nt�
j=1

WTK(Ns+j)Col

������

2

+
𝜆

N2

N�
j,l=1

���W
TKjCol −WTKlCol

���Pjl + 𝜇‖W‖2
2

s.t.WTKHk̃yyHKW = I

min
W

������
1

Ns

Ns�
i=1

WTKiCol −
1

Nt

Nt�
j=1

WTK(Ns+j)Col

������

2

+
1

2
�

N�
j,l=1

���W
TKjCol −WTKlCol

���
2

Pjl + �
���Kt −WtW

T
t
Kt

���
2

F
+ �‖W‖2,1
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regular term has no effect. Compared with TIT, SDRKHS-
DA maps both the source domain and target domain data 
to the same subspace, so that the target domain data are 
distributed around the linearly related source domain data, 
which is theoretically better than TIT.

5.4 � Comparison to IGLDA

The IGLDA[16] model is as follows:

where is the number of categories and is the number of data 
in each category. It can be seen from the above model that 
IGLDA is similar to TCA. IGLDA uses MMD as the domain 
adaptation criterion, and ‖W‖2

2
 controls the complexity of W. 

WTKHKW = Id maximizes the variance of the mapped data.
The difference between SDRKHS-DA and IGLDA is the 

regular terms used by the two algorithms. The regular term 
used by IGLDA is similar to the inter-class divergence of 
the source domain data, but it does not require the distance 
between the source domain data of different categories as 
far as possible, which may lead to misjudgment of the label 
of the target domain data. The source domain dictionary is 
combined with the idea of linear discrimination, and it is 
hoped that the target domain data can be distributed around 
the source domain data that is linearly related to it. In gen-
eral, the strongest linear correlation is the data of the same 
category, so the source domain dictionary regularization can 
improve the classification accuracy.

5.5 � Comparison to GSL

The model of GSL[52] is as follows:

The GSL model maps the source domain data and target 
domain data to two different subspaces through two different 
projection matrices. And Z is used to solve the problem that 
the number of source domain data and target domain data is 
not equal, so that the source domain data and target domain 
data projected to the subspace are closer. This paper hopes 
that the learning of the subspace Ws of the source domain 
can guide the learning of the subspace Wt of the target 
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���
2

F

s.t.M ≥ 0



1524	 Pattern Analysis and Applications (2021) 24:1513–1532

1 3

domain, so it is achieved by minimizing the Bregmans diver-
gence between Ws and Wt. And ‖‖‖WT

t
X − Ŷ◦M

‖‖‖
2

F
 plays the 

role of training a classifier.
The difference between the SDRKHS-DA and GSL algo-

rithms is that, first, the GSL algorithm does not look for a 
subspace on RKHS, but for a subspace on the original space. 
SDRKHS-DA searches for a subspace on RKHS and maps 
the data to the subspace. Second, the ‖‖WT

t
Xt −WT

s
XsZ

‖‖2F 
used in the GSL algorithm and the source domain dictionary 
regularity proposed in this article both use source domain 
data to approximate the target domain data, but the GSL 
algorithm does not require z to be sparse. And the litera-
ture of GSL algorithm does not mention that it is dictionary 
learning. From the point of view of mathematical formula, 
this algorithm is similar to the source domain dictionary 
regularity proposed in this paper, so this paper adopts GSL 
as one of the comparison algorithms.

6 � Experimental results

This paper uses SDRKHS-DA algorithm to train and pre-
dict classification tasks on five standard datasets, including 
face data, handwritten digital data, and text data. This article 
compares SDRKHS-DA with the TCA, SSTCA, IGLDA, 
TIT, GSL algorithms mentioned in the article and verifies 
the effectiveness of SDRKHS-DA.

6.1 � Face classification on AR dataset

In this experiment, AR Face Database is used for face recog-
nition. There are more than 4000 colored frontal face images 
in the AR Face Database, involving 126 people, including 
70 men and 56 women. We select a subset of AR Face Data-
base which contains 2600 face pictures, involving 100 peo-
ple, including 50 men and 50 women. Each identity has 26 
pictures that were collected from two samplings at a two-
week interval. During each sampling, 13 pictures in different 
modes were collected according to different light brightness, 
light angle, facial expression, and partial occlusion. During 
the preprocessing stage, each face image is organized into 
a 43× 60 pixel gray image, and the vectorized gray value 

of the image is directly used as the training set and test set 
without any additional preprocessing. According to differ-
ent sampling and condition, each person’s 26 face pictures 
correspond to 26 modes, numbered as 1.a-1.m and 2.a-2.m, 
respectively. Figure1 depicts some examples of the organ-
ized gray pictures in AR Face Database, showing 26 face 
pictures of one person. The first and the second row is the 
pictures taken during two samplings, respectively. (Fig. 2)

Mode 1.a and 2.a are the natural expressions. In this 
experiment, we combine mode 1.a and 2.a into one domain 
as the source domain dataset and use mode 1.b-1.j and 2.b-
2.j from the rest as the target domain dataset. We totally set 
up 18 tasks according to the different target domain. For 
each experiment of each task, all source domain data are 
used as the training set, and the target domain data are used 
as the test set. The SDRKHS-DA algorithm and the com-
parison algorithm are used to train on the training set to 
obtain the low-dimensional representation in the subspace 
of the training set. The training set data and the test set data 
are, respectively, multiplied by the low-dimensional repre-
sentation to obtain the training data and the test data after 
dimensionality reduction. This experiment uses SVM as the 
classifier and trains the SVM model based on the low-dimen-
sional representation of the training set data and its labels. 
The SVM model predicts the low-dimensional representa-
tion of the test set. The same experiment was repeated 20 
times. SDRKHS-DA algorithm parameter settings: � = 1 , 
� = 0.001 , � = 1 . The kernel function uniformly uses linear 
kernels. The subspace projection dimension is 90.

The experimental results are shown in Table 2. The 
bolded data in the table mark the best results in each tar-
get domain. According to the results of the table, the algo-
rithms with the highest accuracy in different target domains 
are not the same, but the average classification accuracy of 
SDRKHS-DA is the highest. Compared with TCA, SSTCA, 
IGLDA, TIT, and GSL, SDRKHS-DA has 5.5%, 5.73%, 
15.34%, 1.12%, and 11.76% improvement in average classi-
fication accuracy, respectively. In the classification accuracy 
of specific tasks, some algorithms are higher than SDRKHS-
DA, but SDRKHS-DA algorithm is the best in most tasks. It 
can be seen that the SDRKHS-DA algorithm has the highest 
accuracy in the target domain of 1.b, 1.c, 2.b, and 2.c com-
pared to other algorithms. We believe that the four target 

Fig. 1   Example of AR dataset
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domains are not very different from the source domain data. 
Therefore, when the source domain data are used as a dic-
tionary, the model can learn the characteristics of the source 
domain data well, so that the edge distribution of the target 
domain data is close to the source domain data. In the 1.h-
1.j and 2.h-2.j target domains, the TIT algorithm and the 
SDRKHS-DA algorithm have similar effects, and the two 
algorithms are the best. We consider that the reason is that 
TIT retains the geometric structure of the target domain data 
on RKHS in the process of constructing the subspace, so that 
the classification accuracy of these target domains is greatly 
improved compared with other algorithms. The SDRKHS-
DA algorithm chooses 1.a and 2.a as the dictionary. From 
the point of view of image pixels, the target domain 1.h-1.j, 
2.h-2.j is not very different from the dictionary. Only the 
pixels at the position of the glasses and the brightness of the 
lower right corner of the picture are different, which makes 
the model learn better features and makes the classification 
accuracy better.

Next, we study the effects of our proposed algorithm in 
different dimensions. In the experiment to study the influ-
ence of different dimensions, we choose 2.i as the target 
domain. The dimensions are set to 30, 50, 70, 90, 110, 130, 
150 in 7 dimensions. We do 10 experiments in each dimen-
sion, for a total of 70 experiments. From Table 3, we can see 
that as the dimension increases, the accuracy of the compari-
son algorithm first increases and then decreases, while the 
accuracy of SDRKHS-DA will not change after 50 dimen-
sions. It can be seen that our algorithm has good stability 
and is suitable for different dimensions. And the accuracy 
rate is also the highest in different dimensions

6.2 � Face classification on ORL dataset

The ORL face database consists of a series of face images 
taken by the laboratory from 1992 to 1994. There are 40 
objects of different ages, genders, and races. Each person 
has 10 images, a total of 400 grayscale images, the image 
size is 92×112, and the image background is black. There 

Table 2   Classification accuracy 
of different target domains(%)

Target domain TCA​ SSTCA​ IGLDA TIT GSL SDRKHS-DA

1.b 94.00 93.00 87.00 98.00 78.00 98.00
1.c 85.00 85.00 84.00 86.00 72.00 87.00
1.d 45.00 72.00 27.00 63.00 25.00 66.00
1.e 84.00 85.00 88.00 87.00 86.00 88.00
1.f 77.00 76.00 81.00 76.00 79.00 79.00
1.g 70.00 66.00 66.00 62.00 62.00 62.00
1.h 58.00 47.00 32.00 63.00 54.00 63.00
1.i 54.00 47.00 25.00 53.00 41.00 55.00
1.j 37.00 44.00 19.00 52.00 37.00 48.00
2.b 88.00 81.00 90.00 95.00 81.00 95.00
2.c 93.00 80.00 86.00 94.00 83.00 96.00
2.d 46.00 71.00 18.00 66.00 32.00 66.00
2.e 82.00 72.00 90.00 91.00 91.00 89.00
2.f 72.00 72.00 83.00 74.00 82.00 77.00
2.g 65.00 57.00 64.00 50.00 69.00 56.00
2.h 58.00 65.00 44.00 63.00 48.00 65.00
2.i 48.00 47.00 32.00 61.00 41.00 61.00
2.j 51.00 43.00 14.00 52.00 33.00 55.00
Average 67.06 66.83 57.22 71.44 60.78 72.56

Table 3   Classification accuracy 
of different dimensions in the 
target domain 2.i(%)

Target domain TCA​ SSTCA​ IGLDA TIT GSL SDRKHS-DA

30 41.90 36.90 22.40 53.00 35.90 60.00
50 43.40 41.00 29.40 59.00 38.50 61.00
70 47.80 41.40 30.00 58.00 39.60 61.00
90 48.00 47.00 32.00 61.00 41.00 61.00
110 45.20 38.20 32.50 60.00 40.30 61.00
130 46.80 36.30 31.50 60.00 41.00 61.00



1526	 Pattern Analysis and Applications (2021) 24:1513–1532

1 3

are changes in facial expressions and details, such as smil-
ing or not, eyes open or closed, and wearing or not wearing 
glasses, and the posture of the face also changes. The depth 
rotation and plane rotation can reach 20 degrees. The size 
can also vary by up to 10%. We processed the pictures of the 
ORL dataset into a size of 32× 32 and marked photographs 
with 10 patterns for each person as 1.a-1.j. In this experi-
ment, we use 1.a and 1.b as the source domain data, and 
the remaining 8 patterns as 8 domains, respectively, as the 
target domain dataset. Therefore, a total of 8 tasks are set up 
according to the different target domains. For each experi-
ment of each task, we use a total of 80 photographs in 1.a 

and 1.b as the training set, and the remaining 40 photographs 
in each domain as the test set. The SDRKHS-DA algorithm 
and the comparison algorithm are used to train on the train-
ing set to obtain the low-dimensional representation in the 
subspace of the training set. The training set data and the test 
set data are, respectively, multiplied by the low-dimensional 
representation to obtain the training data and the test data 
after dimensionality reduction. This experiment uses SVM 
as the classifier and trains the SVM model based on the 
low-dimensional representation of the training set data and 
its labels. The SVM model predicts the low-dimensional rep-
resentation of the test set. The same experiment was repeated 
20 times. SDRKHS-DA algorithm parameter settings: � = 1 , 
� = 0.001 , � = 1 . The kernel function uniformly uses linear 
kernels. The subspace projection dimension is 30.

The experimental results are shown in Table 4. The 
bolded data in the table mark the best results in each tar-
get domain. According to the results of the table, the algo-
rithms with the highest accuracy in different target domains 
are not the same, but the average classification accuracy of 
SDRKHS-DA is the highest. Compared with TCA, SSTCA, 
IGLDA, TIT, and GSL, SDRKHS-DA has an improvement 
of 0.4%, 4.81%, 4.68%, 1.31%, and 2.81% in average classi-
fication accuracy, respectively. In terms of the classification 
accuracy of specific tasks, SDRKHS-DA algorithm is the 
best among 5 tasks. In tasks 1.g, 1.h, and 1.e, the classifica-
tion effect of TCA, TIT, and GSL algorithms is the best, 
respectively.

Next, we study the effects of our proposed algorithm 
in different dimensions. In the experiment to study the 

Table 4   Classification accuracy 
of different target domains(%)

Target domain TCA​ SSTCA​ IGLDA TIT GSL SDRKHS-DA

1.c 74.25 66.00 70.75 74.50 72.50 75.00
1.d 53.00 52.50 53.25 54.25 55.00 55.00
1.e 62.00 59.75 54.75 62.00 62.50 60.00
1.f 65.50 58.50 56.25 59.75 47.50 67.50
1.g 65.00 53.50 50.00 55.50 65.00 57.50
1.h 60.50 55.25 60.00 67.50 60.00 62.50
1.i 49.00 46.50 52.50 51.00 50.00 52.50
1.j 60.00 62.00 57.50 57.50 57.50 62.50
average 61.16 56.75 56.88 60.25 58.75 61.56

Fig. 2   Classification effect diagram of different algorithms on ORL 
dataset

Table 5   Classification accuracy 
of different dimensions in the 
target domain 1.j(%)

Target domain TCA​ SSTCA​ IGLDA TIT GSL SDRKHS-DA

5 47.75 55.00 31.75 34.75 54.10 47.50
10 58.00 58.50 44.00 59.25 55.25 55.00
15 61.50 58.00 50.75 60.25 54.80 60.00
20 61.00 59.00 54.50 58.75 56.30 62.50
25 62.25 62.00 54.25 59.50 57.50 62.50
30 60.00 62.00 57.50 57.50 57.50 62.50
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influence of different dimensions, we choose 1.j as the target 
domain. The dimensions are set to 5, 10, 15, 20, 25, and 30 
in 6 dimensions. We do 10 experiments in each dimension, 
for a total of 60 experiments. From Table 5, we can see that 
as the dimensions increase, the accuracy of the comparison 
algorithm first increases and then decreases, while the accu-
racy of SDRKHS-DA will not change after 20 dimensions. 
It can be seen that our algorithm has good stability. In the 
5-15 dimension, SDRKHS-DA is less effective than other 
algorithms, which may be because the data are seriously 
distorted when the dimension is too low. The target domain 
cannot find a more suitable source domain to represent it, 
which reduces the accuracy.

6.3 � Face classification on YALE dataset

This section uses the YALE face dataset for classification 
experiments. The YALE dataset has a total of 165 face 
color pictures, involving 15 people, and each person has 11 
pictures of different modes. The 11 modes are center light, 
with glasses, happy, left light, without glasses, normal, right 
light, sadness, drowsiness, surprise, and blink, marked as 
1.a-1.k. In this experiment, we use central light and glasses 
as the source domain data, and the remaining 9 modes are, 
respectively, regarded as 9 domains as the target domain 
dataset. So according to the different target domains, a total 
of 9 tasks are set up. For each experiment of each task, we 
use a total of 30 photographs in 1.a and 1.b as the training 
set, and 15 photographs in each domain as the test set. The 
SDRKHS-DA algorithm and the comparison algorithm are 
used to train on the training set to obtain the low-dimen-
sional representation in the subspace of the training set. The 
training set data and the test set data are, respectively, mul-
tiplied by the low-dimensional representation to obtain the 
training data and the test data after dimensionality reduction. 
This experiment uses SVM as the classifier and trains the 
SVM model based on the low-dimensional representation of 
the training set data and its labels. The SVM model predicts 
the low-dimensional representation of the test set. The same 

experiment was repeated 20 times. SDRKHS-DA algorithm 
parameter settings: � = 1 , � = 0.001 , � = 1 . The kernel func-
tion uniformly uses linear kernels. The subspace projection 
dimension is 30.

The experimental results are shown in Table 6. The 
bolded data in the table mark the best results in each tar-
get domain. According to the results of the table, the algo-
rithms with the highest accuracy in different target domains 
are not the same, but the average classification accuracy of 
SDRKHS-DA is the highest. Compared with TCA, SSTCA, 
IGLDA, TIT, and GSL, SDRKHS-DA has 1.85%, 15.18%, 
1.26%, 7.41%, and 18.52% improvement in average classi-
fication accuracy, respectively. In terms of the classification 
accuracy of specific tasks, SDRKHS-DA algorithm per-
formed the best in 6 tasks, TCA performed best in 1.i task, 
and IGLDA performed best in 1.f and 1.g tasks .

Then, we explored the model effect when using algo-
rithms to map data to subspaces of different dimensions. 
We also use the 30 pictures in 1.a and 1.b as the source 
domain according to the previous preprocessing and choose 
the 1.e and 1.h data as the two target domains. The subspace 

Table 6   Classification accuracy 
of different target domains(%)

Target domain TCA​ SSTCA​ IGLDA TIT GSL SDRKHS-DA

1.c 82.67 68.67 81.33 73.33 66.67 86.67
1.d 84.67 70.67 82.67 53.33 66.67 86.67
1.e 88.67 66.00 83.33 86.67 66.67 93.33
1.f 66.00 59.33 84.00 86.67 60.00 73.33
1.g 79.33 72.00 87.33 73.33 66.67 73.33
1.h 84.67 79.33 84.67 86.67 60.00 86.67
1.i 58.00 36.67 46.67 53.33 40.00 53.33
1.j 89.33 74.00 92.00 80.00 73.33 93.33
1.k 83.33 70.00 80.00 73.33 66.67 86.67
Average 79.63 66.30 80.22 74.07 62.96 81.48

Fig. 3   Classification accuracy of each algorithm in different dimen-
sions in the target domain 1.e
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dimension is set from 5 to 30, and the step size is 5. The 
experiment uses SVM as the classifier, trains the SVM 
model according to the low-dimensional representation of 
the training set data and its labels, and then predicts the low-
dimensional representation of the test set. The same experi-
ment is repeated 20 times.

The experimental results are shown in Figs. 3 and 4. It 
can be seen that the SDRKHS-DA algorithm has a better 
classification accuracy in different dimensions than the other 
five domain adaptive algorithms. In the target domain 1.e, 
the classification accuracy of the SDRKHS-DA algorithm 
in 5–30 dimensions is the best. As far as the SDRKHS-
DA algorithm is concerned, when the dimension is 5, the 
classification effect is the worst, with an accuracy rate of 
only 73.33%. When the dimension is 15–30, the classifica-
tion accuracy rate stabilizes, reaching 93.33%. In the tar-
get domain 1.h, the classification effect of SDRKHS-DA 
algorithm is not ideal when the dimensions are 5 and 10, 
and the accuracy is lower than IGLDA and SSTCA. When 
the dimension is 5, the classification accuracy of IGLDA, 
SSTCA, and SDRKHS-DA is 79.33%, 82.00%, and 73.33%, 
respectively. When the dimension is 10, the classification 
accuracy of IGLDA, SSTCA, and SDRKHS-DA is 84.67%, 
83.33%, and 80.00%, respectively. When the dimension is 
15 to 30, SDRKHS-DA has the highest accuracy rate, which 
has been maintained at 86.67%. It can be seen that the clas-
sification accuracy of the SDRKHS-DA algorithm increases 
with the increase of the dimension and reaches the peak in 
a certain dimension.

6.4 � Handwritten digit classification

The MNIST+USPS dataset is a very commonly used data-
set in the field of machine learning. This section uses this 
dataset for handwritten digit classification experiments. 

The MNIST and USPS dataset images contain 10 kinds of 
grayscale images of handwritten Arabic numerals, and they 
have been standardized to place the numbers in the center of 
the image and make the image size consistent. The MNIST 
dataset is a subset of the NIST database. It contains 60,000 
images in the training set and 10,000 images in the test set. 
The image size is 28× 28 pixels. The USPS dataset contains 
7291 training set picture data and 2007 test set picture data, 
and the picture size is 16× 16 pixels. The sample of the 
MNIST+USPS dataset is shown in Fig.5. It can be seen that 
USPS and MNIST follow different distributions.

The experiment in this section uses a subset of the 
MNIST+USPS dataset, which contains 2000 pictures ran-
domly selected from MNIST and 1800 pictures randomly 
selected from USPS. We uniformly scale all pictures in the 
subset to the pixel size and use the gray value of the pixel as 
a feature vector to represent each picture, so the samples of 
MNIST and USPS are located in the same 256-dimensional 
feature space. In addition, no additional preprocessing was 
performed on the samples.

We take the samples of MNIST and USPS as two 
domains, respectively, and set up two tasks, namely 
MNIST→USPS and USPS→MNIST, where the arrow points 
to the target domain. For each experiment of each task, 50 
samples are randomly selected from each category of the 
source domain as the source domain data of the training set, 
a total of 500; then, 20% of the target domain samples are 
randomly selected as the target domain data of the training 
set, and 80% of the domain samples are used as the test set. 
The SDRKHS-DA algorithm and the comparison algorithm 
are used to train on the training set to obtain the low-dimen-
sional representation in the subspace of the training set. The 
training set data and the test set data are, respectively, mul-
tiplied by the low-dimensional representation to obtain the 
training data and the test data after dimensionality reduction. 
This experiment uses SVM as the classifier and trains the 
SVM model based on the low-dimensional representation of 
the training set data and its labels. The SVM model predicts 
the low-dimensional representation of the test set. The same 

Fig. 4   Classification accuracy of each algorithm in different dimen-
sions in the target domain 1.h

Fig. 5   An example of MNIST+USPS dataset. Left: USPS, Right: 
MNIST
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experiment was repeated 10 times. SDRKHS-DA algorithm 
parameter settings: � = 1 , � = 0.001 . The kernel function 
uniformly uses RBF kernels.

The experimental results are shown in Table 7. The 
data in bold in the table mark the best results of each task. 
According to the results of the table, the algorithms with 
the highest accuracy in different subspace dimensions are 
not the same, but the average classification accuracy of 
SDRKHS-DA is the highest. Compared with TCA, SSTCA, 
IGLDA, TIT and GSL, SDRKHS-DA has 3.97%, 12.85%, 
3.51%, 1.89% and 2.65% improvement in average classifica-
tion accuracy respectively. In terms of classification accu-
racy in different dimensions, the SDRKHS-DA algorithm 
has the best performance in 5 different dimensions. IGLDA 
performs best when the dimension is 25, TIT performs best 
when the dimension is 70, and GSL performs best when the 
dimension is 15.

The experimental results are shown in Table 8. The 
bolded data in the table mark the best results in each sub-
space dimension. According to the results of the table, the 
algorithms with the highest accuracy in different subspace 
dimensions are not the same, but the average classification 
accuracy of SDRKHS-DA is the highest. Compared with 
TCA, SSTCA, IGLDA, TIT and GSL, SDRKHS-DA has 
an increase of 4.28%, 5.52%, 3.82%, 2.45%, and 6.5% in 

average classification accuracy, respectively. In terms of 
classification accuracy in different dimensions, SDRKHS-
DA algorithm performs best in 7 different dimensions, and 
TIT performs best when the dimension is 50. The SDRKHS-
DA algorithm has the highest classification accuracy rate 
of 49.11% in all dimensions, which is 1.91% higher than 
the TCA algorithm with the second highest accuracy rate. 

Table 7   Classification accuracy 
of task MNIST→USPS(%)

Dimension TCA​ SSTCA​ IGLDA TIT GSL SDRKHS-DA

5 43.09 25.91 44.61 44.94 43.43 46.33
10 46.61 27.68 43.70 46.20 46.49 52.86
15 37.43 32.03 40.09 45.80 46.62 46.57
20 42.13 28.94 38.73 43.67 43.44 45.06
25 42.02 39.69 44.22 43.72 43.76 44.11
30 45.44 41.19 45.62 44.56 45.82 46.28
50 45.94 37.99 47.40 45.69 43.04 48.68
70 45.89 44.10 47.84 50.62 46.53 50.41
Average 43.57 34.69 44.03 45.65 44.89 47.54
Max 46.61 44.10 47.84 50.62 46.62 52.86

Table 8   Classification accuracy 
of task USPS→MNIST(%)

Dimension TCA​ SSTCA​ IGLDA TIT GSL SDRKHS-DA

5 47.20 30.83 46.21 41.61 40.38 49.11
10 46.71 38.84 46.38 45.52 34.96 48.03
15 34.91 41.62 36.61 43.35 41.34 46.09
20 37.89 41.14 41.04 42.58 35.87 44.77
25 42.06 40.30 41.71 43.54 39.74 46.20
30 42.04 41.57 38.71 43.19 38.30 45.09
50 39.01 42.44 41.29 43.73 43.70 43.06
70 38.97 42.12 40.49 39.95 36.78 40.72
Average 41.10 39.86 41.56 42.93 38.88 45.38
Max 47.20 42.44 46.38 45.52 43.70 49.11

Fig. 6   The average classification accuracy of two tasks in different 
dimensional subspaces
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Figure 6 is a synthesis of the classification accuracy of each 
algorithm of the two tasks in different dimensional sub-
spaces. It can be seen that the SDRKHS-DA algorithm has 
a certain improvement effect compared with the five com-
parison algorithms, and the improvement of the proposed 
algorithm in more than half of the subspace dimensions is 
at least 2 percent.

6.5 � Text classification

The Reuters-21578 dataset is often used in information 
retrieval, machine learning, and other corpus-based research. 
It was collected from the documents on the Reuters news line 
in 1987. There are five category sets in Reuters-21578 data-
set; that is, there exist five attributes which can determine 
the category of a document sample, namely ‘exchanges,’ 
‘orgs,’ ‘people,’ ‘places,’ and ‘topics.’ The attribute ‘topics’ 
is an economic-related attribute, and the other four are all 
specific attributes. For example, the values of the attributes 
‘exchange,’ ‘orgs,’ ‘people,’ and ‘places’ are Nasdaq, GATT, 
Perez-de-Cuellar, and Australia, respectively.

In this experiment, the preprocessed Reuters-21578 data-
set is used for text classification. In this dataset, all the data 
samples belong to at least one specific attribute, namely 
‘org,’ ‘place,’ or ‘people.’ At the same time, these samples 
are divided into positive and negative classes. The different 
attributes of the sample have specific relationship but cannot 
be compared directly. Thus, according to the three kinds of 
attributes those samples hold, all the sample data are divided 
into three different domains. Therefore, we set three tasks 
called ‘people vs. places,’ ‘orgs vs. people,’ and ‘orgs vs. 
places,’ respectively. The specific information about samples 
in different domains is shown in Table 9.

For each experiment of each task, 50% of the source 
domain samples are randomly selected as the source domain 
data of the training set, and 30% of the target domain sam-
ples are randomly selected as the target domain data of the 
training set. Another 65% of the target domain samples are 
randomly selected as the test set. The SDRKHS-DA algo-
rithm and the comparison algorithm are used to train on the 
training set to obtain the low-dimensional representation in 
the subspace of the training set. The training set data and the 
test set data are, respectively, multiplied by the low-dimen-
sional representation to obtain the training data and the test 
data after dimensionality reduction. This experiment uses 

SVM as the classifier and trains the SVM model based on 
the low-dimensional representation of the training set data 
and its labels. The SVM model predicts the low-dimensional 
representation of the test set. The same experiment was 
repeated 20 times. SDRKHS-DA algorithm parameter set-
tings:� = 1 , � = 0.001 . The kernel function uniformly uses 
linear kernels.

The experimental results are shown in Table 10. The 
bolded data in the table mark the best results in each sub-
space dimension. According to the results of the table, 
SDRKHS-DA performs very well in the classification. 
Combining the average classification accuracy rates under 
all dimensions of the three tasks, TCA, SSTCA, IGLDA, 
TIT, GSL, and SDRKHS-DA are 58.88%, 61.21%, 60.46%, 
60.39%, 61.98%, and 65.72%, respectively. Compared with 
TCA, SSTCA, IGLDA, TIT, and GSL, SDRKHS-DA has an 
improvement of 6.84%, 4.51%, 5.26%, 5.33%, and 3.74% in 
average classification accuracy, respectively. It can also be 
seen from the classification accuracy rates of the different 
dimensions of the three different tasks that the SDRKHS-
DA algorithm basically performs the best, especially in the 
orgs vs. places and orgs vs. people tasks. The classifica-
tion accuracy of different dimensions exceeds the other five 
comparison algorithms. Figure 7 shows the average clas-
sification accuracy of each algorithm for the three tasks in 
the same dimension. It can be seen from the figure that the 
SDRKHS-DA algorithm has a greater improvement in clas-
sification accuracy than the comparison algorithm, and the 
improvement of the proposed algorithm in more than half of 
the subspace dimensions is at least 3 percent.

7 � Conclusion

In this paper, in order to solve the problem of the mismatch 
of data distribution between the source domain and the tar-
get domain, we propose a domain adaptive algorithm based 
on source dictionary regularized RKHS subspace learning. 
We first map the source domain data and target domain 
data to RKHS through the kernel function and then find a 
suitable subspace on RKHS to map the source domain data 
and target domain data to the subspace and learn the sub-
space. In the process of subspace learning, we use MMD 
as the basic criterion of the model to make the difference 
between the mean value of the source domain data and the 

Table 9   The preprocessing 
Reuters-21578 dataset

Tasks People vs. places Orgs vs. people Orgs vs. places

Feature dimension 4562 4771 4415
Source vs. Target People Places Orgs People Orgs Places
Number of samples 1077 1077 1237 1208 1016 1043
Number of positive samples 428 456 588 587 428 456



1531Pattern Analysis and Applications (2021) 24:1513–1532	

1 3

target data as small as possible. The source domain data are 
used as a dictionary, and the target domain data are linearly 
represented by the source domain data, and the linear repre-
sentation is required to be sparse; that is, the target domain 
data can only be represented by a few source domain data. 
This can force the model to learn the relationship between 
the target domain data and the source domain data as much 
as possible and select the source domain data most relevant 
to the target domain. The purpose of domain adaptation is 
to allow the target domain data to approximate the source 
domain data so that the distribution of the two is similar. 

In general, the source domain data related to the target 
domain data should be of the same kind. Then, using the 
source domain data to linearly represent the target domain 
data will make the distribution of the source domain data 
and target domain data of the same category in the learned 
subspace as consistent as possible, thereby improving the 
classification effect of the target domain data. Sufficient 
experiments show that our algorithm far exceeds the clas-
sification effect of several state-of-the-art algorithms, thus 
proving the effectiveness of our algorithm. In the current 
algorithm, when we map data to RKHS, we use a fixed ker-
nel function. In the future, we can try to use some learnable 
kernel functions to keep the geometric structure of the data 
when the data are mapped to RKHS.
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